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Women with endometriosis (EMS) appear to be at a higher risk of developing other

autoimmune diseases predominantly multiple sclerosis (MS). Though EMS and MS

are evidently diverse in their phenotype, they are linked by a common autoimmune

condition or immunodeficiency which could play a role in the expansion of endometriosis

and possibly increase the risk of developing MS in women with EMS. However, the

common molecular links connecting EMS with MS are still unclear. We conducted a

meta-analysis of microarray experiments focused on EMS and MS with their respective

controls. The GEO2R web application discovered a total of 711 and 1516 genes

that are differentially expressed across the experimental conditions in EMS and MS,

respectively with 129 shared DEGs between them. The functional enrichment analysis

of DEGs predicts the shared gene expression signatures as well as the overlapping

biological processes likely to infer the co-occurrence of EMS with MS. Network based

meta-analysis unveiled six interaction networks/crosstalks through overlapping edges

between commonly dysregulated pathways of EMS and MS. The PTPN1, ERBB3, and

CDH1 were observed to be the highly ranked hub genes connected with disease-related

genes of both EMS and MS. Androgen receptor (AR) and nuclear factor-kB p65 (RelA)

were observed to be the most enriched transcription factor in the upstream of shared

down-regulated and up-regulated genes, respectively. The two disease sample sets

compared through crosstalk interactions between shared pathways revealed commonly

up- and down-regulated expressions of 10 immunomodulatory proteins as probable

linkers between EMS and MS. This study pinpoints the number of shared genes,

pathways, protein kinases, and upstream regulators that may help in the development of

biomarkers for diagnosis of MS and endometriosis at the same time through improved

understanding of shared molecular signatures and crosstalk.

Keywords: endometriosis, multiple sclerosis, pathway analysis, enrichment analyses, autoimmune disease,

immunodeficiency, meta-analysis

INTRODUCTION

Endometriosis (EMS) is an estrogen-dependent inflammatory disorder which affects approximately
5–10% of women in the reproductive age worldwide (Bulun, 2009). The endometrial tissue which
normally is present inside the uterus is displaced outside in patients suffering from EMS resulting
in pelvic pain and infertility (Capobianco and Rovere-Querini, 2013). Immunological factors
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are known to contribute significantly to the pathogenesis and
pathophysiology of endometriosis (Berkkanoglu and Arici, 2003;
Podgaec et al., 2007, 2010; Fairbanks et al., 2009; Nielsen
et al., 2011; Capobianco and Rovere-Querini, 2013). The prime
regulators of the innate immune response are macrophages
which come into play in case of injury, damage and infection.
Macrophages possess functionally diverse contrasting roles, as
on one hand, they play a protective role through differentiation
and regeneration of cells while on the other hand they stimulate
the immune response leading to destruction of infected cells
(Vogel et al., 2013). Pro-inflammatory cytokine (interferon-
γ) activated macrophages are known to have an essential
role in the onset and progression of endometriosis. The
macrophages misinterpret the displaced ectopic endometrial
tissue as an injury and hence, instead of removing the
endometrial cells, they activate pathways that repair and
enhance their survival leading to sustained endometrial tissue
(Podgaec et al., 2010; Capobianco and Rovere-Querini, 2013).
It has been reported that the women suffering from EMS
are more prone to acquire other inflammatory autoimmune
disorders especially multiple sclerosis (MS) (Nielsen et al.,
2011; Mormile and Vittori, 2014). Multiple sclerosis (MS) is a
chronic neuroinflammatory autoimmune disease of the central
nervous system associated with neurodegeneration (Hickey,
1999; Compston and Coles, 2002; Szczucinski and Losy, 2007).
Like endometriosis, macrophages have been observed to be
directly associated in the pathogenesis of MS (Oreja-Guevara
et al., 2012; Vogel et al., 2013). Additionally, T-helper 1 (Th1)/T-
helper 2 (Th2) imbalance has been associated with both EMS
and MS wherein the pro-inflammatory Th1 profile dominates
over the Th2 anti-inflammatory response. This is similar to other
autoimmune diseases where the immune system launches an
attack on its own cells and tissues (Trapp et al., 1998; Peterson
et al., 2001; Diestel et al., 2003; Aktas et al., 2005). Among the
increased Th1 cytokines, it has been reported that Interferon-
γ (IFN-γ) is strongly associated with the pathomechanisms of
MS (Oreja-Guevara et al., 2012; Vogel et al., 2013). Though the
association between these two heterogeneous diseases EMS and
MS, is not clearly recognized, it may be attributable to differential
gene expression and sharing of common dysregulated pathogenic
pathways involved in the development of both diseases. A
’crosstalk’ event between two pathways, thus, elucidates how
one or more components of one pathway affect another
through interactions with shared components, protein-protein
interactions and transcriptional regulations (Lu et al., 2007; Guo
and Wang, 2009; Housden and Perrimon, 2014). Therefore,
an examination of possible crosstalks and shared components
among common dysregulated pathways together with associated
genes in both endometriosis and MS may be able to assist in the
understanding of the disease mechanism.

Abbreviations: BP, biological process; BiNGO: Biological Networks Gene
Ontology tool; DAVID, database for annotation, visualization and integrated
discovery; DEG, differentially expressed genes; EMS, endometriosis; FDR, false
discovery rate; GEO, gene expression omnibus; GO, gene ontology; JI, Jaccard
Index; KEGG, Kyoto encyclopedia of genes and genomes; MS, multiple sclerosis;
NCBI, national center for biotechnology information; OC, overlap coefficient; PPI,
protein-protein interaction.

Over the last two decades, a meta-analysis approach has
been well exploited to uncover the shared molecular signatures
between related diseases by integrating the publicly accessible
microarray datasets (Silva et al., 2007; Higgs et al., 2012;
Tuller et al., 2013; Jha et al., 2016). Recent studies have
focused on identifying crosstalk among dysregulated pathways
using expression profiles of genes from control vs. disease
samples (Zhang et al., 2013; Niu et al., 2014, 2015; Chen
et al., 2015). In the present study, we aimed to identify
commonly dysregulated genes and pathways which probably
co-occur in both EMS and MS to elucidate the relationship
between the two diseases. We performed here a meta-analysis
using gene expression data from microarray experiments
of EMS and MS with their respective controls to predict
the Differentially Expressed Genes (DEGs) involved in the
respective diseases (Arasappan et al., 2011; Taminau et al.,
2014). Widely used enrichment analysis methods such as Kyoto
Encyclopedia of Genes and Genomes (KEGG), Gene Ontology
(GO), and Protein-Protein Interactions (PPI) were adopted
for the prediction of dysregulated pathways and subsequent
possible crosstalk between EMS and MS. The findings from this
study increase our understanding of the molecular mechanisms
affecting both EMS and MS. Moreover, it brings forth the
commonly shared genes, molecules and pathways co-existing in
both EMS and MS which may be further explored as newer
therapeutic targets.

MATERIALS AND METHODS

Data Acquisition
Widely accessible gene expression datasets related to
endometriosis (EMS) and MS were obtained from the Gene
Expression Omnibus (GEO) database of NCBI (http://www.
ncbi.nlm.nih.gov/geo/; Barrett and Edgar, 2006; Barrett et al.,
2013). The keywords “endometriosis” and “multiple sclerosis”
with “homo sapiens” or “human” were employed to mine the
dataset. Studies evaluated on Affymetrix human gene expression
dataset (irrespective of platform) containing samples from both
normal and diseased tissue (more or less equally distributed)
of women were taken. It was also ensured that these studies
included only tissue samples that were not cultured in vitro.
Similarly, tissue samples treated with any drugs before extraction
were also excluded. The expression profiles of both primary
and secondary cell cultures were also not considered for this
analysis. Overall 14 datasets (7 each for EMS and MS) which
met these criteria were selected from published studies and
downloaded from GEO database. The expression datasets
of EMS combined tissue samples from 7 GEO profiles, i.e.,
GSE11691, GSE25628, GSE51981, GSE6364, GSE7305, GSE7307,
and GSE7846 were selected. Likewise, expression datasets of MS
involved tissue samples from 7 GEO profiles, i.e., GSE16461,
GSE21942, GSE26484, GSE38010, GSE41848, GSE41849, and
GSE41890. These samples were further separated into groups
according to tissue source. Datasets were not subjected to any
additional normalization, as all the data obtained had already
been processed/normalized and were cross-comparable. The
related information regarding the dataset pertaining to the
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TABLE 1 | Published datasets related to endometriosis (A) and multiple sclerosis (B) used in this study.

GEO accession Platform No. of

probes

No. of samples

(control/disease)

Tissue stage References

(A) ENDOMETRIOSIS (EMS)

GSE7305 GPL570: [HG-U133_Plus_2] 54675 20 (10/10) Follicular phase/Ovarian-Follicular phase Hever et al., 2007

GSE7307 GPL570: [HG-U133_Plus_2] 54675 41 (23/18) Follicular phase/Ovarian-Follicular phase Unpublished

GSE6364 GPL570: [HG-U133_Plus_2] 54675 11 (05/06) Follicular phase/Uterus-Proliferative Burney et al., 2007

GSE51981 GPL570: [HG-U133_Plus_2] 54675 64 (35/29) Follicular phase/Uterus-Proliferative Tamaresis et al., 2014

GSE11691 GPL96: [HG-U133A] 22283 18 (09/09) Follicular phase/Uterus-Proliferative Hull et al., 2008

GSE7846 GPL570: [HG-U133_Plus_2] 54675 10 (05/05) Follicular phase/Uterus-Proliferative Sha et al., 2007

GSE25628 GPL571: [HG-U133A_2] 22277 22 (15/07) Follicular phase/Uterus-Proliferative Crispi et al., 2013

GSE6364 GPL570: [HG-U133_Plus_2] 54675 09 (03/06) Lutal phase/Uterus-Secretory phase (Early) Burney et al., 2007

GSE51981 GPL570: [HG-U133_Plus_2] 54675 30 (12/18) Lutal phase/Uterus-Secretory phase (Early) Tamaresis et al., 2014

GSE6364 GPL570: [HG-U133_Plus_2] 54675 17 (08/09) Lutal phase/Uterus-Secretory phase (Mid) Burney et al., 2007

GSE51981 GPL570: [HG-U133_Plus_2] 54675 50 (22/28) Lutal phase/Uterus-Secretory phase (Mid) Tamaresis et al., 2014

Total 292 (147/145)

(B) MULTIPLE SCLEROSIS (MS)

GSE38010 GPL570: [HG-U133_Plus_2] 33398 07 (02/05) Brain/Early, active and late stage of MS Han et al., 2012

GSE26484 GPL570: [HG-U133_Plus_2] 54675 10 (04/06) Peripheral blood/Low & high serum

sema4A levels

Nakatsuji et al., 2012

GSE21942 GPL570: [HG-U133_Plus_2] 54675 29 (15/14) Peripheral blood/NA Kemppinen et al., 2011

GSE41890 GPL6244: [HuGene-1_0-st] 695 36 (12/24) Peripheral blood/Remission & Relapse Irizar et al., 2014

GSE16461 GPL570: [HG-U133_Plus_2] 54675 16 (08/08) Peripheral blood/Monozygotic twins (MZ) Annibali et al., 2011

GSE41849 GPL16209: [HG Exon 1.0 ST] 18725 25 (13/12) Whole blood/Baseline Nickles et al., 2013

GSE41849 GPL16209: [HG Exon 1.0 ST] 18725 24 (12/12) Whole blood/Follow-up year 1 Nickles et al., 2013

GSE41848 GPL16209: [HG Exon 1.0 ST] 18725 69 (28/41) Whole blood/Baseline Nickles et al., 2013

GSE41848 GPL16209: [HG Exon 1.0 ST] 18725 88 (31/57) Whole blood/Follow-up year 1/2 Nickles et al., 2013

Total 304 (125/179)

microarray platform used, sample type and sample size are listed
in Table 1.

Data Preprocessing and Mining of DEGs
We used GEO2R web tool (http://www.ncbi.nlm.nih.gov/
geo/geo2r/; Barrett et al., 2013) to compare two or more
groups of samples in a GEO profile (given in Table 1) in
order to identify genes that are differentially expressed across
the diverse experimental conditions (Wu et al., 2016; Mou
et al., 2017; Sun et al., 2017). GEO2R performs comparisons
on original submitter-supplied processed/normalized data
tables using the GEOquery and limma (Linear Models for
Microarray Analysis) R packages (Smyth, 2004). The adjusted
p-values (adj. P) using Benjamini and Hochberg (1995)
false discovery rate (FDR) method by default were used
to correct for the occurrence of false positive results. The
threshold value for identifying DEGs was set as FDR ≤ 0.05
and logFC ≥ 1.5. All gene probes across the microarray
datasets were converted to a common Entrez ID using the
“Database for Annotation, Visualization, and Integrated
Discovery” (DAVID) v6.7 tool (https://david.ncifcrf.gov/
conversion.jsp; Huang da et al., 2008, 2009). The probes

not associated with known genes were not included. The
differentially expressed genes (DEGs) from individual studies
were selected using a combination of p-value and fold change
and the results were combined by taking the union of all
individual studies. When multiple probes referred to the same
gene, the expression values obtained from these probes were
minimized to a single value by averaging the expression value
(when all genes with the same direction of expression) or
discarded (when genes had diverse direction of expression).
The resulting DEGs represent the entire gene set of all
studies.

Functional and Pathway Enrichment
Analysis of DEGs
KEGG and GO (Gene Ontology) analysis were completed
separately using the DAVID tool. DAVID uses Fisher’s exact
test (Fisher, 1922) to predict enriched pathways by gene-
set enrichment analysis of Kyoto Encyclopedia of Genes and
Genomes (KEGG) database. False Discovery Rate (FDR) adjusted
p≤ 0.05 was selected for significantly over-represented pathways.
Significant pathway results were ranked according to the p-value.
In this study, GO terms from the biological process ontology
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were analyzed. The GO terms with ≥5 numbers of genes and
adjusted p ≤ 0.05 were considered significantly enriched GO
terms. The shared biological process ontology (GO-BP) was
calculated based on overlapping GO-Ids between EMS and
MS. The number of genes enclosed by sharing GO terms was
used to predict the significant pathways and ensuing crosstalk
between these pathways. Cytoscape plugin BiNGO (Maere
et al., 2005) and FunRich V3 (Pathan et al., 2015) stand alone
software was separately used for functional enrichment analysis
of DEGs.

PPI Network-Based Enrichment Analysis
To expose the interactive associations among the DEGs at the
protein level, genes obtained from the EMS andMSwere mapped
on protein-protein interaction (PPI) data using NetworkAnalyst
tool (http://www.networkanalyst.ca; Xia et al., 2015). The
network building was limited to include only the original seed
proteins by picking the zero order interactions to evade “hairball
effect.” NetworkAnalyst integrates comprehensive PPI data from
published literature with experimental information available
across different PPI databases. These databases like IntAct
(Orchard et al., 2014), MINT (Licata et al., 2012), DIP (Salwinski
et al., 2004), BIND (Isserlin et al., 2011), and BioGRID (Chatr-
Aryamontri et al., 2015) are integrated in InnateDB (Breuer et al.,
2013). Topological properties (such as betweenness centrality
and degree distribution) of the constructed PPI network were
calculated by NetworkAnalyzer in Cytoscape (Shannon et al.,
2003). The degree distribution of all nodes in the network may
help to explain whether a network is scale-free or not. The
betweenness centrality is defined as the number of shortest
paths in the graph that pass through the node divided by
the total number of shortest paths. The nodes with a high
betweenness centrality are lying on the communication paths
and can control the information flow. The densely connected
group of proteins referred as modules in a given network was
predicted using the “module explorer” panel of NetworkAnalyst
that used a random walk based approach for module detection.
The significant p-value of a given module was calculated using
Wilcoxon rank-sum test (Haynes, 2013). The ranking of the
identified modules was based on the number of encompassed
seed proteins. The enriched pathways of DEGs in significant
modules (≥10 DEGs) were analyzed with a threshold of p ≤ 0.05
using DAVID.

Transcription Factor and Protein Kinase
Associated with DEGs
Upstream regulators and protein kinases associated with DEGs
were recognized by submitting the list of shared DEGs to
Expression2Kinases (X2K) web interface (https://amp.pharm.
mssm.edu/X2K/; Chen et al., 2012). X2K identifies the enriched
transcription factors (TFs) from the upstream of the sharedDEGs
using a ChEA database (Chen et al., 2012). Genes2Networks
(G2N) module of X2K connects TFs with PPI to yield
transcriptional complexes related to these gene signatures.
Protein Kinases responsible for TF complex formation and
functional regulation were recognized through the Kinase
Enrichment Analysis (KEA) module of X2K. Top 10 most

enriched TFs and kinases were ranked based on the combined
(p-value and z-score) score.

Crosstalk Analysis of Biological Pathways
Pathway crosstalk was defined as those pathways that had
overlapping genes and edges. In this study, two pathways were
considered to crosstalk if they comprised at least 5 DEGs
with adjusted p ≤ 0.05 and at least 1 overlapping gene and
edge. If the number of overlapped DEGs in the pathways
was more than 3, the two pathways were considered to have
a strong interaction. This criterion ensures that each of the
pathways and its crosstalk pairs were statistically significant
and contained biologically meaningful number of genes. The
crosstalk between two pathways was explored by calculating
the Jaccard Coefficient (JC)/Jaccard Index (JI) (Jaccard, 1912;
Levandowsky and Winter, 1971) and Overlap Coefficient
(OC)/Szymkiewicz-Simpson coefficient values (Vijaymeena and
Kavitha, 2016). The pairs of the pathway were subsequently
ranked by taking the average of the two measurements as the
score defining pathway crosstalk.

The JC/JI or J (A, B) is represented by the formula

J(A, B) =
|A ∩ B|

|A ∪ B|
=

|A ∩ B|

|A| + |B| − |A ∩ B|

Here, in two given pathways, A and B, the overlapping number
of genes is the intersection of path A and path B, and the union
of the two paths represents the sum of genes. Pathways with
JC ≥ 0.01 and sharing at least one DEG were considered.

The Overlap Coefficient (OC) is represented by the formula

Overlap(A, B) =
|A ∩ B|

min (|A| , |B|)

OC was used to determine the fraction of genes that were
overlapped across pathways. The larger the OC, the higher is the
similarity in gene information between two pathways. The degree
of overlap was defined based on OC-values. OC = 1 represented
a complete overlap, OC ≫ 50% indicated high overlap, 20% ≪

OC <50% moderate overlap, OC < 20% low overlap and OC =

0 was taken as no overlap among the two pathways.

RESULTS

Identifying Disease-Associated DEGs from
EMS and MS
The meta-analysis approach (Arasappan et al., 2011; Taminau
et al., 2014) for the integrative analysis of multiple gene
expression profiles (Figure 1A) was adopted in this study.
Primary screening of the GEO profiles offered 292 and 304
samples in EMS and MS respectively, irrespective of the
location of tissue sampling (Table 1). R/Bioconductor limma
package (Smyth, 2004) was used to predict the DEGs between
disease and control samples in each dataset and the identified
DEGs were merged by taking the union of all individual
studies. The genes which are expressed in these studies in the
same direction for both diseases were averaged and retained,
whereas genes which were observed in opposite directions
were discarded. The final dataset represents the entire gene
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FIGURE 1 | Pictorial depiction of the meta-analysis (A) and enrichment analysis (B) method adopted in this study.

set of all studies (Table S1). The probe annotated as antisens
RNA, miRNA, chromosomes, hypothetical, loci, non-coding
RNAs, non-functional proteins, non-protein coding genes, ORF,
pseudogenes, and uncharacterized genes were not considered.
As a result, a total of 711 (corresponding to 796 probes) and
1,516 (corresponding to 1,833 probes) DEGs were obtained in
EMS and MS patients, respectively (Table S2). The candidate
genes were ranked according to their differential expression in
response to disease samples as compared to control samples
(Table 2). Out of the 711 EMS-associated genes, 254 genes
were up-regulated and 457 genes were down-regulated. In
contrast, 779 genes were up-regulated and 737 genes were
down-regulated in MS. The common genes shared by both
EMS and MS were observed to be 129 genes (Figure 2A). The
greatest fold differential expression observed was a 4.67 fold up-
regulation of the RBMS3 gene ( binding motif, single stranded
interacting protein 3) and a 4.68 fold down-regulation of the
SCD gene (stearoyl-CoA desaturase/delta-9-desaturase) in MS
as compared with EMS. The acquired DEGs from this study
were mapped to the validated disease genes of endometriosis and
MS offered in Online Mendelian Inheritance in Man (OMIM)
(Amberger et al., 2014) and DisGeNET (Piñero et al., 2015)
human genetic disorder databases. This analysis confirmed that
58 and 109 validated genes (Figure 2B, Tables S3, S4) present in
these two databases had also been identified as EMS and MS-
linked DEGs, respectively in our datasets. This revealed that
the identified DEGs were appropriate to signify the two disease
conditions.

Identifying Over-Represented Pathways
and Biological Process
DAVID has the capability to independently execute Gene
ontology (GO) and pathway enrichment analyses. Hence, GO
and pathway (KEGG) enrichment analyses of identified DEGs
were separately performed using DAVID. Initially, a complete
set of up-regulated and down-regulated genes from EMS and
MS were mapped to the terms in the KEGG database (Kanehisa
et al., 2016, 2017). The statistical cut-off criterion of p ≤ 0.05
acknowledged 17 over-represented pathways commonly altered
in both EMS and MS. These dysregulated pathways were
found to be enriched with 26 overlapping genes in both
diseases (Figure S1 and Table S5). The top five enriched
pathways based on shared genes were cell adhesion molecules
(hsa04514, 7 DEGs), calcium signaling pathway (hsa04020,
7 DEGs), focal adhesion (hsa04510, 4 DEGs), tight junction
(hsa04530, 4 DEGs) and dilated cardiomyopathy (hsa05414, 3
DEGs). The shared pathways enriched with most of the DEGs
were associated with inflammatory/immune responses. Similarly,
biological processes common to both diseases were identified
by mapping up-regulated and down-regulated genes to various
GO categories in the GO database. To minimize false-positives,
a GO biological process was considered significantly enriched if
it contained a minimum number of five genes with p < 0.05.
The DEGs from EMS and MS were clustered into 136 and
215 functional groups, respectively (Tables S6A,B). Twenty eight
over-represented GO terms of biological processes were found
to be affected commonly in both EMS and MS (Table S6C).
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TABLE 2 | Top 10 differentially expressed genes identified in meta-analysis.

*Entrez ID Gene symbol Gene name Fold change (FC) #Adjusted p-value

(A) Endometriosis (EMS)

TOP 10 UP-REGULATED GENES

170302 ARX Aristaless related homeobox 6.16 7.60E-16

5010 CLDN11 Claudin 11 6.08 2.53E-13

55026 TMEM255A Transmembrane protein 255A 4.66 8.09E-10

1295 COL8A1 Collagen type VIII alpha 1 chain 4.49 2.25E-08

6332 SCN7A Sodium voltage-gated channel alpha subunit 7 3.92 2.23E-06

4915 NTRK2 Neurotrophic receptor tyrosine kinase 2 3.54 5.72E-07

345557 PLCXD3 Phosphatidylinositol specific phospholipase C X domain

containing 3

3.41 7.69E-09

23224 SYNE2 Spectrin repeat containing nuclear envelope protein 2 3.39 1.63E-10

55220 KLHDC8A Kelch domain containing 8A 3.35 1.09E-02

5549 PRELP Proline and arginine rich end leucine rich repeat protein 3.35 1.43E-04

TOP 10 DOWN-REGULATED GENES

115111 SLC26A7 Solute carrier family 26 member −4.29 2.28E-08

56547 MMP26 Matrix metallopeptidase 26 −4.25 3.34E-04

9848 MFAP3L Microfibril associated protein 3 −3.75 1.81E-03

100133941 CD24 CD24 molecule −3.42 2.01E-06

57535 KIAA1324 KIAA1324 −3.42 3.38E-05

3170 FOXA2 Forkhead box A2 −3.29 1.37E-07

1750 DLX6 Distal-less homeobox 6 −3.20 7.93E-05

3213 HOXB3 Homeobox B3 −3.19 1.16E-08

64321 SOX17 SRY-box 17 −3.15 1.19E-05

27324 TOX3 TOX high mobility group box family member 3 −3.10 2.20E-02

(B) Multiple sclerosis (MS)

TOP 10 UP-REGULATED GENES

3706 ITPKA Inositol-trisphosphate 3-kinase A 6.63 2.24E-02

57495 NWD2 NACHT and WD repeat domain containing 2 6.28 2.24E-02

9312 KCNB2 Potassium channel, voltage gated Shab related subfamily B,

member 2

6.05 2.55E-02

9495 AKAP5 A kinase (PRKA) anchor protein 5 5.94 3.16E-02

59350 RXFP1 Relaxin/insulin-like family peptide receptor 1 5.86 1.63E-02

2845 GPR22 G protein-coupled receptor 22 5.75 5.03E-02

29953 TRHDE Thyrotropin-releasing hormone degrading enzyme 5.34 2.35E-02

118427 OLFM3 Olfactomedin 3 5.10 3.26E-02

440279 UNC13C unc-13 homolog C (C. elegans) 5.08 2.82E-02

2561 GABRB2 Gamma-aminobutyric acid (GABA) A receptor, beta 2 5.05 2.46E-02

TOP 10 DOWN-REGULATED GENES

116835 HSPA12B Heat shock 70kD protein 12B −15.90 5.19E-02

7276 TTR Transthyretin −8.19 3.97E-02

1586 CYP17A1 Cytochrome P450, family 17, subfamily A, polypeptide 1 −6.75 2.12E-02

3284 HSD3B2 Hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid

delta-isomerase 2

−6.58 1.36E-02

8788 DLK1 Delta-like 1 homolog (Drosophila) −6.13 2.12E-02

53637 S1PR5 Sphingosine-1-phosphate receptor 5 −5.92 7.78E-03

8513 LIPF Lipase F, gastric type −5.57 2.24E-02

3126 HLA-DRB4 Major histocompatibility complex, class II, DR beta 4 −5.55 3.08E-02

5015 OTX2 Orthodenticle homeobox 2 −5.30 2.06E-02

1584 CYP11B1 Cytochrome P450, family 11, subfamily B, polypeptide 1 −5.18 2.61E-02

(Continued)
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TABLE 2 | Continued

(C) Shared DEGs between EMS and MS

*Entrez ID Gene symbol Gene name Fold change (FC) #Adjusted p-value

EMS MS EMS MS

TOP 10 UP-REGULATED GENES

343450 KCNT2 Potassium channel, sodium activated subfamily T, member 2 2.71 4.08 4.15E-08 3.32E-02

1301 COL11A1 Collagen, type XI, alpha 1 2.60 4.18 3.49E-05 2.12E-02

257194 NEGR1 Neuronal growth regulator 1 2.19 4.32 1.81E-06 4.02E-02

27303 RBMS3 RNA binding motif, single stranded interacting protein 3 1.72 4.67 3.20E-03 2.06E-02

4057 LTF Lactotransferrin 2.39 3.94 3.18E-04 1.74E-07

345557 PLCXD3 Phosphatidylinositol-specific phospholipase C, X domain

containing 3

3.41 2.85 7.69E-09 3.51E-02

627 BDNF Brain-derived neurotrophic factor 2.67 3.50 7.37E-08 4.29E-02

1131 CHRM3 Cholinergic receptor, muscarinic 3 1.65 4.37 3.33E-03 2.95E-02

283078 MKX Mohawk homeobox 3.16 2.82 2.95E-07 2.12E-02

2823 GPM6A Glycoprotein M6A 2.10 3.73 2.11E-04 2.76E-02

TOP 10 DOWN-REGULATED GENES

7368 UGT8 UDP glycosyltransferase 8 −2.81 −4.30 2.11E-06 5.02E-02

6319 SCD WSC domain containing 2 −1.51 −4.68 6.18E-04 3.59E-02

2065 ERBB3 Erb-b2 receptor tyrosine kinase 3 −2.56 −3.41 3.99E-05 2.11E-02

135932 TMEM139 Transmembrane protein 139 −1.72 −3.71 4.39E-03 4.57E-02

57475 PLEKHH1 Pleckstrin homology domain containing, family H (with MyTH4

domain) member 1

−1.85 −3.57 6.15E-03 2.79E-02

6299 SALL1 Spalt-like transcription factor 1 −2.35 −2.61 3.81E-10 4.12E-02

3092 HIP1 Huntingtin interacting protein 1 −2.14 −2.73 6.53E-04 2.92E-02

4678 NASP Nuclear autoantigenic sperm protein (histone-binding) −2.35 −2.08 1.18E-03 3.68E-02

9043 SPAG9 Sperm associated antigen 9 −1.53 −2.85 2.98E-03 3.08E-02

3696 ITGB8 Integrin, beta 8 −1.61 −2.73 1.73E-03 5.25E-02

*Bold and underlined gene IDs denoted to the existence of these genes in OMIM and DisGeNET disease databases.
#p-values are adjusted, based on the False Discovery Rate (FDR) using the Benjamini–Hochberg method.

Cytoscape plugin BiNGO was used to represent significantly
overrepresented GO terms in an enrichment network (Figure 3).
The top five shared biological process GO terms were
cell adhesion (GO:0007155, 17 DEGs), biological adhesion
(GO:0022610, 16 DEGs), neuron differentiation (GO:0030182,
11 DEGs), regulation of apoptosis (GO:0042981, 11 DEGs),
and cell morphogenesis (GO:0000902, 10 DEGs). To further
explore the biological process of the shared DEGs, a separate
enrichment analysis using stand-alone FunRich V3 software was
completed. As a result, signal transduction (42.2% DEGs), cell
communication (39.5% DEGs), cell growth and/or maintenance
(13.6%DEGs), apoptosis (3.3%DEGs) and regulation of immune
response (0.6% DEGs) related GO terms were observed to be
significantly overrepresented in both diseases (Figure 4). These
results also revealed that most of the shared biological processes
enriched with maximum number of genes were related to
inflammation/immune response. Genes associated with enriched
GO terms were then mapped onto the corresponding KEGG
pathway. The analysis yielded 30 significant pathways associated
with biological processes (386 GO terms) of commonly altered
DEGs in both diseases (Table S7A, Figure S2). The top five
enriched pathways based on shared DEGs of biological processes
were focal adhesion (hsa04510, 19 DEGs), pathways in cancer

(hsa5200, 18 DEGs), ECM-receptor interaction (hsa04512, 17
DEGs), ErbB signaling pathway (hsa04012, 16 DEGs), and
neurotrophin signaling pathway (hsa04722, 16 DEGs). The
dysregulated pathways mainly affected by shared biological
processes were associated with the inflammatory/immune
responses.

Identifying Hub Genes in Protein
Interaction Networks
Protein–protein interactions (PPI) network was constructed by
mapping abnormally expressed genes from EMS and MS with
PPI data to predict biological significant modules comprising
shared genes/proteins and interactions which were likely to play
key roles in linking EMS and MS. A zero-order interaction
network comprising seed nodes only with interconnected edges
was constructed to generated interactions for integrated DEGs.
The resulting PPI network scattered in 1–20 subnetwork
including one large network with highest nodes and edges. We
investigated the network features of large PPI subnetwork using
NetworkAnalyst and Cytoscape plug-in “NetworkAnalyzer” that
accumulated as an undirected graph (edges have no direction),
where the proteins/genes were denoted with “nodes” and the
interaction between any two proteins/genes was denoted by
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FIGURE 2 | Differentially expressed genes in the group of endometriosis vs. control and multiple sclerosis vs. control. (A) Venn diagram indicating the number of

uniquely upregulated (green arrow) or downregulated (black arrow) genes compared individuals with EMS and MS to normal persons. The findings revealed 711 (32%)

and 1516 (68%) genes in EMS and MS, respectively with 129 shared DEGs between them. (B) A line chart showed the occurrence of 58 (3%) and 109 (5%) genes in

OMIM and DisGeNET disease databases.

“edge.” The results disclosed the associations of 1,029 nodes
(49.05% of DEGs) and 2136 edges in the network (Figure S3).
We calculated the degree of the genes in the PPI network and
found 372 (36.15%) with a degree of one and 657 (63.85%)
with a degree greater than one. Out of 657 nodes, a total
of 85 nodes were observed with ≥10 connections with other
nodes. We observed “betweenness” with a range of 2.5 to
212999.72 for large number of nodes (626; 60.84%) in the
constructed network. These observations suggested that hub
(high degree or number of connections it has to other nodes)
and bottleneck (high betweenness or number of shortest paths
going through the node) proteins which are likely to be essential
proteins were abundant in the constructed network (Yu et al.,
2007; Raman, 2010). The genes, APP (degree 207; betweenness

centrality 212999.72), HSP90AB1 (degree 70; betweenness
centrality 52964.54), CTNNB1 (degree 57; betweenness centrality
55223.07), and MDM2 (degree 51; betweenness centrality
45486.22) among the down-expressed DEGs, whereas SUMO1
(degree 87; betweenness centrality 75089.82) and EGR1 (degree
70; betweenness centrality 45796.81) among the over-expressed
DEGs were observed to be the most highly ranked hub genes
in this study. The results suggest that proteins with the highest
degree in the network have the highest betweenness (Table
S8A). As hubs contributed in a number of interactions and
clutch the network together (Jeong et al., 2001), they are more
likely to be master regulators of signaling and transcription.
Therefore, the hubs can prove to be helpful as therapeutic targets
or biomarkers.
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FIGURE 3 | Enrichment network of shared DEGs based on biological processes. Significantly overrepresented biological processes ontology terms were analyzed

and visualized by Cytoscape plugin BiNGO. The structure of GO is described in terms of a graph, where each GO term is a node, and the relationships between the

terms are edges indicating parent-to-child relationships. The size of a node is proportional to the number of targets in the GO category. The color denotes enrichment

significance-the deeper the color on a color scale, the higher the enrichment significance.

FIGURE 4 | Gene ontology functional analyses of DEGs. Biological significance of DEGs was documented by enriching the GO terms of biological processes. Majority

of the identified DEGs, from both up-regulated and down-regulated genes were involved in inflammatory/immune responses related functions. The green, blue and red

colors represent the percentage of genes, p-value and reference (p = 0.05), respectively.

Identifying Disease Module through
Interaction Networks
The constructed PPI network was evaluated for module
detection, which contains a group of proteins that execute

similar functions. Thirty four highly connected independent
modules were observed. We observed nine overlapping modules
with more than 10 nodes (p ≤ 0.05) (Table S8B), signifying
possible interaction, shared by the two diseases (Samanta and
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Liang, 2003; Menche et al., 2015; Caldera et al., 2017). The
predicted modules were connected to neighboring modules and
ranged in size from 10 to 206 genes. The distribution of highly
connected hub nodes (degree ≥ 10) in modules gave highest
hub nodes of 9 genes (SUMO1, CTNNB1, HIST1H4E, LRRK2,
APC, EPAS1, ACTB, CDH1, and PSEN1) in module 0. The
next hub nodes of 7 genes (CUL4A, HNRNPM, DHX9, SRRM2,
H2AFX, TP53BP1, and SRSF1) occurred in module 1. An
evaluation of the modules by KEGG database exposed a number
of dysregulated pathways with an FDR ≤ 0.05. Modules 0, 1, 2,
and 6 emerged with shared interactions through 25 commonly
dysregulated pathways (Figures 5A–C, Table 3, Table S9). An
examination at the pathway level of PPI connecting EMS and
MS yielded significant crosstalk through nine overlapping genes
and 44 overlapping edges (Figures 6A–F). We also found several
genes/proteins were involved in multiple pathways indicating
that these PPIs might link the crosstalk pathways together.

Upstream Regulator Analysis of Up- and
Down-Regulated DEGs
The current study identifies the enriched upstream transcription
factor (TF), intermediate protein and associated protein kinase
to understand themechanisms of shared up-regulated and down-
regulated genes in both EMS andMS. The X2K approach revealed
that POU3F2, BACH1 and 3 were top TFs binding to up-
regulated genes (Figure 7A), whereas SOX11, AR and TRIM28
were the leading TFs in down-regulated genes (Figure 7B,

Table 4). The comparison of TFs of both upregulated and down-
regulated genes resulted in the overall divergence of TFs except
for AHR and TRIM28. These TFs were found to be connected
with 411 and 199 intermediate proteins for up-regulated and
down-regulated genes, respectively. These intermediate proteins
might be facilitating the TFs to be active in the cells. The study
also disclosed the enriched protein kinases such as MAPK1,
CSNK1D, and PRKD3 for up-regulated genes (Figure 7A),
and MAPK14, ABL2, and INSR for down-regulated genes
(Figure 7B) had connections with a large number of intermediate
proteins and TFs (Table 5). The comparison of predicted kinases
of up-regulated and down-regulated genes revealed that overall
kinases were dissimilar barring ABL2 from up-regulated genes.
Androgen receptor (AR) and nuclear factor-kB p65 (RelA) were
observed to be a hub protein of down-regulated genes (via 48
direct and 3 indirect interactions) and up-regulated genes (via
80 direct and 3 indirect interactions), respectively. Therefore,
the candidate TFs and their downstream target genes could play
vital roles in the progression of autoimmune disease. These can
be further explored as potential biomarkers for the diagnosis or
treatment target.

DISCUSSION

A number of studies have reported that women suffering from
EMS are more prone to develop MS (Alviggi et al., 2006;
Nielsen et al., 2011; Mormile and Vittori, 2014; Moghadasi
and Salehizadeh, 2017). However, not much data is available

FIGURE 5 | Hub genes in significant network modules. (A) The column chart shows the size of significant modules based on the number of genes they contain. Four

modules, namely zero, one, two and six were found to be enriched with 25 pathways. (B) The network modules show a high degree of clustering of proteins involved

in the identical disease. The hub genes with high degree and high betweenness were denoted with red color. The EMS, MS, and shared DEGs in the PPI network

modules were denoted by the color yellow, green and blue, respectively. (C) The bar diagram represents the distribution of hub genes with high degree i.e., hub genes

≥ 10 nodes. The hub gene APP (amyloid beta precursor protein) was found to be connected with the highest number of neighbor’s node i.e., 81 in the network.
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TABLE 3 | Crosstalk interactions through overlapping edges in pathways that is significantly dysregulated (P < 0.05) in both EMS and MS.

KEGG ID Pathway Classification Hits Node Edge DEGs in PPI network Figure

hsa04310 Wnt signaling pathway Signal transduction 8 8 13 &TBL1XR1; &TBL1X; &APC; &TCF7L2;
&PSEN1; &MAPK10 ; $SOX17;
$CTNNB1

Figure 6A

hsa04670 Leukocyte transendothelial

migration (a)

Immune system 5 5 2 &ACTB; &CTNND1; &CTNNA3;
&MYL12B ; $CTNNB1

Figure 6B

hsa04110 Cell cycle Cell growth and death 5 5 6 &ATM; &ANAPC5 ; $RAD21; $ANAPC4;
#CCNB1

Figure 6C

hsa04114 Oocyte meiosis Cell growth and death 4 4 4 &RPS6KA3; &ANAPC5; $ANAPC4;
#CCNB1

Figure 6D

hsa04666 Fc gamma R-mediated

phagocytosis

Immune system 3 3 3 &CRKL; &PIK3R1 ; $GAB2 Figure 6E

hsa04670 Leukocyte transendothelial

migration (b)

Immune system 3 3 3 &PTK2; &PIK3R1; $ ITGB1 Figure 6F

$Genes from EMS; &genes from MS; #shared genes between EMS and MS.

ACTB, actin, beta; ANAPC4, anaphase promoting complex subunit 4; ANAPC5, anaphase promoting complex subunit 5; APC, adenomatous polyposis coli; ATM, ataxia telangiectasia

mutated; CCNB1, cyclin B1; CRKL, v-crk sarcoma virus CT10 oncogene homolog (avian)-like; CTNNA3, catenin (cadherin-associated protein), alpha 3; CTNNB1, catenin (cadherin-

associated protein), beta 1, 88kDa; CTNND1, catenin (cadherin-associated protein), delta 1; GAB2, GRB2-associated binding protein 2; ITGB1, integrin, beta 1; MAPK10, mitogen-

activated protein kinase 10; MYL12B, myosin, light chain 12B; PIK3R1, phosphoinositide-3-kinase, regulatory subunit 1 (alpha); PSEN1, presenilin 1; PTK2, PTK2 protein tyrosine kinase

2; RAD21, RAD21 homolog (S. pombe); RPS6KA3, ribosomal protein S6 kinase, 90kDa, polypeptide 3; SOX17, SRY (sex determining region Y)-box 17; TBL1X, transducin (beta)-like

1X-linked; TBL1XR1, transducin (beta)-like 1 X-linked receptor 1; TCF7L2, transcription factor 7-like 2 (T-cell specific, HMG-box).

to explain the immunological or defense mechanisms shared
by these two autoimmune diseases. Similarly, the unique and
shared molecular links accountable for failure or breakdown
of self-tolerance, which lead to the development of MS in
woman with EMS are also unclear. The present work has
explored the publicly available microarray data for EMS vs.
control and the MS vs. control cases and uncovered the shared
molecular signatures which probably play a role in linking
EMS with MS. Widely used enrichment analysis methods
(Figure 1B) was adopted for the prediction of dysregulated
pathways and establish subsequent possible crosstalk between
EMS and MS. The enrichment analysis of differentially expressed
genes (DEGs) by Kyoto Encyclopedia of Genes and Genomes
(KEGG), Gene ontology (GO) and protein-protein interactions
(PPI) divulged 46 disease-related pathways commonly disturbed
in both diseases (Table S10 and Figure S4). The findings
of disease-related pathways confined to the immune system,
signal transduction, signaling molecules and interaction, and cell
growth and death as the alteration in the suggested 14 pathways
(Figure 8, Table 6) is known to be associated with shared risks
of pathogenesis for both EMS and MS (Nielsen et al., 2011;
Mormile and Vittori, 2014). The dysregulated pathways were
mainly affected through common genes and edges associated
with the inflammatory/immune responses. Downstream analysis
revealed a number of crosstalks of dysfunctional pathways
mediated through 23 overlapping unique genes that can interact
with the signal transduction pathway (Table S11). Associated
genes mainly corresponded to cell adhesion molecules (CADM3,
CDH1, CLDN11, ITGB8, NCAM1, NEGR1, and NRXN1),
neurotransmitters (CHRM3, GABRB2, GRIA2, GRIA3, and
RXFP1), cytokine receptors (TGFBR2 and LEPR), and enzyme
families (ERBB3, PLD1, PPP2R5E, and PTPN11). Other shared
genes connected with cyclin (CCNB1), inositol trisphosphate

receptor (ITPR1), laminin receptor (LAMB1), transport protein
(SLC8A1), and adaptor protein (SHC3). These are well known
immunomodulatory proteins or immune checkpoints that are
negative regulators of the immune system. The up- and down-
regulated expressions of 10 immunomodulatory proteins were
detected commonly in both diseases (Table 7). A shared gene
expression signature could form a common link between these
two diseases. These results are consistent with preceding reports
that excessive co-stimulation and/or insufficient co-inhibition
of immunomodulatory molecules can result in a collapse of
self-tolerance leading to the expansion of autoimmune diseases
in humans (Ramsay, 2013; Zhang and Vignali, 2016). In
addition, six interaction networks through overlapping edges
of common dysregulated pathways of EMS and MS were also
discovered (Table 3, Figure 6). This result suggested the probable
associations of these two diseases through overlapping protein
interactions. The identical GO biological processes related to
inflammatory/immune responses have shown the functional
overlap likely to infer the co-occurrence of EMS with MS
(Figure 4). We have also identified a handful of hub genes
PTPN11 (degree 15, betweenness 374.27), ERBB3 (degree 11,
betweenness 198.32), and CDH1 (degree 10, betweenness 176)
that are shared by these two disorders (Figure 5). This is
consistent with the previous assumption that hub proteins are
encoded by the essential genes and are associated with disease
genes (Jeong et al., 2001). The shared pathways interacted in
crosstalk systems were observed to be regulated by shared
upstream regulators, leading to the activated or repressed
immune response. POU3F2 (POU domain, class 3, transcription
factor 2), BACH1 (breast cancer type 1 susceptibility protein;
Igarashi et al., 2017), and STAT3 (signal transducer and
activator of transcription 3; Kortylewski et al., 2005; Ho and
Ivashkiv, 2006) were top 3 identified TFs from the shared
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FIGURE 6 | Protein-protein interactions in crosstalk pathways. The results of the PPI analysis disclosed a number of interactions/crosstalk through overlapping edges

in EMS and MS (shown in the figure from (A–F). The triangular symbol denoted to the DEGs from endometriosis, whereas star symbol indicated to the shared DEGs

between EMS and MS. The interactions score indicates the interaction confidence between two nodes. All scores rank from 0 to 1, with 1 being the highest possible

confidence. The color of edges in the PPI network correspond to the curated databases (blue), and experimentally determined (pink) from known interactions, while

gene neighborhood (green), gene fusions (red), and gene co-occurrence (blue) signify predicted interactions. Further representations include text mining (yellow),

co-expression (black), and protein homology (light blue).

up-regulated genes, leading to the activated immune response
when down expressed in cells (Table 4, Figure 7A). Likewise,
SOX11 (transcription factor SOX-11), AR (androgen receptor;
Lai et al., 2012) and TRIM28 (transcription intermediary factor
1-beta; Ozato et al., 2008; Chikuma et al., 2012) were top 3
identified TFs from the shared down-regulated genes which lead
to repression of the immune response when over-expressed in
cells (Table 4, Figure 7B) (Schultz et al., 2002; Sripathy et al.,
2006). This suggests the involvement of TFs in the association
mechanism of both EMS and MS.

Immune Modulation through Dysregulation
of Cytokine
The systemic immune alteration due to dysregulation of cytokine
or chemokines production is well known to be associated with the
pathogenesis of EMS (Cakmak et al., 2009; Herington et al., 2011)
and MS (Sellebjerg et al., 2009; Hasheminia et al., 2015; Becher
et al., 2017). The sites associated with inflammation attract
leukocytes through a group of low molecular weight proteins,
the chemoattractant cytokines or chemokines. The role of CC
chemokine receptor 5 (CCR5) and its CC chemokine ligand 3

(CCL3) has been suggested in Th1-type inflammatory/immune
response (Bleul et al., 1997; Wu et al., 1997; Bonecchi et al., 1998;
Patterson et al., 1999; Nansen et al., 2002). Reduced expression of
CCL3 inMSwas observed, suggesting a concomitant reduction of
CCR5 that might contribute in the development of inflammatory
demyelination (Banisor et al., 2005). Interleukin 8 (IL-8/CXCL8)
is a chemoattractant for monocytes and neutrophils, which is
involved in the attraction and infiltration of leukocytes at the site
of inflammation. We observed increased expression of CXCL8
in MS patients, which is generally not perceived in normal
patients (Lund et al., 2004; Bartosik-Psujek and Stelmasiak,
2005). We also detected elevated levels of chemokine CXCL13
and its receptor CXCR5 which involve the maintenance of
pathogenic B cells in autoimmune diseases like MS (Finch
et al., 2013). Likewise, the study of genetic polymorphisms of
chemokines elucidates an association between rs2812378 and
C-C motif chemokine ligand 21 (CCL21) in the advanced stages
of endometriosis (Bellelis et al., 2015). These findings signify
that chemokines and their receptors are important for the
development and maintenance of innate and adaptive immunity
(Esche et al., 2005; Raman et al., 2011). The results also

Frontiers in Genetics | www.frontiersin.org 12 February 2018 | Volume 9 | Article 42

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Katiyar et al. Shared Signatures between Endometriosis and Multiple Sclerosis

FIGURE 7 | Subnetwork of transcription factor, intermediate protein and protein kinase. Expression2Kinases analysis of the (A) up- and (B) down-regulated genes

signify the most enriched TFs and kinase from the upstream of shared DEGs based on the combined score (p-value and z-score). Node size reflects connectivity and

color distinguishes transcription factors in pink, intermediate proteins in orange and kinases in blue.
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TABLE 4 | Transcription factors regulating the shared up- and down-regulated genes in EMS and MS identified using Expression2Kinases (X2K).

Rank *TF P-value Z-score #C-score Target genes

TRANSCRIPTION FACTORS AS DOWN-REGULATION

1 SOX11_23321250 3.70E-06 −2.56 32.08 08 | ITGB8, PKD1L2, SALL1, SPAG9, MAP4, HIP1, MEIS1, SCD

2 AR_22383394 1.91E-06 −1.53 20.12 10 | ITGB8, FNDC3B, SLC8A1, PLEKHH1, UGT8, ANO4, CDH1,

MAP4, CA12, MEIS1

3 TRIM28_17542650 6.02E-01 −39.13 19.85 03 | MEIS1, SALL1, ERBB3

4 AHR_22903824 2.82E-04 −2.17 17.76 05 | FNDC3B, ZKSCAN1, ANO4, CLMN, MEIS1

5 POU5F1_16153702 1.90E-03 −2.61 16.38 04 | SALL1, CDH1, SPAG9, MEIS1

6 ARNT_22903824 2.08E-04 −1.93 16.35 06 | ZKSCAN1, ANO4, CLMN, FNDC3B, SALL1, MEIS1

7 MYCN_21190229 4.00E-03 −2.86 15.78 03 | CA12, CREB5, MEIS1

8 FOXA2_19822575 2.60E-06 −1.2 15.44 12 | EPB41L2, ZKSCAN1, FNDC3B, SLC8A1, HIP1, PPP2R5E, ZAK,

CDH1, RCAN1, SPAG9, PTPN11, ERBB3

9 ELK1_19687146 1.01E-03 −2.15 14.86 05 | ITGB8, SMARCC1, NASP, PTPN11, MEIS1

10 TFAP2C_20629094 4.77E-04 −1.62 12.39 06 | EPB41L2, ZKSCAN1, CLMN, FNDC3B, HIP1, PPP2R5E

TRANSCRIPTION FACTORS AS UP-REGULATION

1 POU3F2_20337985 1.76E-07 −1.88 29.29 11 | KCND2, AKAP12, SYNE2, COL11A1, LEPR, MKX, PDZRN4,

SOD2, CHL1, GPM6A, NR4A2

2 BACH1_22875853 2.39E-06 −1.89 24.52 09 | LRRC2, COL11A1, LEPR, EGR1, AKAP12, SOD2, BCL6, SYNE2,

NR4A2

3 STAT3_23295773 2.65E-09 −1.13 22.37 16 | KCND2, NAMPT, BCL6, SYNE2, BDNF, CHL1, AKAP12, SORBS2,

RBMS3, COL11A1, LEPR, PDZRN4, CHRM3, ITPR1, NR4A2, PLCXD3

4 RELA_24523406 8.65E-06 −1.61 18.74 08 | BDNF, EGR1, KCNT2, PER1, SOD2, NAMPT, NR4A2, LTF

5 NR3C1_21868756 6.16E-05 −1.79 17.31 07 | AKAP12, SYTL2, FLRT3, FIGN, CHRM3, BCL6, GPM6A

6 TRIM28_17542650 6.48E-01 −38.96 16.9 03 | KCND2, BDNF, LRRC2

7 CTBP1_25329375 6.61E-05 −1.75 16.84 07 | LRRC2, KCNT2, PDZRN4, FLRT3, CHL1, CHRM3, SYNE2

8 CLOCK_20551151 5.17E-04 −2.21 16.76 04 | ITPR1, BCL6, EGR1, PER1

9 SMAD_19615063 5.94E-03 −3.25 16.66 02 | SYTL2, BDNF

10 AHR_22903824 3.90E-04 −2.1 16.48 05 | FIGN, LEPR, BCL6, MKX, NR4A2

*TF, transcription factor; #C-score, combine score of p-value and z-score, which is used to rank the identified TFs.

suggest that altered expression of β-chemokines are involved
in similar biological processes or function in both EMS and
MS (Table S7B). In addition, crosstalk analysis exposed that the
stimulation of cytokine-cytokine receptor interaction pathway
in EMS, up-regulates a gene LEPR or activates a protein leptin
receptor that is also a member of the same pathway in MS.
Therefore, the down-stream response of the suggested pathways
in both EMS and MS might be regulated by the same activated
TFs, resulting in the up-regulated expression of LEPR genes
in MS. Previous reports have confirmed that leptin (acts via
leptin receptor) is negatively correlated with the production of
regulatory T cells and hence associated with immune deficiency
(Farooqi et al., 2002). Therefore, the elevated expression of
leptin/leptin receptor in EMS prompts immune deficiency which
may induce MS.

Immune Modulation through Dysregulation
of Adhesion Molecules
Our evaluation indicated that patients suffering from EMS
exhibited an upregulated expression of neuronal growth
regulator 1 (NEGR1) with downregulated expression of
Catherine 1 (CDH1) and integrin subunit beta 8 (ITGB8).
A similar trend for these proteins was also observed for MS.
The stimulation of cell adhesion molecules (CAMs) pathway in

EMS, up-regulates a gene NEGR1 or turns on a protein neuronal
growth regulator 1 that is also an element of the identical
pathway in MS. Therefore, the down-movement reaction of
these pathways in EMS and MS is probably regulated through
the same activated TFs, resulting in concomitant up-regulation
of NEGR1 genes in MS in patients with EMS. The overexpression
of NEGR1 gene prevents synaptogenesis leading to autoimmune
or neurodegenerative diseases. These results are consistent
with the previous hypothesis that the precise expression of
neuronal growth regulator 1 is critical for the neurite outgrowth
in the brain, while the dysregulated expression of negr1 gene is
known to play a key function in inhibiting neurite outgrowth
and synapse formation (Gil et al., 1998; Schäfer et al., 2005;
Hashimoto et al., 2009; Pischedda et al., 2014; Sanz et al.,
2015). The inhibition of cell adhesion molecule pathway in
EMS inhibits the genes CDH1/cadherin-1 and ITGB8/integrin
subunit beta 8 in the pathway which co-occurs in MS. Activated
TFs are expected to regulate this down-flow reaction resulting
in the down-regulation of CDH1 and ITGB8 genes in MS.
The ligand αEβ7 integrin, expressed in several subsets of
lymphocytes acts via its receptor cadherin-1 or E-cadherin which
is expressed in epithelial cells. This interaction results in adhesion
of lymphocytes to epithelial cells, probably important for T
cell homing to the intestinal sites (Agace et al., 2000). Our
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TABLE 5 | Protein kinase as up- and down-regulation responsible for phosphorylation of PPI at disease state of EMS and MS.

Rank Kinase P-value Z-score #C-score Substrates

PROTEIN KINASE AS DOWN-REGULATION

1 MAPK14 3.03E-03 −2.40 13.91 05 | EPB41L2, RCAN1, SPAG9, SMARCC1, MAP4

2 ABL2 1.55E-03 −1.82 11.79 02 | PTPN11, ERBB3

3 INSR 7.73E-03 −2.06 10.02 03 | EPB41L2, ERBB3, PTPN11

4 ERBB4 4.56E-03 −1.82 9.83 02 | ERBB3, PTPN11

5 GSK3B 9.52E-03 −2.09 9.74 05 | CDH1, RCAN1, SMARCC1, MAP4, CLMN

6 PRKDC 1.56E-02 −1.85 7.70 03 | MAP4, NASP, SPAG9

7 PTK2B 1.24E-02 −1.65 7.24 02 | ERBB3, PTPN11

8 EGFR 1.95E-02 −1.83 7.21 03 | CDH1, ERBB3, PTPN11

9 MAPK8 2.59E-02 −1.77 6.45 03 | MAP4, NASP, SPAG9

10 PTK2 2.19E-02 −1.62 6.19 02| ERBB3, PTPN11

PROTEIN KINASE AS UP-REGULATION

1 MAPK1 1.69E-02 −2.26 9.22 04 | KCND2, ITPR1, NR4A2, BCL6

2 CSNK1D 3.23E-02 −1.86 6.40 02 | AKAP12, PER1

3 PRKD3 2.61E-02 −1.47 5.38 01 | BCL6

4 WNK4 3.57E-02 −1.39 4.63 01 | BCL6

5 DDR1 5.78E-02 −1.52 4.34 01 | COL11A1

6 GRK6 5.47E-02 −1.40 4.08 01 | CHRM3

7 NTRK2 1.01E-01 −1.57 3.61 01 | BDNF

8 ABL2 7.64E-02 −1.39 3.57 01 | SORBS2

9 CAMK2D 1.13E-01 −1.38 3.01 01 | KCND2

10 CAMK2B 1.04E-01 −1.30 2.94 01 | KCND2

#C-score, combine score of p-value and z-score, which is used to rank the identified kinase.

results demonstrated the down-regulation of E-cadherin, which
is known to increase cellular motility by weakening cellular
adhesion within a tissue. The findings point toward the increased
risk of altered intestinal immune reactions and tissue injuries
connected with inflammatory diseases, including autoimmune
diseases (Yoshimoto et al., 2014). This suggests that αEβ7 could
be used as a potential therapeutic target for inflammatory
diseases. Likewise, the cytokine transforming growth factor-beta
(TGF-β) acts as an immune suppressor during homeostasis,
infection and disease (Yoshimura and Muto, 2011; Worthington
et al., 2012). The down-regulation of integrin subunit beta 8
(ITGB8) was observed, suggesting the interruption in alpha-
V/beta-8-mediated TGF-β activation through dendritic cells
which is vital for preventing immune disorder (Travis et al.,
2007).

Immune Modulation through Dysregulation
of Neurotransmitters
The stimulation of neuroactive ligand-receptor interaction
pathway as well as calcium signaling pathway in EMS was
observed. This up-regulates a gene CHRM3 or initiates a
protein cholinergic muscarinic receptor subtype 3 in EMS which
coexists in MS. Consequently, the CHRM3 gene was also seen
to be up-regulated in MS. CHRM3 signaling modulates the
activation, recruitment and differentiation of progenitor cells
or oligodendrocytes precursor cells (OPCs), essential for the
remyelination in the central nervous system (Abiraman et al.,

2015). The crosstalk analysis disclosed the dysregulation of
OPCs by the overexpression of CHRM3 gene, which inhibits
remyelination and enhances the risk of MS in patients suffering
from EMS.

Immune Modulation through Dysregulation
of InsP3R and Transport Protein
Crosstalk research has proven that the stimulation of calcium
signaling pathway in EMS, up-regulates the gene ITPR1. Since
an identical pathway is also present in MS, the increased ITPR1
levels can induce MS. The protein Inositol 1,4,5-trisphosphate
(InsP3/Ins3P/IP3) is an essential signal transduction element
of the calcium (Ca2+) signaling pathway involved in the
regulation of cellular activities (Berridge, 1993; Hirota et al.,
2003). Overexpression of ITPR1 gene results in calcium
dysregulation accentuating the risk of autoimmune diseases
(Zhuang et al., 2015). Our analysis suggested that the inhibition
of the calcium signaling pathway in EMS, down-regulates
the same pathway in MS. Hence, the expression of Solute
carrier family 11A member 1 (SLC11A1) genes is decreased.
SLC11A1 possess an immunomodulatory role in manipulating
macrophage activation status (M1/M2) and Th1/Th2 biases.
The transcriptional repression of SLC11A1 gene leads to cell
proliferation and survival resulting in cancer and autoimmunity
(Awomoyi, 2007). The reduced level of SLC11A1 genes is linked
with the overexpression of cell proliferation in EMS patients. This
increases the probability of developing MS in patients with EMS.
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FIGURE 8 | Pathways crosstalk through shared components (genes and

edges). The number of identified crosstalk pathways by KEGG (blue), GO: BP

(red), and PPI (green and violet) methods are indicated. The top three enriched

pathways based on shared genes, edges and GO terms were erbB signaling

pathways, calcium signaling pathways and cell adhesion molecules.

Immune Modulation through Dysregulation
of Enzyme Families
The inhibition of calcium signaling/ErbB signaling, leukocyte
transendothelial migration and oocyte meiosis pathways as
seen by our analysis in EMS, down-regulates the genes
ERBB3 (Erb-b2 receptor tyrosine kinase 3), PTPN11 (tyrosine-
protein phosphatase non-receptor type 11), and PPP2R5E
(phosphatase 2 regulatory subunit B’epsilon), respectively.
Common TFs regulate them in MS resulting in their synergistic
decreased expression. The reduced expression of ERBB3
gene could contribute to insufficient remyelination associated
with the expansion of neurodegenerative diseases like MS
and Alzheimer’s (Bublil and Yarden, 2007). These results
are consistent with the previous study that neuregulin-
1/ErbB signaling plays a crucial role in of OPC proliferation,
oligodendrocyte differentiation and remyelination in the central
nervous system (Vartanian et al., 1997; Canoll et al., 1999;
Flores et al., 2000; Calaora et al., 2001). Likewise, protein
tyrosine phosphatases (PTPs) act as negative regulators of the
immune response in normal and pathophysiological conditions
by controlling the activation/inhibition of lymphocytes. The
observed reduction in the level of PTPs could be associated
with abnormal lymphocyte function in both EMS and MS
(Dolton et al., 2006; Rhee and Veillette, 2012). Similarly,
the downregulated expression of PPP2R5E genes, exhibit the
overexpression of regulatory T cells, ensuing the risk of
autoimmunity. This is consistent with reports that protein
phosphatase 2A (PP2A) is critical for regulatory T cells to
function, for in their absence they no longer possess the ability
to suppress effector T cells and thus fail to protect against
autoimmunity (Apostolidis et al., 2016).

TABLE 6 | Shared dysregulated pathways lead to endometriosis (EMS) and multiple sclerosis (MS) obtained through KEGG, GO and PPI methods.

KEGG -ID Dysregulated pathways Classification *KEGG #GO $PPI &Hits

Genes Edges

hsa04012 ErbB signaling pathway Signal transduction 2 16 2 0 20

hsa04020 Calcium signaling pathway Signal transduction 4 16 0 0 20

hsa04514 Cell adhesion molecules Signaling molecules and interaction 7 13 0 0 20

hsa04670 Leukocyte transendothelial migration Immune system 0 12 0 5 17

hsa04512 ECM-receptor interaction Signaling molecules and interaction 0 17 0 0 17

hsa04310 Wnt signaling pathway Signal transduction 1 0 0 13 14

hsa04110 Cell cycle Cell growth and death 0 0 1 6 7

hsa04114 Oocyte meiosis Cell growth and death 0 0 1 4 5

hsa04666 Fc gamma R-mediated phagocytosis Immune system 0 0 0 3 3

hsa04062 Chemokine signaling pathway Immune system 0 2 1 0 3

hsa04060 Cytokine-cytokine receptor interaction Signaling molecules and interaction 0 3 0 0 3

hsa04080 Neuroactive ligand-receptor interaction Signaling molecules and interaction 0 3 0 0 3

hsa04350 TGF-beta signaling pathway Signal transduction 0 2 0 0 2

hsa04115 p53 signaling pathway Cell growth and death 0 0 1 0 1

*KEGG, number of shared genes enriched within the common pathways of EMS and MS.
#GO, number of shared genes of biological process GO terms enriched within the common pathways of EMS and MS.
$PPI, number of shared genes and edges associated with the protein-protein interactions within the common pathways of EMS and MS.
&Hits, the dysregulated pathways were ordered by the total number of hits.
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TABLE 7 | Crosstalk interactions through shared overlapping genes or immunomodulatory proteins as probable linker in EMS and MS.

Shared genes Description #EMS #MS Dysregulated shared pathways Classification

UP-REGULATION IN BOTH EMS AND MS

NEGR1 Neuronal growth regulator 1 ↑ ↑ Cell adhesion molecules (CAMs) Signaling molecules and interaction

LEPR Leptin receptor ↑ ↑ Cytokine-cytokine receptor interaction Signaling molecules and interaction

CHRM3 Cholinergic receptor muscarinic

3

↑ ↑ Neuroactive ligand-receptor interaction///

Calcium signaling pathway

Signaling molecules and interaction///

Signal transduction

ITPR1 Inositol 1,4,5-trisphosphate

receptor type 1

↑ ↑ Oocyte meiosis///Calcium signaling

pathway

Cell growth and death/// Signal

transduction

DOWN-REGULATION IN BOTH EMS AND MS

SLC8A1 Solute carrier family 8 member

A1

↓ ↓ Calcium signaling pathway Signal transduction

ERBB3 Erb-b2 receptor tyrosine kinase 3 ↓ ↓ Calcium signaling pathway///ErbB

signaling pathway

Signal transduction

CDH1 Cadherin 1 ↓ ↓ Cell adhesion molecules (CAMs) Signaling molecules and interaction

ITGB8 Integrin subunit beta 8 ↓ ↓ Cell adhesion molecules

(CAMs)///ECM-receptor interaction

Signaling molecules and interaction

PTPN11 Protein tyrosine phosphatase,

non-receptor type 11

↓ ↓ Leukocyte transendothelial migration Immune system

PPP2R5E Protein phosphatase 2 regulatory

subunit B’epsilon

↓ ↓ Oocyte meiosis Cell growth and death

#Up arrow, denotes to upregulation of genes.
#Down arrow, denotes to downregulation of genes.

CONCLUSIONS

The microarray gene expression data from healthy individuals
and patients suffering from either of the two related autoimmune
disorders, endometriosis or MS, from the GEO database was
examined through KEGG, GO, and PPI methods. We identified
shared differentially expressed genes in these two related diseases
which were involved in common disease-related pathways. We
also identified the links between these two diseases by analyzing
their overlapping disease genes and edges through protein-
protein interactions. The maximum number of shared genes and
edges in shared dysregulated pathways was associated with the
inflammatory/immune responses. The observed dysfunctional
pathways mediated through an overlapping immunomodulatory
protein are anticipated to act as probable linkers in EMS and
MS. The enrichment analysis of GO terms clearly showcased
the functional overlap of biological processes inferring the co-
occurrence of EMS with MS. This analysis also suggested that
the identified disease genes not shared through protein-protein
interaction might play vital roles in the same or related functions
to complete the molecular links. The identified common
molecular signatures (such as genes, pathways, transcription
factors, and protein kinases) can be further explored as novel
targets/biomarkers for the simultaneous treatment of EMS

andMS. The findings from this study increase our understanding
of the molecular mechanisms affecting both EMS and MS and
suggest an interconnection between the two diseases.
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