
ORIGINAL RESEARCH ARTICLE
published: 11 May 2011

doi: 10.3389/fimmu.2011.00015

Abnormalities of thymic stroma may contribute to immune
dysregulation in murine models of leaky severe combined
immunodeficiency
Francesca Rucci 1, Pietro Luigi Poliani 2, Stefano Caraffi 1,Tiziana Paganini 3, Elena Fontana2, Silvia Giliani 3,

Frederick W. Alt 4 and Luigi Daniele Notarangelo1*

1 Division of Immunology and The Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, MA, USA
2 Department of Pathology, University of Brescia, Brescia, Italy
3 “Angelo Nocivelli” Institute for Molecular Medicine and Department of Pediatrics, University of Brescia, Brescia, Italy
4 Howard Hughes Medical Institute, Children’s Hospital, Immune Disease Institute and Harvard Medical School, Boston, MA, USA

Edited by:

Menno C. Van Zelm, Erasmus MC,
University Medical Center,
Netherlands

Reviewed by:

Mirjam Van der Burg, Erasmus MC,
Netherlands
Pärt Peterson, University of Tartu,
Estonia

*Correspondence:

Luigi Daniele Notarangelo, Division of
Immunology and The Manton Center
for Orphan Disease Research, Karp
Research Building, Room 9210, 1
Blackfan Circle, Boston, MA 02115,
USA.
e-mail: luigi.notarangelo@
childrens.harvard.edu

Lymphostromal cross-talk in the thymus is essential to allow generation of a diversified
repertoire of T lymphocytes and to prevent autoimmunity by self-reactive T cells. Hypo-
morphic mutations in genes that control T cell development have been associated with
immunodeficiency and immune dysregulation both in humans and in mice. We have stud-
iedT cell development and thymic stroma architecture and maturation in two mouse models
of leaky severe combined immune deficiency, carrying hypomorphic mutations in rag1 and
lig4 genes. Defective T cell development was associated with abnormalities of thymic
architecture that predominantly affect the thymic medulla, with reduction of the pool of
mature medullary thymic epithelial cells (mTECs). While the ability of mTECs to express
autoimmune regulator (Aire) is preserved in mutant mice, the frequency of mature mTECs
expressing Aire and tissue-specific antigens is severely reduced. Similarly, the ability of
CD4+ T cells to differentiate into Foxp3+ natural regulatory T cells is preserved in rag1
and lig4 mutant mice, but their number is greatly reduced. These data indicate that hypo-
morphic defects in T cell development may cause defective lymphostromal cross-talk and
impinge on thymic stromal cells maturation, and thus favor immune dysregulation.
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INTRODUCTION
The thymus is a highly specialized lymphoid organ whose pecu-
liar microenvironment supports homing, proliferation, survival,
maturation, and migration of immature thymocytes (Takahama,
2006).

Upon entrance in the thymus, bone marrow-derived commit-
ted lymphoid progenitors undergo multiple rounds of prolifer-
ation and a distinct process of cell differentiation that culmi-
nates with the emergence of a diversified pool of mature T cells
whose randomly generated T cell-receptor (TCR) repertoire has
been selected for self-major-histocompatibility-complex (MHC)
restriction and purged of self-reactive specificities.

Thymocyte development and selection are supported by the
thymic stroma, that includes a highly organized network of spe-
cialized thymic epithelial cells (TECs) and distinct populations of
thymic dendritic cells (DCs). The mature thymus is organized in
two major compartments, the cortex and the medulla, that con-
tain distinct populations of TECs that exert different functions. In
particular, cortical TECs (cTECs) sustain the positive selection of
CD4+ CD8+ double positive (DP) thymocytes that have success-
fully rearranged their TCR; in contrast, medullary TECs (mTECs)
support selection, maturation, and export of single positive (SP)

thymocytes (Anderson and Jenkinson, 2001; Hogquist et al., 2005;
Irla et al., 2010; Takahama et al., 2010).

Moreover, mTECs display the unique ability of expressing the
transcription factor autoimmune regulator (Aire), that allows
mTECs to express a large number of genes that encode for periph-
eral tissue-specific antigens (TSAs). These self TSAs are presented
to developing SP T cells either directly by mTECs or indirectly by
DCs upon uptake from mTECs (Derbinski et al., 2005; Kyewski
and Klein, 2006). Interaction between self-antigen-loaded thymic
stromal cells and newly generated T cells expressing self-reactive
TCR specificities leads to the induction of central T cell toler-
ance via clonal deletion of self-reactive T cells. Alternatively, it
has been proposed that mTECs and medullary thymic DCs may
contribute to the establishment of tolerance by facilitating diver-
sion of self-reactive thymocytes into natural regulatory T (nTreg)
cells, that exhibit suppressive properties when exposed to self-
antigens in the periphery (Watanabe et al., 2005; Miyara and
Sakaguchi, 2007). These observations indicate that the thymus
plays a critical role not only in the generation of a functional and
diversified repertoire of mature T cells that are capable of recogniz-
ing non-self-antigens, but also in preventing the development of
autoimmunity.
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Primary immunodeficiencies (PIDs) comprise a heterogeneous
group of genetic disorders characterized by impaired develop-
ment and/or function of the immune system (Fischer, 2007;
Notarangelo, 2010). In humans, several genetic defects have been
identified that result in block at early stages of T cell develop-
ment: in some of these forms, B and/or NK cell development is
also impaired. These disorders are collectively known as severe
combined immune deficiency (SCID), whose clinical phenotype is
characterized by early onset susceptibility to infections and failure
to thrive. SCID is inevitably fatal unless immune reconstitution
is achieved by hematopoietic cell transplantation or, in selected
cases, by enzyme replacement therapy or gene therapy (Buckley,
2000; Fischer, 2000).

In humans, up to 20–30% of all cases of SCID are caused by
defects of V(D)J recombination, a lymphoid-restricted process
that allows DNA rearrangements at the immunoglobulin and
TCR loci, enabling expression of immunoglobulin and TCR pro-
teins and development of a diversified repertoire of T and B
lymphocytes.

Mutations of the recombination-activating gene (RAG) 1 and
RAG2 cause SCID by interfering with the initial step of V(D)J
recombination, i.e., recognition of recombination signal sequences
that flank the Variable (V), Diversity (D), and Joining (J) cod-
ing elements and introduction of DNA double strand breaks
(DSBs; Schwarz et al., 1996). In contrast, mutations of Artemis,
DNA protein kinase catalytic subunit (DNA–PKcs), DNA ligase 4
(LIG4), and Cernunnos/XLF affect the non-homologous end join-
ing (NHEJ) pathway of DNA repair, that is involved at later stages
in V(D)J recombination (Riballo et al., 1999; Moshous et al., 2001;
Buck et al., 2006a; van der Burg et al., 2009).

While null mutations in genes involved in V(D)J recombination
typically cause SCID with virtual absence of T and B lympho-
cytes (T− B− SCID), hypomorphic mutations in the same genes in
humans have been associated with variable degrees of impairment
of T and B cell development and frequent occurrence of manifes-
tations of immune dysregulation. In particular, Omenn syndrome
(OS) is characterized by oligoclonal expansion of few T cell clono-
types that infiltrate peripheral organs and cause extensive tissue
damage (erythroderma, gut villous atrophy, hepatosplenomegaly;
Villa et al., 2001). Less severe defects in V(D)J recombination
may cause more subtle phenotypes, ranging from leaky SCID
(in which residual development of T cells is not associated with
generalized skin rash) to delayed-onset combined immunodefi-
ciency with granulomatous manifestations (Schuetz et al., 2008;
De Ravin et al., 2010). Furthermore, hypomorphic mutations in
genes involved in NHEJ are associated also with extra immune clin-
ical features (microcephaly, short stature, increased occurrence of
malignancies), reflecting impairment of DNA repair mechanisms
(O’Driscoll et al., 2004; Gennery, 2006; Sobacchi et al., 2006).

We have previously reported severe abnormalities of thymic
architecture and impaired expression of Aire and of TSAs in the
thymus of patients with OS (Cavadini et al., 2005; Poliani et al.,
2009). These observations imply that genetic defects that affect T
cell development and prevent generation of a robust and diver-
sified T cell repertoire may also impinge on the differentiation
and/or homeostasis of thymic stromal cells, and hence impair
deletional and non-deletional mechanisms of central tolerance.

In order to address this hypothesis, we have taken advantage of
two recently described murine models of leaky SCID: the lig4R/R

mouse, homozygous for the hypomorphic R278H mutation in
the lig4 gene (Rucci et al., 2010) and the rag1S/S mouse, car-
rying the homozygous hypomorphic S723C substitution in the
rag1 gene (Giblin et al., 2009; Walter et al., 2010).In agreement
with the human phenotype, both mutant mice are characterized
by severe immunodeficiency with residual development of oligo-
clonal and functionally impaired T cells. In addition, a minority
of rag1S/S mice (but not lig4R/R mice) develop features consis-
tent with OS (Giblin et al., 2009; Walter et al., 2010). Here we
show that hypomorphic mutations that affect V(D)J recombi-
nation also compromise architecture and homeostasis of thymic
stroma, and that the severity of thymic abnormalities correlates
with the degree of immune dysregulation that may be observed in
these conditions.

MATERIALS AND METHODS
MICE
Mice harboring the rag1 S723C mutation (rag1S/S; Giblin et al.,
2009) and the lig4 R278H mutation (lig4R/R; Rucci et al., 2010)
were housed at the Karp Family Research Building under spe-
cific pathogen-free conditions. Animal experiments were carried
out after approval and in accordance with guidelines from the
Subcommittee on Research Animal Care of Children’s Hospital
Boston, Harvard Medical School.

SINGLE CELL SUSPENSIONS PREPARATION
Single cell suspensions were prepared from thymuses of lig4R/R,
rag1S/S, and wild-type (WT) mice. Tissues were homogenized on
70 μm cell strainers (BD Falcon, Bedford, MA, USA) using FACS
buffer: Dulbecco’s Phosphate-Buffered Saline (D-PBS, GIBCO
from Invitrogen, Grand Island, NY, USA) containing 2% of heat
inactivated and filtered fetal calf serum (FCS, from Gemini Bio-
Products, West Sacramento, CA, USA). Red blood cell lysis was
performed at room temperature by adding 2 ml of Red Blood Cell
Lysing Buffer (Sigma Aldrich Inc., St Louis, MO, USA) for 10 min
before proceeding with the specific stainings.

Thymic stromal cells were isolated as previously published
(Gray et al., 2002) by digesting thymuses from lig4R/R, rag1S/S,
and WT mice with 0.125% (w/v) collagenase D with 0.1% (w/v)
DNAse I (both from Roche, Indianapolis, IN, USA) in RPMI 1640
(GIBCO from Invitrogen, Grand Island, NY, USA).

IMMUNOPHENOTYPIC ANALYSIS
Thymocytes were incubated with the following antibodies:
antigen-presenting cells (APC)-conjugated anti-CD4, biotin-
conjugated or PE-conjugated anti-CD8, biotin-conjugated anti-
CD4, biotin-conjugated anti-B220, biotin-conjugated anti-
CD11b, biotin-conjugated anti-Gr1, FITC-conjugated anti-CD44,
PE-conjugated anti-CD25, FITC-conjugated anti-CD69, biotin-
conjugated anti-Qa2 (all from BD Biosciences, San Jose, CA,
USA). Samples stained with biotin-conjugated antibodies under-
went additional incubation with PerCp-conjugated streptavidin.
Intranuclear staining for Foxp3 was performed using APC-
conjugated anti-mouse/rat Foxp3 staining set (eBioscience, San
Diego, CA, USA) following manufacturer’s instructions. At least
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20,000 alive cells (defined by physical parameters) were acquired
on a FACSCalibur system or FACS Canto (BD Biosciences, San
Jose, CA, USA) and analyzed with FLOW-JO software (version
8.3; Treestar Inc.).

Analysis of TECs was performed staining single cell suspensions
of stromal cells with PerCp-conjugated anti-CD45, PE-conjugated
anti-Ly51, FITC-conjugated anti-MHC-II (BD Biosciences, San
Jose, CA, USA). Intranuclear staining for Aire was performed after
fixing stromal cells labeled with surface markers, by permeabiliza-
tion with the BD CytoFix/CytoPerm Fixation/Permeabilization kit
(BD Biosciences, San Jose, CA, USA). Anti-Aire antibody (5H12)
was a kind gift from Dr. H. Scott (Hubert et al., 2008).

Analysis of thymic DCs was performed staining single cell
suspensions of stromal cells with the following antibodies: APC-
conjugated anti-CD11c, PE-conjugated anti-CD45RA, biotin-
conjugated anti-CD3, anti-Ter119, anti-Gr1, anti-F4/80, anti-
CD19, anti-CD11b, anti-CD90 (BD Biosciences, San Jose, CA,
USA). Analysis was performed after gating out the biotinylated
positive population. At least 100,000 alive cells (defined by physi-
cal parameters) were acquired on a FACS Canto (BD Biosciences,
San Jose, CA, USA) and analyzed with FLOW-JO software (version
8.3; Treestar Inc.).

IMMUNOHISTOCHEMISTRY AND IMMUNOFLUORESCENCE
Formalin-fixed paraffin embedded tissue sections were stained
with hematoxylin and eosin (H&E) and subjected in parallel
to immunohistochemistry. Briefly, sections were deparaffinized,
rehydrated, and endogenous peroxidase activity was blocked in
0.3% H2O2/methanol solution for 20 min prior to heat induced
antigen retrieval (when necessary) using a thermostatic bath or
a microwave-oven in 1.0 mM EDTA (pH 8.00) or 1.0 mM cit-
rate buffer (pH 6.00) respectively. Sections were then washed in
TRIS-base buffer at pH 7.4 and incubated for 1 h with the follow-
ing reagents diluted in TRIS/1% bovine serum albumin (BSA):
rabbit anti-CK5 (1:50; Covance, Berkeley, CA, USA), rat anti-
CK8 (1:200; clone TROMA-1; kindly provided by Dr. U.H. von
Andrian, Harvard Medical School), rabbit anti-claudin 4 (1:100;
Zymed Laboratories, San Francisco, CA, USA), rabbit anti-murine
Aire (1:3000; kindly provided by Dr. P. Peterson, University of
Tartu, Estonia), and biotin-conjugated Ulex europaeus agglutinin-
1 (UEA-1; 1:600;Vector Laboratories, Burlingame, CA, USA). After
washes, single immunostains were revealed using the ChemMATE
Envision Rabbit/Mouse (DAKO Cytomation, Glostrup, Denmark)
or NovoLinkTM Polymer Detection System (NovocastraTM Lab-
oratories Ltd, Newcastle Upon Tyne, United Kingdom) followed
by diaminobenzidine (DAB) as chromogen and Hematoxylin as
counterstain.

The same procedure was applied to double immunofluores-
cence stainings prior to the incubation with a secondary swine
anti-rabbit FITC-conjugated antibody (1:30; DAKO Cytomation,
Glostrup, Denmark) for CK5 and a rabbit anti-rat biotinylated
antibody (1:200; Vector Laboratories, Burlingame, CA, USA) fol-
lowed by Streptavidin–Texas Red (1:100; Southern Biotechnology
Associates, Birmingham, AL, USA) for CK8. Sections were then
counterstained with DAPI.

Images were acquired with an Olympus DP70 digital camera
mounted on an Olympus BX60 microscope using CellF imaging

software (Soft Imaging System GmbH) and Adobe Photoshop
Version 7.0 for the artwork.

RNA ISOLATION, cDNA PREPARATION, AND REAL-TIME PCR ANALYSIS
RNA isolation was isolated from thymus single cell suspensions
using the mirVana miRNA isolation kit, according to the manu-
facturer’s protocol (Ambion from Applied Biosystems Inc., Foster
City, CA, USA). Reverse transcription was then performed with
qScript cDNA SuperMix (Quanta BioSciences, Inc., Gaithersburg,
MD, USA) following manufacturer’s instructions.

Real-Time PCR for quantitative expression of Aire and TSAs
was performed using TaqMan Gene expression assay with the
following assays on demand (all by Applied Biosystems Inc., Fos-
ter City, CA, USA): Mm00477461_m1 (Aire); Mm00487224_m1
(Cybp1a2); Mm00433188_m1 (Fabp2); Mm00731595_gH (Ins2);
Mm00493214_m1 (EpCAM, used as internal control). Reactions
were performed using 2 μl of cDNA obtained from 1 μg of thymic
RNA in a final volume of 20 μl using TaqMan PCR Master Mix
2x (Applied Biosystems Inc., Foster City, CA, USA) and specific
Gene Expression Assay 20x. Amplification was performed in dupli-
cates in the 7500 Real-Time PCR System (Applied Biosystems Inc.,
Foster City, CA, USA) and results were analyzed with the 7500
Real-Time PCR Software.

ANALYSIS OF T CELL REPERTOIRE
Analysis of T cell repertoire in the thymus of WT, rag1S/S and
lig4R/R mice was performed as previously described (Rucci et al.,
2010).

STATISTICS
At least five to six mice per group were analyzed. Results are indi-
cated as mean ± SE or SD. p values were determined by unpaired
Student’s t -test (p < 0.05 = ∗; p < 0.01 = ∗∗; p < 0.005 = ∗∗∗;
p < 0.001 = ∗∗∗∗).

RESULTS
Lig4R/R AND rag1S/S MICE EXHIBIT AN INCOMPLETE BLOCK IN T CELL
DEVELOPMENT
The lig4R/R and rag1S/S mice carry mutations that impair dif-
ferent steps in the V(D)J recombination process. In particular,
rag1 mutations interfere with the first step of the process, when
DSBs are introduced in the DNA (Fugmann et al., 2000. In con-
trast, lig4 mutations impair the repair of these breaks (Rooney
et al., 2004). Despite these differences, both mutations affect V(D)J
recombination and cause an early but incomplete block in T cell
development.

Both lig4R/R and rag1S/S mice showed a significant reduction in
thymus size and cellularity (Figure 1A), with a significant decrease
in the absolute numbers of thymic CD4+ CD8+ DP cells as well
as of CD4+ CD8− and CD4− CD8+ SP thymocytes as compared
to what observed in WT mice (Figure 1B).

In both mutant models, this block in T cell development was
associated with a relative enrichment in the proportion of CD4−
CD8− double negative (DN)cells, that was particularly promi-
nent in rag1S/S mice (% DN cells ± SE: WT 1.78 ± 0.13; lig4R/R

25.48 ± 3.5; rag1S/S 90.59 ± 3.27; WT vs. lig4R/R, p < 0.0001; WT
vs. rag1S/S, p < 0.0001). Developmental progression of DN thy-
mocytes is characterized by an ordered sequence of expression of
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FIGURE 1 |Thymic lymphopenia and impairedT cell development in

lig4R/R and rag1S/S mice. (A) Total thymic cellularity from 4 to 5-weeks-old
mice shows severe lymphopenia in lig4R/R and rag1S/S mice as compared to
WT littermate controls. (B) Thymuses from 4 to 5-weeks-old mice were
stained with anti-CD4 and anti-CD8 antibodies and the absolute numbers of
live thymocytes at different stages of differentiation are shown in the bar
charts (DN, double negative; DP, double positive). (C) Distribution of CD4−

CD8− DN thymocytes at various stages of differentiation (DN1–DN4). Mean
values ± SE are shown. At least six mice per group were analyzed.

CD44 and CD25 markers: CD44+ CD25− (DN1), CD44+ CD25+
(DN2), CD44− CD25+ (DN3), CD44− CD25− (DN4). Analy-
sis of the distribution of DN thymocytes in lig4R/R and rag1S/S

mice revealed a severe, but incomplete arrest of thymocyte devel-
opment at DN3 stage in both models, consistent with a defect
in TCRβ rearrangement due to impaired V(D)J recombination
(Figure 1C).

SKEWED DISTRIBUTION OF SP T CELLS AND RESTRICTED T CELL
REPERTOIRE IN THE THYMUS OF lig4R/R AND rag1S/S MICE
Newly generated CD4+ and CD8+ SP thymocytes undergo
sequential stages of maturation in the medulla. The developmental
program of maturing SP thymocytes is associated with progressive
down-regulation of CD69 and up-regulation of the Qa2 markers
on the cell surface (Lucas et al., 1994; Jin et al., 2008).The ear-
liest stages in SP cell development (SP1–SP2) are characterized

by expression of CD69 but lack of Qa2 marker (CD69+ Qa2−
cells). The next step of maturation of SP thymocytes (SP3 stage)
is marked by lack of expression of either marker (CD69− Qa2−
cells). Finally, in the last stage of differentiation (SP4), mature SP
thymocytes acquire expression of Qa2, and hence have a CD69−
Qa2+ phenotype. Thymocytes that reach this stage are ready to
egress from the thymus (Ge and Chen, 1999; Jin et al., 2008). In
control mice, the majority of CD4+ SP thymocytes are in the SP1–
SP2 stages of differentiation; in contrast, both lig4R/R and rag1S/S

mice showed a significant increase in the proportion of CD4+ SP
thymocytes with the most mature (SP4) phenotype (Figure 2). A
similar pattern was observed for CD8+ SP thymocytes (data not
shown).This difference in the distribution of SP thymocytes at
various stages of differentiation may reflect several, non-mutually
exclusive mechanisms, including accelerated intrathymic T cell
maturation, homeostatic T cell proliferation in a lymphopenic
environment (Datta and Sarvetnick, 2009) and recirculation of
mature T lymphocytes that home back to thymus. In order to
distinguish between these possibilities, we have analyzed the dis-
tribution of SP thymocytes at late stages (18 ± 2 days) of fetal
development, when homeostatic proliferation and recirculation
of mature lymphocytes should not prevail. As shown in Figure A1
in Appendix, even at this stage of fetal development, SP thymo-
cytes from lig4R/R and rag1S/S mice were characterized by a more
mature (SP3) phenotype than SP thymocytes from age-matched
WT mice. Overall, these data indicate that intra thymic maturation
of SP thymocytes is accelerated in lig4R/R and rag1S/S mice.

FIGURE 2 | Altered maturation of CD4+ SP medullary thymocytes in

the lig4R/R and rag1S/S mice. Upper panels: Representative FACS plots of
CD4+ SP medullary thymocytes at various stages of maturation according
to the expression of CD69 and Qa2 surface markers. Lower panels:
Distribution of the different populations of SP1–SP4 cells. lig4R/R and rag1S/S

mice have a significant accumulation of SP4 thymocytes. Mean values ± SE
are shown. At least six mice per group were analyzed.
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Hypomorphic mutations that affect V(D)J recombination may
affect not only the number, but also the TCR repertoire diversity
of newly generated thymocytes. We have previously demonstrated
that hypomorphic RAG mutations in patients with OS are asso-
ciated with oligoclonal representation of TCR specificities in the
thymus (Signorini et al., 1999). Similarly, a highly restricted T

cell repertoire was demonstrated in the thymus of rag1S/S mice
(Figure 3). In contrast, homozygosity for the R278H lig4 mutation
allowed generation of a broadly polyclonal repertoire of thymo-
cytes (Figure 3). These differences in size and diversity of the
thymocyte pool prompted us to investigate thymus morphology
in lig4R/R and rag1S/S mice.

FIGURE 3 | Immunoscope analysis ofTCR repertoire in the thymus of

rag1S/S and lig4R/R mice. Representative immunoscope profiles of TCRVβ

repertoire in the thymus of one WT, three rag1S/S and three lig4R/R mice.

Profiles are shown for 7 of the 24 distinct TCR Vβ-Cβ amplification products
analyzed. The x axis represents CDR3 length, and arbitrary fluorescence
intensity of the run off products is shown on the y axis. ND: not done.
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ABNORMALITIES OF THYMIC ARCHITECTURE IN lig4R/R AND
rag1S/S MICE
Appropriate interaction between elements of the T cell lineage
and stromal cells is crucial to maintain thymic architecture and
to support the maturation of both TECs and nascent thymocytes.
Severe and early blocks in T cell development are associated with
lack of thymic cortico-medullary demarcation (Holländer et al.,
1995a). Furthermore, inability to maintain an organized thymic
architecture may interfere not only with an orderly maturation of
thymocytes, but may also impede establishment of self-tolerance
(Holländer et al., 1995b; Derbinski and Kyewski, 2005).

Based on this, we investigated in detail the thymic architec-
ture of lig4R/R and rag1S/S mice. As shown in Figure 4, staining of
thymic tissue with H&E revealed severe depletion of cellularity in
both lig4R/R and rag1S/S mice. Cortico-medullary demarcation was
preserved in lig4R/R mice, whereas only a rudimentary attempt to
form a medulla was noticed in rag1S/S mice. Differential expression
of cytokeratin 8 (CK8) and cytokeratin 5 (CK5) allows distinction
between CK8+ CK5− cTECs and CK8− CK5+ mTECs (Bennett

et al., 2002; Takahama, 2006). Analysis of CK5 and CK8 expression
by immunohistochemistry and immunofluorescence confirmed
significant differences in the degree of thymic architecture abnor-
malities in lig4R/R and rag1S/S mice. In particular, only few CK5+
cells were detected in rag1S/S mice; furthermore, these cells were
largely also CK8+, a pattern observed in immature TEC progeni-
tors (Bennett et al., 2002). In contrast, tiny but well-defined nests of
CK5+ CK8− mTECs were appreciated in lig4R/R mice, consistent
with what detected by H&E staining.

ANALYSIS OF MATURATION OF mTECs AND OF AIRE AND TSA
EXPRESSION IN THE THYMUS OF lig4R/R AND rag1S/S MICE
The thymic medulla plays an essential role in the tolerance to
peripheral antigens. Both mature mTECs and thymic DCs have
been implicated in mediating central tolerance by presenting
nascent thymocytes with a broad repertoire of TSAs whose expres-
sion by mTECs is controlled by the transcription factor Aire
(Derbinski et al., 2005; Kyewski and Klein, 2006).

FIGURE 4 |Thymic architecture in wild-type, lig4R/R, and rag1S/S mice.

Analysis of thymic architecture and cytokeratin (CK) expression in WT, lig4R/R,
and rag1S/S mice. Thymic architecture with identification of cortex (c) and
medulla (m) is shown in the first column on the left by hematoxylin and eosin
(H&E) staining. The second and third columns show distribution of CK5+ and
CK8+ epithelial cells, respectively. Panels in the right column represent dual
immunofluorescence (IF) analysis for CK8+ (in red) and CK5+ (in green) cells.
Yellow staining identifies cells co-expressing CK5 and CK8. Nuclei are
counterstained with DAPI. H&E staining shows normal cortico-medullary
demarcation (CMD) in both WT and lig4R/R mutant mice, whereas only focal
areas of medullary differentiation (asterisk) are appreciated in rag1S/S mice. A
normal distribution of both CK5+ cells, that represent the vast majority of

mTECs, and CK8+ cells, that design a fine meshwork of cTECs (upper middle
panels, CK5, and CK8 staining), with clear separation between them, is
present in WT mice, as shown by IF (upper right panel). Thymuses from lig4R/R

mutant mice show CMD with normal distribution of the CK5+ and CK8+ cells,
although the CK8+ cTECs show a coarse distribution with a globular
morphology (middle panels). A well-defined, but tiny thymic medulla is
visualized by IF in lig4R/R mice (right panel). In contrast, thymuses from rag1S/S

mice show impaired CMD (H&E, left panel); staining for CKs shows diffuse
expression of CK8, and focal expression of CK5 (middle panels). IF shows
increased presence of CK5+ CK8+ double positive immature TECs in rag1S/S

mice (right panel). All panels are from 20× original magnification. One
representative example of 5 mice analyzed per each strain.
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Maturation of mTECs is progressively marked by the expres-
sion of claudin-4 (Cld4) and the ligand for UEA-1. Furthermore,
terminally differentiated mTECs express high levels of MHC-II
molecules and a subset of them also express the transcription fac-
tor Aire and TSAs (Hamazaki et al., 2007). Residual presence of
Cld4+ and of UEA-1+ mature mTECs was detected in the thy-
mus of lig4R/R mice; in contrast, there was no expression of these
markers in the thymus from rag1S/S mice, in keeping with our pre-
vious observations that they lack a well-defined thymic medulla
(Figure 5). Staining with anti-Aire antibody revealed a relative
abundance of Aire+ cells in the thymic medulla of WT mice. Aire+
cells were detected also in lig4R/R mice, albeit in low number; in
contrast, dramatic depletion of Aire+ cells, that were confined to
focal areas of cortico-medullary demarcation, was demonstrated
in rag1S/S mice (Figure 5).

Next, we used quantitative real-time polymerase chain reaction
(qPCR) to analyze the levels of mRNA specific for Aire and for
Aire-dependent TSAs (insulin, cytochrome p450, and fatty acid
binding protein) in the thymus of WT, lig4R/R, and rag1S/S mice. A
significant reduction in the level of these transcripts was observed
in the thymus of both mutant mice; this reduction was particularly
pronounced in rag1S/S mice (Figure 6A).

The observed reduction of Aire and TSA mRNA expression
in the thymus of lig4R/R and rag1S/S mice could reflect either

impairment of terminal maturation of mTECs or a general deple-
tion of the mTEC compartment. To distinguish between these
two possibilities, we used flow cytometry. It has been shown that
cTECs and mTECs can be distinguished based on the expres-
sion of MHC-II and Ly-51 markers within the CD45− popula-
tion of thymic stromal cells (Hubert et al., 2008). Both cTECs
and mTECs express MHC-II, but only cTECs express Ly51. Fur-
thermore, based on the levels of expression of MHC-II, it is
also possible to discriminate between immature (MHC-IIlow Ly-
51−)and mature MHC-IIhi Ly-51− mTECs. Upon staining of
CD45− thymic stromal cells for Ly-51 and MHC-II, we found
that the thymuses of both lig4R/R and rag1S/S mice were signif-
icantly depleted of mature mTECs (% MHC-IIhi mTECs ± SE:
WT = 2.87 ± 0.8; lig4R/R = 1.12 ± 0.4; rag1S/S = 0.17 ± 0.04; WT
vs. lig4R/R p < 0.005; WT vs. rag1S/S, p < 0.005). In con-
trast, both lig4R/R and rag1S/S mice showed a relative enrich-
ment in thymic cTECs (% cTECs ± SE: WT = 19.49 ± 3.31;
lig4R/R = 34.36 ± 2.92; rag1S/S = 33.51 ± 2.23; WT vs. lig4R/R,
p < 0.005; WT vs. rag1S/S, p < 0.005; Figure 6B). However, this
apparent enrichment in cTECs may also reflect the increased num-
ber of immature TECs (as demonstrated by co-expression of CK5
and CK8) and/or an increase in fibroblasts or other stromal CD45−
Ly51+ cells, as reported in other murine models of impaired T cell
development (Gray et al., 2002; Rodewald, 2008; Alves et al., 2009).

FIGURE 5 | Maturation of mTEC cells in wild-type, lig4R/R, and rag1S/S

mice. Mature mTECs from WT mice express claudin-4 (Cld4), Ulex europaeus
agglutinin 1 (UEA-1) and Aire (upper panels). Insets highlight fully mature
mTECs showing immunoreactivity (IR) for Cld4 and the characteristic granular
dot-like Aire positivity in the nuclei. Thymuses from lig4R/R mice show residual
presence of mTECs that reach full maturation with positivity for UEA-1, Cld4,

and Aire expression (middle panels). Loss of CMD with impaired maturation
of mTECs was observed in the thymuses from the rag1S/S mice in which only
rare UEA-1 IR cells but no mature Cld4+ and Aire+ cells were found (lower
panels). IR staining: brown. All panels are from 20× original magnification;
insets are from 40× original magnification. One representative example of
five mice analyzed per each strain.
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FIGURE 6 | Reduced expression of Aire and of tissue-specific antigens

(TSAs) in the thymus of lig4R/R and rag1S/S mice. (A) Reduced
expression of Aire and TSAs (fatty acid binding protein, Fabp2; cytochrome
p450, Cyp1a2; insulin 2, Ins2) in the thymus of lig4R/R and rag1S/S mice. Real
time PCR results were normalized to the pan-epithelial marker EpCAM1.
Mean values ± SD are shown. Seven mice per group were analyzed; AU,
arbitrary units. (B) Representative example of flow cytometry analysis of
cortical and medullary compartments shows that in the thymus of lig4R/R

and rag1S/S mice the mature medullary compartment (MHC-IIhi) is poorly
represented. The percentage of Aire+ cells among mature mTECs is largely
preserved in both mutant mice. At least five mice per group were analyzed.

As mentioned above, fully mature MHC-IIhi mTECs are
enriched for Aire expressing cells.In spite of the general reduction
in the proportion of mature mTECs, we found that the few CD45−
MHC-IIhi Ly51low mTECs from lig4R/R and rag1S/S mice retained
the ability to express Aire (% Aire+ cells ± SE: WT = 43.05 ± 2.45;
lig4R/R = 48.12 ± 5.11; rag1S/S = 47.05 ± 5.4; Figure 6B), indicat-
ing that the overall impairment of Aire and TSA expression in
these mutant models is due to a reduction of the pool of mature
mTECs rather than to intrinsic defects in their developmental and
gene expression program.

ANALYSIS OF THYMIC DCs AND GENERATION OF nTreg CELLS IN
lig4R/R AND rag1S/S MICE
Thymic DCs are the other population of APCs involved in the neg-
ative selection of self-reactive thymocytes. Furthermore, a role for
thymic DCs in the induction of nTreg cells has been suggested both
in mice and in humans (Proietto et al., 2008; Doan et al., 2009).
Thymic DCs can be classified into two major subsets: the CD11c+
CD45RA− conventional DCs (cDCs) and the CD11cint CD45RA+
plasmacytoid DCs (pDCs). The first subgroup is intrathymically

generated from early thymic progenitor cells, whereas pDCs arise
extrathymically from partially differentiated precursors (Proietto
et al., 2009).

In order to analyze the distribution of thymic cDCs and pDCs
in WT, lig4R/R, and rag1S/S mice, we stained thymic single cells
suspensions with a mixture of monoclonal antibodies against
markers specific for T and B lymphocytes, erythroid cells, gran-
ulocytes, and macrophages (CD3, CD90, CD19, TER119, Gr-1,
CD11b, and F4/80). Upon gating on cells that stained negative for
this cocktail of antibodies, we analyzed expression of CD11c and
CD45RA to discriminate between cDCs and pDCs. As shown in
Figure 7, in WT mice the majority of thymic DCs is composed
of cDCs. Although cDCs were more abundant than pDCs also
in the thymus of lig4R/R and rag1S/S mice, both mutant strains
showed a significant enrichment for pDCs as compared to WT
mice (Figure 7).

To investigate whether the profound abnormalities of thymic
stroma observed in lig4R/R and rag1S/S mice could also affect
generation of nTreg cells, we analyzed expression of CD25 and
Foxp3 within CD4+ SP thymocytes. As shown in Figure 8, both
lig4R/R and rag1S/S mice showed preserved ability to express Foxp3
within CD4+ SP thymocytes, and the proportion of Foxp3+ cells
was actually increased in lig4R/R mice (% Foxp3+ cells ± SD:
WT = 4.72 ± 1.3; lig4R/R = 24.2 ± 3.5; rag1S/S = 6.25 ± 3.3; WT vs.
lig4R/R p < 0.0001; WT vs. rag1S/S p < 0.0001; Figure 8). How-
ever, it should be noted that both mutant strains display a severe
depletion of thymic cellularity, and of CD4+ SP T cells in par-
ticular (Figure 1). This has obvious implications also on the
absolute number of nTreg cells, in particular in lig4R/R mice. By

FIGURE 7 | Altered distribution of thymic DCs populations in lig4R/R

and rag1S/S thymuses. Top panels: FACS dot plot analysis of the
distribution of CD11c+ CD45RA− cDCs and CD11cint CD45RAhi pDCs in the
thymus of WT, lig4R/R, and rag1S/S mice after gating on a population of
stromal cells positive for CD11c expression but negative for a cocktail of
biotinylated markers specific for markers of T and B lymphocytes, erythroid,
granulocyte, and macrophage lineages. Lower panels: Proportion of thymic
cDCs and pDCs in WT, lig4R/R, and rag1S/S mice. Mean values ± SE are
shown. At least six mice per group were analyzed.
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FIGURE 8 | Generation of nTregs in the thymus of lig4R/R and rag1S/S

mice. Representative example of flow cytometry analysis of thymocytes
stained with anti-CD4, anti-CD8, anti-CD25, and anti-Foxp3 antibodies
revealed that generation of nTregs is preserved in the thymus of 4 to
5-weeks-old lig4R/R and rag1S/S mice as compared to what observed in WT
age-matched littermates. At least six mice per group were analyzed.

using immunohistochemistry, we found that a residual number
of Foxp3+ cells at the cortico-medullary junction were present in
lig4R/R mice, whereas such cells were severely depleted in rag1S/S

mice (data not shown).

DISCUSSION
There is growing evidence that defects of V(D)J recombination
in humans are associated with a variety of clinical and immuno-
logical phenotypes. Null mutations in the RAG genes cause T−
B− NK+ SCID (Schwarz et al., 1996). In contrast, hypomorphic
mutations in RAG have been associated with OS (Villa et al.,
1998), atypical/leaky SCID (Villa et al., 2001), combined immun-
odeficiency with expansion of TCRγδ+ T cells (Ehl et al., 2005),
and delayed-onset combined immunodeficiency with granuloma
formation (Schuetz et al., 2008; De Ravin et al., 2010). Extreme
phenotypic variability has been observed also among patients with
LIG4 syndrome, ranging from mild or moderate immunodefi-
ciency to SCID (O’Driscoll et al., 2001; Buck et al., 2006b; Enders
et al., 2006; van der Burg et al., 2006). However, only one patient
with OS due to LIG4 mutations has been reported (Grunebaum
et al., 2008).

The clinical phenotype of patients carrying hypomorphic
mutations that affect V(D)J recombination is often characterized
by prominent signs of immune dysregulation, as exemplified by
infiltration of target organs by activated and oligoclonal T lympho-
cytes in patients with OS (Signorini et al., 1999) and by the frequent
occurrence of autoantibodies in patients with OS or leaky SCID
(Walter et al., 2010). Characterization of the molecular and cellu-
lar mechanisms that are responsible for the unique association of
severe immunodeficiency and autoimmunity has been hampered
by lack of adequate animal models.

We have previously shown that lig4R/R and rag1S/S mice
represent mouse models of leaky SCID, with profound

immunodeficiency and increased risk of autoimmunity (Rucci
et al., 2010; Walter et al., 2010). We have also reported that a pro-
portion of rag1S/S, but not of lig4R/R mice, show more prominent
features of severe immune dysregulation, resembling OS (Giblin
et al., 2009; Rucci et al., 2010; Walter et al., 2010). We now show
that hypomorphic mutations in rag1 and lig4 genes in mice affect
both normal development of T lymphocytes and organization and
maturation of thymic stroma, and compromise key mechanisms
involved in central tolerance.

Studies in mice had indicated that signals delivered by thymo-
cytes are crucial to induce maturation of cTECs and mTECs from
a common precursor and to support maintenance of thymic archi-
tecture (Holländer et al., 1995a; van Ewijk et al., 2000; Akiyama
et al., 2008; Hikosaka et al., 2008; Irla et al., 2008). On the other
hand,cTECs and mTECs play a critical role in generating and shap-
ing the mature T cell repertoire. In particular, cTECs allow positive
selection of thymocytes through a mechanism that involves cTEC-
specific expression of thymoproteasome components, allowing
expression of a unique repertoire of MHC-bound self-peptides
(Murata et al., 2007; Gommeaux et al., 2009). Positively selected
thymocytes are then screened for the ability to recognize self-
peptide/MHC complexes in the thymic medulla. Expression of
Aire by terminally differentiated mTECs allows stochastic expres-
sion of TSAs. Newly generated T cells that recognize MHC–self
TSAs on the surface of mTECs or of thymic DCs are clonally
deleted or diverted to become Foxp3+ nTreg cells (Anderson et al.,
2002; Bonasio et al., 2006; Aschenbrenner et al., 2007). Genera-
tion of Aire+ mTECs depends on RANK- and CD40-mediated
signaling, and is driven by cross-talk of mTEC progenitors with
lymphoid tissue inducer cells and CD4+ thymocytes, that express
RANK ligand (RANKL) and CD40 ligand (CD40L), respectively
(Rossi et al., 2007; Akiyama et al., 2008; Irla et al., 2008). While
expression of Aire by mTECs is not strictly dependent on comple-
tion of thymocyte development, recent observations indicate that
in post-natal life the size of the pool of mature mTECs (and hence
the number of Aire+ cells) is regulated by signals delivered by pos-
itively selected thymocytes, in particular through activation of the
lymphotoxin (LT)α-LTβR axis (White et al., 2010). Consistent with
this, Aire+ mTECs are present, but in low number, in Zap70−/−
mice (White et al., 2010), in CD40lg−/− mice (Akiyama et al., 2008),
and the size of thymic medulla is significantly decreased in IAa−/−
mice (Irla et al., 2008), in which lack of expression of MHC-II
impairs positive selection of CD4+ thymocytes. Altogether, these
data indicate a critical role of positively selected thymocytes, and
especially CD4+ SP cells, in supporting maturation of mTECs and
hence maintenance of efficient mechanisms of negative selection
of self-reactive T cells.

We have previously shown impaired maturation of mTECs
and reduced expression of Aire in a variety of human immun-
odeficiencies that affect T cell development; importantly, similar
defects were present also in thymuses from patients carrying
hypomorphic mutations that were partially permissive for T
cell development. We now confirm that also in mice hypomor-
phic rag1 and lig4 mutations that cause a severe, but incom-
plete defect in T cell development, are associated with profound
abnormalities of thymic stroma architecture and mTECs mat-
uration. In both models, generation of more mature MHC-IIhi
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mTECs was severely compromised, without affecting the intrinsic
ability of mTECs to express Aire. Abnormalities of thymic architec-
ture, with impaired formation of a well-defined thymic medulla,
were more prominent in rag1S/S than in lig4R/R mice, consistent
with a more severe block in T cell development in the former,
with decreased ability to generate DP thymocytes and a severely
restricted thymic TCR repertoire. It is likely that the reduced num-
ber of mature mTECs expressing Aire and TSAs may contribute
to the increased frequency of manifestations of immune dysreg-
ulation in mice and humans with hypomorphic mutations that
severely affect T cell development (Cavadini et al., 2005; Marrella
et al., 2007; Poliani et al., 2009). We have also shown that SP T cells
from rag1S/S and lig4R/R mice are skewed toward a more mature
phenotype.

Little is know about the thymic DC compartment in humans
and mice with severe defects in T cell development. Mouse stud-
ies showed that approximately 27% of thymic cDCs and 35% of
thymic pDCs contain IgH gene D–J rearrangements, and express
mRNA for CD3 and pre-Tα chains (Corcoran et al., 2003), indicat-
ing that a fraction of thymic DCs share early steps of development
with the lymphoid lineages. Furthermore, it is known that the
earliest thymic progenitors (ETPs) in mice also possess myeloid
potential (Bell and Bhandoola, 2008). Hale et al. (2004) reported
that the number of CD83+ mature DCs is significantly reduced
in the thymus from patients with X-linked SCID, possibly reflect-
ing the failure of a common progenitor for T lymphocytes and
DCs, to differentiate in response to γc-dependent signals. We have
recently reported that depletion of thymic DCs is not restricted to
patients with X-linked SCID, but is common to other genetic con-
ditions with impaired T lymphocyte development (Poliani et al.,
2009). In apparent contrast to these human data, we found that
both cDCs and pDCs can be detected in the thymus from lig4R/R

and rag1S/S. Further studies are needed to define the location and
the origin (intrathymic vs. peripheral) of DCs within the thy-
mus of the mutant mice. This is particularly important since
peripheral immature DCs that home to the thymic medulla and
to the cortico-medullary junction have been shown to mediate
self-antigen presentation and intrathymic deletion of autoreactive
T cell clones (Bonasio et al., 2006).

Finally, a role for cDCs (in particular for the CD8lo Sirp-α+
fraction) in the induction of murine nTreg cells in the thymic
medulla has been demonstrated (Proietto et al., 2008). We have

shown that cDCs are present in the thymus of lig4R/R and
rag1S/S mice; furthermore, our preliminary data suggest that the
proportion of CD8lo Sirp-α+ within thymic cDCs of lig4R/R mice is
preserved (data not shown). Consistent with these findings, CD4+
Foxp3+ cells were detected in the thymus of lig4R/R and rag1S/S

mice. Somech et al. (2009) have reported a normal proportion of
Foxp3+ regulatory T cells in the periphery of patients with OS.
However, others have shown that perturbed Treg function may
contribute to immune dysregulation in these patients (Cassani
et al., 2010). Although our data indicate that generation of nTreg
cells is preserved in lig4R/R and rag1S/S mice, the severe defect in T
cell development also accounts for the paucity of thymic Foxp3+
T cells in both models.

CONCLUSION
In summary, we have shown that hypomorphic defects in V(D)J
recombination in mice are associated with abnormalities of lym-
phoid development and thymic architecture. These defects are
more prominent and severe in rag1S/S than in lig4R/R mice. This
may reflect a different degree of impairment in V(D)J recombina-
tion activity associated with rag1 S723C and lig4 R278H mutations,
as also suggested by a higher fraction of DP thymocytes in lig4R/R

mice. Homozygosity for null mutations in the lig4 gene is asso-
ciated with embryonic lethality in mice, and patients with LIG4
mutations identified so far carry a hypomorphic mutation on at
least one allele. This may explain why clinical manifestations of
immune dysregulation have been more frequently reported among
patients with RAG than with LIG4 mutations. Alternatively, it is
also possible that the different severity of phenotype may reflect
the specific role played by RAG and LIG4 genes. The study of new
patients and the development of additional animal models with
mutations in these genes may help address this issue.
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APPENDIX

FIGURE A1 | Altered maturation of CD4+ SP medullary thymocytes in

the fetal thymus of lig4R/R and rag1S/S mice. Upper panels:
Representative FACS plots of CD4+ SP medullary thymocytes at various
stages of maturation according to the expression of CD69 and Qa2 surface
markers. Lower panels: Distribution of the different populations of SP1–SP4
cells. lig4R/R and rag1S/S mice have a significant accumulation of SP3
thymocytes. Mean values ± SE are shown. At least three to five mice per
group were analyzed.
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