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In cardiovascular disorders including advanced atherosclerosis and myocardial infarction
(MI), increased cell death and tissue destabilization is associated with recruitment of inflam-
matory monocyte subsets that give rise to differentiated macrophages. These phagocytic
cells clear necrotic and apoptotic bodies and promote inflammation resolution and tissue
remodeling. The capacity of macrophages for phagocytosis of apoptotic cells (efferocyto-
sis), clearance of necrotic cell debris, and repair of damaged tissue are challenged and
modulated by local cell stressors that include increased protease activity, oxidative stress,
and hypoxia.The effectiveness, or lack thereof, of phagocyte-mediated clearance, in turn is
linked to active inflammation resolution signaling pathways, susceptibility to atherothrom-
bosis and potentially, adverse post MI cardiac remodeling leading to heart failure. Previous
reports indicate that in advanced atherosclerosis, defective efferocytosis is associated with
atherosclerotic plaque destabilization. Post MI, the role of phagocytes and clearance in the
heart is less appreciated. Herein we contrast the roles of efferocytosis in atherosclero-
sis and post MI and focus on how targeted modulation of clearance and accompanying
resolution and reparative signaling may be a strategy to prevent heart failure post MI.
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INTRODUCTION
The sequence of events that are atherothrombosis, myocardial
infarction (MI), and heart failure, combine to serve as a lead-
ing cause of morbidity and mortality in the industrialized world
(Lloyd-Jones et al., 2010). Advanced atherosclerosis and MI are
mutually characterized by accelerated cell death followed by
inflammatory cell recruitment. Though intimately linked, each
disorder individually is distinguished by unique cell populations
and cell stressors (Libby et al., 2008). In the intimal vascular wall
of the atherosclerotic plaque, lipid-laden macrophage foam cells
predominate after responding to retained lipoproteins that are
embedded in the sub-endothelium (Williams and Tabas, 1995).
As atherosclerotic lesions mature, a combinatorial array of stres-
sors, including excess free cholesterol, pattern recognition receptor
ligands, and oxidative stress, additively signal to activate cellular
stress pathways, secretion of inflammatory cytokines, and acceler-
ate apoptosis (Lloyd-Jones et al., 2010; Moore and Tabas, 2011).
When combined with reduced apoptotic cell clearance efficiency
(i.e., defective “efferocytosis”), this leads to secondary necrosis and
plaque destabilization, the precursor to atherothrombosis (Tabas,
2005; Schrijvers et al., 2007). In turn, plaque rupture and MI
lead to the release of chemotactic factors into the bloodstream
and subsequent influx of neutrophils and monocytes into the
heart (Kumar et al., 1997). In contrast to advanced atherosclero-
sis leading to MI, inflammation after a heart attack is often acute
and resolving. This response is necessary to heal the heart and
promote scar formation. Interestingly, recent and not-so-recent
reports, suggest that modulation of the inflammatory response

post MI contributes to the quality of heart repair (Roberts et al.,
1976; Frangogiannis et al., 2002; Nahrendorf et al., 2007). Mar-
ginated leukocytes clear dying and necrotic cardiomyocytes and
promote fibrogenic and angiogenic responses. In some cases, espe-
cially in the elderly, sub-optimal clearance efficiency may lead to
maladaptive vascular remodeling and tissue repair in the heal-
ing heart and therefore accelerate transition into heart failure
(Chen and Frangogiannis, 2010). Herein, we compare basic mech-
anisms of inflammation resolution by phagocytes in the vascular
wall during atherosclerosis and in the myocardium post infarc-
tion, with a focus on monocyte/macrophage-mediated phagocytic
clearance of dying tissue, particularly post MI. These concepts
form a working model (Figure 1) of how clearance may modu-
late downstream inflammation and tissue repair in cardiovascular
disease.

DEFECTIVE INFLAMMATION RESOLUTION IN
ATHEROSCLEROSIS
Though initially protective, inflammation must eventually sub-
side in order to prevent further tissue damage. Many diseases
of inflammatory cell recruitment, including advanced athero-
sclerosis leading to MI, are failures of inflammation to resolve
that subsequently lead to tissue destabilization and injury. A key
component of defective inflammation resolution in advanced ath-
erosclerosis is defective efferocytosis (Schrijvers et al., 2007; Tabas,
2010). In non-diseased settings, apoptosis is typically followed
by rapid and non-phlogistic uptake into neighboring phago-
cytic cells. During inflammation, active production of omega-3
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FIGURE 1 | Contrasting phagocytic clearance in advanced

atherosclerosis and post myocardial infarction. Advanced
atherosclerosis is characterized by recruitment of Ly-6C-HI monocytes that
differentiate into macrophages. Macrophage apoptotic cell receptors, such
as MerTK and LRP promote efferocytosis. However, in the inflammatory
setting of mature atheromata, efferocytosis becomes defective (see Tabas,

2010) leading to secondary necrosis, necrotic core expansion, and
susceptibility to myocardial infarction (MI). Post MI, both Ly-6C-HI and LO
monocytes marginate into myocardial tissue to differentiate into
macrophages and promote clearance of apoptotic and necrotic cells (see
Nahrendorf et al., 2007). These acute events can affect later cardiac
remodeling and inflammation that may lead to heart failure.

poly-unsaturated fatty-acid-derived mediators promotes further
phagocytic removal of dying cells (Schwab et al., 2007). The act of
efferocytosis also triggers anti-inflammatory, or pro-resolving sig-
naling that assists in dampening the immune response and restor-
ing tissue equilibrium (Serhan and Savill, 2005). Macrophages that
have ingested apoptotic cells inhibit pro-inflammatory cytokine
production through autocrine/paracrine mechanisms involving
TGF-β, prostaglandin E2, and platelet-activating factor (Fadok
et al., 1998). An important anti-inflammatory cytokine and pro-
resolving factor that is linked to efficient efferocytosis IL-10
(Lingnau et al., 2007). Both in vitro and in vivo, IL-10 has been
reported to enhance efferocytosis and transgenic over-expression
of IL-10 has been shown to reduce atherogenesis in experimen-
tal rodents (Pinderski et al., 2002). In humans, IL-10 levels are
reduced in patients with cardiovascular disease, consistent with
the notion that reduced levels of this cytokine may accelerate
atherosclerotic progression (Seljeflot et al., 2004). In vitro, “alter-
natively” activated M2 macrophages preferentially clear apoptotic
cells and are often characterized by secretion of anti-inflammatory
cytokines such as IL-10 and TGFβ (Xu et al., 2006). In the case of
early atherosclerosis, cell turnover within the developing athero-
sclerotic lesion is rapidly countered by neighboring macrophage
phagocytes that promote efficient efferocytosis (Tabas, 2005).
Consistent with this, early atherosclerotic lesions rarely exhibit
TUNEL-positive apoptotic nuclei (Kockx et al., 1999). Efficient
clearance in early atheromata limits the cellular density of the

lesion and may also reduce further recruitment of blood-borne
monocytes. In human advanced atherosclerosis, there is an accu-
mulation of free, non-phagocytosed apoptotic cells (Schrijvers
et al., 2005). The failure of these dying cells to be removed leads
to the loss of cell membrane integrity, secondary post-apoptotic
necrosis, liberation of potentially immunogenic epitopes, and
release of damage associated molecular patterns (DAMPs) that
stimulate cell activation. Failed clearance may also be responsi-
ble for the aforementioned reductions in anti-inflammatory/pro-
resolving mediators such as IL-10. Necrotic plaques are strongly
associated with clinical acute atherothrombotic events and are
a source of procoagulant materials (Kolodgie et al., 2003). It is
not entirely clear why early stable atherosclerotic lesions mature
into non-resolving and necrotic inflammatory advanced lesions,
however recent reports in experimental mice, shed some light
on key clearance pathways that may be involved, as described
below.

MOLECULAR MECHANISMS OF EFFEROCYTOSIS IN
ATHEROSCLEROSIS
Recognition of apoptotic cells in advanced atheromata requires
bridging of apoptotic cell ligands such as phosphatidylserine, with
phagocyte receptors, that trigger downstream activation of the
phagocyte actin cytoskeleton. Bridging molecules, such as com-
plement factor C1q, link apoptotic cell receptors to their apoptotic
ligands (Ogden et al., 2001). During atherosclerosis for example,
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C1qa−/− mice on a fat–fed low density lipoprotein receptor (Ldlr)
deficient background had larger atherosclerotic lesions and an
increase in the number of lesional apoptotic cells, consistent with
defective clearance (Bhatia et al., 2007). Another bridging mole-
cule,milk fat globule-EGF-factor 8 (MFG-E8),a secreted glycopro-
tein, also links apoptotic cell receptors to their apoptotic ligands
(Hanayama et al., 2002). MFGE-E8 (lactadherin) is expressed in
atherosclerotic lesions and it promotes efferocytosis in vitro and
in vivo. Mice lacking MFG-E8 in bone marrow precursors exhibit
more necrosis and apoptotic cellular debris (Ait-Oufella et al.,
2007). MFG-E8 is recognized by the macrophage cell-surface and
protein cross-linking transglutaminase-2 (TG2). TG2, in coopera-
tion with αvβ3 integrin, bind to MFG-E8 to promote efferocytosis
(Toth et al., 2009). During atherosclerosis, mice reconstituted with
Tg2−/− bone marrow cells exhibited larger necrotic cores relative
to control (Boisvert et al., 2006). In addition, clearance of apop-
totic cells also been reported to be significantly reduced in Ldlr
related protein (Lrp) 1−/− lesions relative to control. By immuno-
histochemistry and relative to wild-type lesions, Lrp1−/− lesions
exhibited more necrotic cores with more apoptotic cells not asso-
ciated with macrophages (Yancey et al., 2010). LRP is activated
to promote engulfment after binding calreticulin on apoptotic
cells (Gardai et al., 2005). Another important efferocytosis recep-
tor in atherosclerosis in MERTK. Mice deficient in the tyrosine
kinase MER (MERTK), have a defect in macrophage efferocyto-
sis and this correlated with an increase in plaque inflammation
and plaque necrosis (Ait-Oufella et al., 2008; Thorp et al., 2008).
MERTK is involved in both efferocytosis and in anti-inflammatory
responses (Camenisch et al., 1999). It promotes clearance by bind-
ing to one of two bridging molecules, either GAS6 or protein S
(Lemke and Rothlin, 2008). Interestingly, MERTK is proteolyt-
ically cleaved as a result of inflammatory stimuli such as LPS
and this leads to the generation of a solubilized MER that can
act as a competitive inhibitor of uptake (Sather et al., 2007).
With the recent identification of the MERTK cleavage site, future
tests will examine whether MERTK sheddase-mediated proteoly-
sis contributes to defective efferocytosis in atherosclerosis (Thorp
et al., 2011). The identification of the aforementioned key clear-
ance players in atherosclerotic progression provides targets for
testing relevance in humans with coronary artery disease. For
example, in addition to soluble MER being linked to defective
efferocytosis, it has also been identified in human inflamma-
tory cardiovascular lesions (Hurtado et al., 2011). The fact that
MERTK is rendered inactive through sheddase-mediated cleav-
age may provide a therapeutic opportunity. That is, if excess
MERTK cleavage were a culprit of defective inflammation reso-
lution through its anti-efferocytic properties in human advanced
plaques, targeted inhibition of cleavage might suppress plaque
necrosis and increase pro-resolving mediators as described above
(Tabas, 2010). Thus, by defining the mechanisms of defective effe-
rocytosis in vitro and establishing relevance in humans, specific
hypotheses can be formulated toward designing clearance based
therapeutic strategies that promote inflammation resolution. In
the case of post MI inflammation and clearance, a more acute
and resolving inflammation and dissimilar apoptotic and necrotic
targets distinguish clearance in the heart from clearance in the
vasculature, as described below.

CARDIOMYOCYTE CLEARANCE POST MI AND ITS
ASSOCIATION WITH MYOCARDIAL INFLAMMATION
RESOLUTION AND REPAIR
Healing of the heart after interruption of blood supply and genera-
tion of an infarct requires scavenging of necrotic cellular debris and
preservation of the remaining and irreplaceable cardiomyocytes.
This wound repair is accomplished in part through acute mobiliza-
tion of innate inflammatory cells that assist in degrading released
macromolecules. The recruited phagocytes, which initially include
neutrophils and monocytes, act in turn to directly remove necrotic
and apoptotic cells. This is followed by formation of granulation
tissue and extracellular matrix deposition. Neutrophils likely con-
tribute to the clearance of necrotic debris from the infarct; how-
ever they also potentially damage neighboring myocytes through
release of their proteolytic enzymes. Neutrophil depletion in ani-
mals post MI and reperfusion have been shown to reduce infarct
size and myocardial injury (Romson et al., 1983). Neutrophils may
also contribute to inflammation resolution through programmed
cell death leading to efferocytosis by macrophages. Efferocyto-
sis, as described above, induces signaling pathways that promote
pro-resolving factors such as TGF-B and IL-10. Importantly, the
effects of neutrophils and other myeloid cells post MI may be
exacerbated during reperfusion of the infarct. For example, hall-
marks of reperfusion injury post MI include the production of
reactive oxygen species, mitochondrial dysfunction, and recruit-
ment of elevated neutrophils and monocytes. These events can lead
to increased myocardial injury and cardiomyocyte apoptosis that
would increase the burden for dead cardiomyocyte clearance (Foo
et al., 2005). Clearance per se may also be affected after reperfu-
sion. For example, in a non-MI mouse intestinal arterial occlusion
and reperfusion model, investigators found decreased levels of
the “come-eat-me” mediator MFG-E8 mRNA in remote organs.
Administration of rmMFG-E8 suppressed intestinal I/R injury-
induced organ injury and apoptotic cell accumulation (Matsuda
et al., 2011). Thus, it will be important to compare and contrast
clearance roles post MI versus post MI followed by reperfusion.

Post MI, most of the initial cell death is necrotic, and therefore,
this promotes the release of pro-inflammatory intracellular con-
tents such as heat shock proteins and DAMPs. These DAMPS, or
“alarmins,” activate innate phagocytes and may or may not exacer-
bate the repair response (Matzinger, 2002). For example, endoge-
nous DAMPs such as HSP-60 and EDA can activate signaling
pathways downstream of pattern recognition receptors. Pattern
recognition receptors such as Toll-like receptor 4 (TLR4) activate
post MI inflammation and are required for adverse myocardial left
ventricular remodeling following infarction, indicating that part
of the inflammatory response post MI is maladaptive (Timmers
et al., 2008). This deficiency of TRL-4 is associated with reduced
intercellular adhesion molecule expression and reduced mono-
cyte homing to the infarct, in turn leading to markedly reduced
myocardial inflammatory cytokine production and preservation
of heart function. Importantly, clearance of dying cells is linked
to phagocyte-mediated suppression of inflammation. For exam-
ple, apoptotic cells promote their own clearance and activate of
the nuclear receptor LXR to suppress inflammation (A-Gonzalez
et al., 2009). Thus, clearance may play a role in dampening TLR-
mediated inflammation post MI. Cardiomyocyte necrosis also
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leads to the release of mitochondrial DAMPs (MTDs). MTDs
include formyl peptides and mitochondrial DNA and can activate
neutrophils through formyl peptide receptor-1 and TLR signal-
ing (Zhang et al., 2010). Due to the high energy requirements
of cardiomyocytes and therefore the high density of mitochon-
dria per cell, injury to the heart would be expected to promote a
significant response to MTDs. Another intracellular factor that
is released from dead cells and during acute inflammation is
high mobility group box 1 (HMGB1), which when located in
the nucleus can act as an architectural chromatin-binding fac-
tor (Scaffidi et al., 2002). In vitro, extracellular HMGB1 has
been shown to reduce macrophage efferocytosis of apoptotic neu-
trophils through binding to phosphatidylserine (Liu et al., 2008),
suggesting that HMGB1 could delay engulfment of dying cells near
and in the infarct, however, it is yet to be determined how HMGB1
affects clearance of cardiomyocytes by macrophages. Injection of
HMGB1 into experimental hearts after coronary artery ligation
has been shown to have beneficial effects in the heart when infused
3 weeks post MI (Takahashi et al., 2008). Also, injection of anti-
HMGB1 just prior to reperfusion in rats resulted in increased
infarct sizes compared to control (Oozawa et al., 2008). Multi-
ple roles of HMGB1 are now emerging, including a regenerative
role for accumulation of newly formed myocytes post MI (Limana
et al., 2011) and it is becoming evident that this molecule can act at
multiple levels, with an apparent overall beneficial effect. Down-
stream of DAMP and PRR signaling is NF-κB. NF-κB activity
is elevated in both myocardial and inflammatory cells in ischemic
heart disease (Frantz et al., 2004), however, the overall effect of NF-
κB remains incomplete. Deletion of the p50 subunit of the NF-κB
complex has been shown to improve heart failure after MI (Frantz
et al., 2006), suggesting a role for maladaptive signaling post MI.
In addition, transgenic over-expression of NF-κB p65 in myocytes
resulted in adverse cardiac remodeling and increased endoplasmic
reticulum stress and apoptosis in cardiomyocytes post MI (Hamid
et al., 2011), indicating that persistent NF-κB activation exacer-
bates cardiac remodeling. However, another study reported that
NF-κB p50 deletion exacerbates cardiac function post MI, con-
sistent with a cardioprotective role (Timmers et al., 2009). The
role of the NF-kB is complex. Though predominantly associated
with pro-inflammatory responses, NF-kB has also been linked to
the resolution of inflammation. For example, NF-kB activation
during inflammation resolution is associated with expression of
anti-inflammatory genes and induction of apoptosis (Lawrence
et al., 2001). The NF-kB complex includes RelA (p65), RelB, c-Rel,
p50, and p52, as well as inhibitory IkB and stimulatory IkBkinse
(IKK) regulators. NF-κB can form homodimers or heterodimers
depending on its mode of activation. Only p65, c-Rel, and RelB
contain transactivation domains, whereas p50 and p52 do not
and can act to suppress gene transcription (Vallabhapurapu and
Karin, 2009). NF-κB can also be directly regulated by receptors
involved in efferocytosis per se. For example, in the case of the
efferocytosis receptor tyrosine kinase, MERTK, suppression of
NF-κB transcriptional activation is directly associated with down-
stream inflammatory signaling (Tibrewal et al., 2008). Thus, the
overall role of NF-κBin heart failure is far from understood and
future experiments are required to elucidate both cell-type specific
effects (myocardial versus inflammatory) and how the kinetics of

NF-κB activation may differentially affect inflammation versus
inflammation resolution in the heart.

Though innate inflammatory activation may at certain levels
promote adverse effects on the heart after injury, inflammation
is nevertheless necessary to clear away dead cardiac tissue and
begin inflammation resolution, as described below. Resolution
of inflammation is not a passive process and instead relies on
biosynthesis of pro-resolving mediators. Many of these mediators
are derived from poly-unsaturated fatty acids (PUFA), includ-
ing lipoxins, E-series resolvins, D-series resolvins, protectins, and,
maresins (Serhan and Savill, 2005). One interesting resolvin is
Resolvin E1. Resolvin E1, has been shown to promote the efferocy-
tosis of neutrophils in vitro and in vivo (Schwab et al., 2007). In the
context of the heart, Resolvin E1, which is derived from eicosapen-
taenoic acid, has been shown to directly protect cardiomyocyte cell
lines from ischemia-reperfusion injury in vitro and in addition,
limit infarct size after prophylactic injection (Keyes et al., 2010).
Though pro-survival molecules in cardiomyocytes, such as AKT,
were up-regulated, further experiments are required to determine
mechanism at the causal level. Recently, the receptor for Resolvin
E1 was identified as ChemR23, otherwise known as CMKLR1
(Ohira et al., 2010). Future studies utilizing knockout models of
this receptor are required during MI. Thus, not only will pathways
that suppress acute-phase inflammation be required,but also path-
ways that target active pro-resolution pathways, potentially down-
stream of efferocytosis. As one such proof of principle that such an
approach is feasible and linked to phagocytic clearance,Harel-Adar
et al. (2011) by simulating a macrophage response to an apoptotic
cell, were able to modulate the activity of cardiac macrophages
to improve infarct repair, post experimental MI. Specifically, the
investigators injected phosphatidylserine (PS)-presenting lipo-
somes intravenously to mimic the anti-inflammatory effects of
apoptotic cells. Both in a rat model of acute MI, and in vitro, PS-
liposome uptake by macrophages promoted the secretion of the
anti-inflammatory cytokines TGFβ and IL-10. This was accom-
panied by down-regulation of pro-inflammatory tumor necrosis
factor α (TNFα). Thus, an exciting proof of concept that mod-
ulation of macrophage pathways related to clearance may have
therapeutic application and promote inflammation resolution.

Similar to atherosclerosis, the levels of IL-10 may be important
in reducing inflammation post MI. For example, IL-10 deficient
mice exhibited increased infarct size and myocardial necrosis asso-
ciated with elevated neutrophil infiltration (Yang et al., 2000).
IL-10 also inhibits inflammation and attenuates left ventricular
remodeling after MI via activation of STAT3 and suppression
of mRNA stabilizing protein HuR (Krishnamurthy et al., 2009).
As further evidence that the type of inflammatory response may
dictate post MI repair, Cheng et al. (2005) found IFN-gamma
producing T-cells were significantly increased in patients post MI,
creating a Th1/Th2 imbalance. Also, in patients with acute MI, sig-
nificant increases in Th17 cytokines were found concomitant with
reduced levels of T-regulatory associated cytokines (Cheng et al.,
2008). Finally, monocytes and macrophages secrete growth fac-
tors that can promote angiogenesis, specifically through targeting
and activating myofibroblasts. Myofibroblasts secrete extracellular
matrix and accumulate within the first week after an infarct (van
den Borne et al., 2010). These cells are critical for scar formation
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and prevention of cardiac dilation. However, too much matrix
deposition, particularly at areas remote to the infarct, can also
lead to heart failure. Thus, fine-tuned modulation of the immune
response post MI appears to be required to promote resolution
pathways while suppressing maladaptive/excessive inflammation.

Certainly, the aforementioned example whereby infarct repair
was improved after injection of PS-liposomes suggests there
is indeed potential for inflammation-modulating agents during
myocardial reperfusion, particularly at the level of clearance.
Such a strategy may be proven even more efficacious if tested
in a population that more closely resembles the advanced age of
the average victim of MI. That is, older age is associated with
increased mortality after a heart attack. In addition, aging-related
defects have been reported to be associated with adverse car-
diac remodeling in experimental mice. Specifically, Frangogiannis
et al. (2002) showed by both histomorphometric and echocardio-
graphic end points, that older mice exhibit significantly reduced
neutrophil and macrophage infiltration after coronary ligation,
and in turn, impaired phagocytosis of dead cardiomyocytes. This
led to enhanced dilative and poor systolic function (Bujak et al.,
2008). Additional analysis revealed reduced collagen deposition
and hypertrophic remodeling in these hearts. The reduced inflam-
mation seen in aged mice can also be measured in experimental
models that inhibit inflammatory cell recruitment. For example,
the effects of reduced macrophage recruitment have been tested
in a model of MCP-1/CCL2 deficiency. Lack of MCP-1 is asso-
ciated with delayed macrophage infiltration into the heart and
delayed replacement of injured cardiomyocytes with granulation
tissue (Dewald et al., 2005). In this scenario, reduced levels of
myeloid cell infiltration was associated with delayed dying cell
clearance and impaired healing. However, in the reverse direc-
tion, that is, excessive inflammation in the setting of athero-
sclerotic hyperlipidemia, Nahrendorf et al. (2007) examined the
inflammatory response post MI in atherogenic apolipoprotein E
deficient mice and discovered that a subset of monocytes, the Ly-
6C(hi) and CCR2-recruited subset, were markedly elevated and
this also correlated with impaired heart healing (Panizzi et al.,
2010). The injured myocardium exhibited elevated inflamma-
tory gene expression of tumor necrosis factor-alpha, myeloper-
oxidase, and decreased transforming growth factor-beta and a
higher abundance of proteases. Previous work from the same
group identified two distinct phases of monocyte action post
MI. In non-atherosclerotic (i.e., non-apoE-deficient mice), Ly-
6C(hi) monocytes were the first to be recruited to the heart and
were highly phagocytic. Though increased Ly-6c (hi) monocy-
tosis in apoE deficient mice were detrimental, depletion of Ly-
6c (hi) monocytes under non-dyslipidemic, non-apoE-deficient
mice resulted in impaired heart healing, indicating a contribu-
tion of dyslipidemia to adversely modulateLy-6c (hi) function
during heart inflammation. Ly-6C(lo) monocytes enter later and
expressed vascular-endothelial growth factor and therefore pro-
moted healing via myofibroblast accumulation, angiogenesis, and
deposition of collagen (Nahrendorf et al., 2007).

OXYGEN AND CLEARANCE IN THE HEART
Reduced perfusion to the infarct reduces nutrient availability and
therefore stresses cellular metabolism. Low oxygen tensions and

nutrient deprivation lead to the induction of hypoxia-inducible
transcription factors (HIF) in phagocytes. During normoxia, HIF-
1α protein is constitutively degraded. During hypoxia, HIF-1α

is stabilized and translocates to the nucleus, where it dimer-
izes with HIF-1β, and acts as a transcription factor for gene
elements encoding hypoxic response elements (Maxwell et al.,
1999). HIF-1α mRNA can be detected in myocardial specimens
with pathological evidence of acute ischemia within the first day
post MI (Lee et al., 2000). In phagocytes, HIF isoforms mobi-
lize and differentially coordinate intracellular signaling that reg-
ulate cell migration, glycolysis, cell-survival, and inflammatory
cytokine secretion (Cramer et al., 2003). Deficiency of myeloid
HIF-1α has been shown to reduce infiltration of leukocytes and
improve cardiac function post MI. This reduced infiltration has
been linked to the down-regulation of chemokine receptors (Dong
et al., 2010). With respect to how oxygen tension affects clear-
ance in the heart, little is known. In vitro, hypoxia promotes
the phagocytosis of bacteria by macrophages, and this has been
linked to p38 MAPK signaling (Anand et al., 2007). Less is known
regarding effects of apoptotic cell clearance by macrophages dur-
ing hypoxia, however, in retinal pigment epithelial cells, hypoxia
enhanced efferocytosis concomitant with upregulation of the
clearance receptor CD36 (Mwaikambo et al., 2009). In contrast,
hypoxia has also been shown to potentiate secretion of factors
that can inhibit phagocytosis (Wei et al., 2011). Finally, during
reperfusion, the restoration of blood and oxygen can also promote
additional myocardial damage and elevated reactive oxygen species
as described above. Our understanding of how these factors inter-
sect during ischemia to regulate phagocyte-mediated clearance
and inflammation resolution, remain incomplete.

FUTURE DIRECTIONS
Cardiovascular disease is a leading cause of morbidity and mor-
tality worldwide. Ischemic heart failure is on the rise, part and
parcel with an increase in the aged population, who are at high-
est risk of cardiovascular disease. In addition, better therapeutics
have led to the propensity of patients to survive acute coronary
events such as MI (Stewart et al., 2003). Both atherosclerosis and
MI are characterized by increased cell death. In the case of ath-
erosclerosis, genetic causation experiments indicate that clearance
factors are a required pathway toward reducing inflammation and
stabilizing vulnerable plaques. Acute MI can lead to the loss of
irreplaceable cardiomyocytes, deleterious ventricular remodeling,
and reduced cardiac output. Despite significant advances in cur-
rent standards of therapy, the prevalence of post MI heart failure
remains high. Post MI, the causal demonstration of clearance path-
ways and how they affect post MI repair directly are still unknown.
Thus, the magnitude of how clearance affects the heart is yet
to be determined and must be formally tested. However, apop-
totic cell death is programmed to lead to compartmentalization
and non-phlogistic metabolism of intracellular self-antigens, and
additionally, to activate pro-resolving signaling (Serhan and Sav-
ill, 2005). That is, given that phagocytosis of necrotic debris and
clearance of apoptotic cells are intimately linked to downstream
signaling pathways that modulate inflammation resolution and
tissue repair, targeting of the innate immune system may be a
strategy toward reducing adverse cardiac remodeling that leads to
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heart failure. Thus, in our working model (Figure 1), we and oth-
ers propose a need for efficient clearance pathways to promote
dying cell engulfment in the heart that are coupled to down-
stream pro-resolving pathways that also suppress inflammation.
In the case of advanced atherosclerosis, enhancing efferocytosis
efficiency has previously been proposed as a critical step (Tabas,
2005). In the case of failed inflammation resolution leading to MI,
optimizing cardiac repair pathways that lead to efficient cardiac
output will also be required to prevent heart failure. Toward these
ends, it will be important to elucidate the causal molecular path-
ways that regulate tissue repair during wound healing. This will
include testing the effects of heart failure risk factors, including
abnormal metabolism and aging. These approaches will be tested
with methods of cell and molecular biology, both in vitro and in
gene-targeted in vivo models. In addition, the effects of clearance
during reperfusion injury, such as occurs in the clinical setting

will also have to be addressed. By defining the critical molecu-
lar pathways required for an optimal immune response, a pathway
can be discovered toward promoting inflammation resolution and
reducing myocardial necrosis and heart failure. In atherosclerosis,
strategies to enhance clearance are currently being tested toward
stabilizing plaque (Tabas, 2010). Post MI, not only will therapeu-
tics that potentiate effective clearance be a testable strategy, but it
will also be key to find the right balance of inflammation that pro-
motes effective clearance of dying and dead tissue while limiting
maladaptive inflammation.
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