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The professional antigen presenting cells (APCs), including many subsets of dendritic cells
and macrophages, not only mediate prompt but non-specific response against microbes,
but also bridge the antigen-specific adaptive immune response through antigen presen-
tation. In the latter, typically activated B cells acquire cognate signals from T helper cells
in the germinal center of lymphoid follicles to differentiate into plasma cells (PCs), which
generate protective antibodies. Recent advances have revealed that many APC subsets
provide not only “signal 1” (the antigen), but also “signal 2” to directly instruct the dif-
ferentiation process of PCs in a T-cell-independent manner. Herein, the different signals
provided by these APC subsets to direct B cell proliferation, survival, class switching, and
terminal differentiation are discussed. We furthermore propose that the next generation of
vaccines for boosting antibody response could be designed by targeting APCs.
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INTRODUCTION
B cell activation is initiated following engagement of the B cell
receptor (BCR) by a specific antigen in either a T-cell-dependent
(TD) or T-cell-independent (TI) manner (1). Most long-lived
plasma cells (PCs) in the bone marrow are derived from TD
responses involving germinal center reactions followed by niches
favoring long-term survival. As it usually takes several days for
the cognate T cells to help, a prompt TI response provides the
first wave of humoral protection by generating short-lived PCs in
the extrafollicular foci of the peripheral lymphoid organs such as
lymph nodes, spleen, Peyer’s patches, and tonsils (2). Indeed, some
TI challenges could also induce long-lived antibody responses
(3–5).

Professional antigen presenting cells (APCs), including den-
dritic cells (DCs) and macrophages, present antigens to T cells
to initiate adaptive immunity by sequentially delivering signal 1
(antigen), signal 2 (co-stimulation), and signal 3 (polarizing sig-
nals mediated by soluble or membrane-bound factors) (6). They
can, by similar means, initiate and guide B cell differentiation
toward PCs in a TI manner. Precisely, DCs and macrophages effi-
ciently take up large size antigens (such as particulates, immune
complexes, and virus that travel through the subcapsular sinus),
and present them to naïve B cells in the periphery lymphoid organs
(2). Recent advances have revealed that APCs deliver not only sig-
nal 1,but also late signals to instruct terminal differentiation of PCs
in both a TI and TD manner. In a TD manner, CD40-CD40L inter-
action between B cells and cognate T cells is instrumental in driving
germinal center formation for affinity maturation. Whereas in
a TI manner, APC-derived factors and the ligand-receptor sig-
nals between APC and B cells combines to deliver signals for
PC differentiation (Figure 1). This review discusses the signals

provided by these APC subsets and shapes a rationale of designing
therapeutic vaccines for humoral immunity by targeting APCs.

DC SUBSETS INSTRUCT B CELL DIFFERENTIATION
Back in the 1990s, following the early milestone discovery of DCs
in mouse (7) and human (8), DCs have been recognized for their
capacity of priming naïve B cells in human in vitro settings (9–
11). In the presence of CD40 signaling, naïve B cells undergo class
switching toward IgA1 and IgA2 isotype by DCs, and class switch-
ing (11). These early works using human monocyte-derived DCs
provided the first evidence that in addition to their capacity to acti-
vate naive T cells in the extrafollicular areas of secondary lymphoid
organs, DCs may directly modulate B cell growth and differentia-
tion. Similarly, mouse splenic DCs were able to interact with naïve
B cells and induce TI class switching in vitro and in vivo (12).

Dendritic cells directly induce TI Ab class switching through
the upregulation of B lymphocyte stimulator protein (BLyS, also
known as BAFF), and a proliferation-inducing ligand (APRIL)
(13). BAFF binds to three different receptors, namely transmem-
brane activator and calcium modulator and cyclophylin ligand
interactor (TACI), B cell maturation antigen (BCMA), and BAFF
receptor (BAFF-R) (14–18). On the other hand, APRIL binds
to BCMA with high affinity and to TACI with low affinity, but
not to BAFF-R (19, 20). Through engagement with its receptors,
BAFF activates a CD40-like pathway that enhances B cell survival
via upregulation of NF-κB and Bcl-2 (21). APRIIL appears to
induce AID expression in B cells through NF-κB-mediated HoxC4
induction (22). The importance of BAFF and APRIL has been
documented in animal models where mice deficient for BAFF or
APRIL showed a defect in IgA production (23, 24). Interestingly,
B cells exposed to BAFF and APRIL do not secrete IgG and IgA
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FIGURE 1 | APC subsets induceTI andTD B cell activation. APC subsets
including DCs and macrophages, have the capacity to retain and recycle
native antigens on their surface and engage with B cell receptor for the
signal 1 delivery. Ag-experienced B cells receive cognate T cell signals to
form germinal center for the generation of long-lived PCs in a TD manner.
Alternatively, APC-derived soluble factors provide late signals to B cells that
have the respect receptors during the activation, proliferation, and
differentiation, in a TI manner.

unless stimulated through extensive BCR cross-linking. Thus, in a
process of DC-mediated B cell differentiation, DCs initially pro-
vide TI antigens to engage BCR on B cells for activation. Thereafter,
co-signals from other DC-derived factors like BAFF or APRIL
or cytokines such as IL-15 cooperatively instruct the terminal
differentiation of activated B cells into PCs (13).

Heterogeneous populations of DCs have been discovered in
both human and mouse (25). In humans, three subsets have been
identified in blood, namely CD303+ plasmacytoid DCs (pDCs),
CD1c-CD141+, and CD1c+CD141− circulating DCs (26–28). In
the skin, cutaneous DCs express a distinct set of receptors as com-
pared to blood DCs, i.e., langerin+ langerhans cells and CD14+

interstitial dermal DCs (29, 30). Among all subsets, interstitial
dermal DCs that represent the in vivo counterpart of in vitro

monocyte-derived DCs, appear to be the ones that preferentially
prime B cells for humoral response while poorly triggering CD8+

T cell immunity (31), owing to their capacity to polarize follicular
T help cells (Tfh) via DC-derived molecular such as IL-6 (32–34).

Plasmacytoid DCs, the professional type-1 interferon (IFN)-
producing cells, promote the differentiation of CD40-stimulated
B cells into non-antibody-secreting plasmablasts via IFN-αβ. They
sequentially differentiate into antibody-secreting PCs upon addi-
tional IL-6 secreted by pDCs (35). Both B cells and pDCs express
TLR9. IFN-α production by CpG ligation of the TLR9 on pDCs
also generate IgM-producing PCs from both naïve and memory
B cells in a TI manner, under the help of other pDC-derived
factors such as IL-6, TNF-α, and IL-10 (36). TLR9 ligation of
pDCs enhances their CD70 expression to trigger CD27 signaling
for B cell survival and differentiation, particularly on memory
cells (37). Type-1 IFN can also contribute to PC differentiation
indirectly via the upregulation of BAFF and APRIL on myeloid
DCs to promote B cell survival, proliferation, and class switching
(38), or via promoting Tfh differentiation through myeloid DCs
(39). In autoimmune disorders such as systemic lupus erythe-
matosus (SLE), pDCs could be the driver favoring persistence of
autoreactive PCs, giving the abnormal signature of type-1 IFN and
autologous DNA and DNA-binding proteins (40–42). Indeed, acti-
vated pDCs trigger anti-snRNP B cells for enhanced proliferation
and antibody production in the mouse (43).

How do B cells acquire antigens from DCs? DCs are found
not only in the T cell areas of lymphoid organs where they are
ready to prime T cells, but are also interacting with B cells in the
follicular areas (44), the red pulp (45), and the marginal zones
(46). DCs have a specialized capacity for the retention of anti-
gens (44), enabling delivery of microbes from the intestinal lumen
to secondary lymphoid structures (47, 48). Intravital two-photon
imaging has revealed that upon lymph node entry, B cells phys-
ically survey local antigen-carrying DCs (49). DCs use different
receptors to sample antigens that are directed to the degrada-
tive compartment for peptide and MHC loading. Interestingly,
those antigens or immune complexes internalized by the inhibitory
FcγRIIB on DCs were stored in a recycling versical system, largely
excluded from the LAMP-1+ degradative compartment (50). As a
consequence, these antigens were trapped in a native form, and
recycled to the cell surfaces for the activation of B cells. This
strategy for sorting and recycling native antigens through a non-
degradative compartment is also used by follicular DCs to access B
cells (51). Another inhibitory receptor, dendritic cell immunore-
ceptor (DCIR), holds the similar property as FcγRIIB for native
antigen recycling utilized by marginal zone DCs to initiate B
cell activation in a TD manner (52). It has been reported that
even in the degradative late endosome, antigens can be released
unprocessed by DCs (53). Thus DCs are equipped with an array of
machinery to efficiently retain native antigens to BCR engagement
on naïve B cells in a TI or TD manner.

MACROPHAGE SUBSETS INSTRUCT B CELL
DIFFERENTIATION
Due to the nature of lymphoid structure, it has been conceived for
a long time that lymph-born antigens must pass through a zone
of macrophages that are beneath the subcapsular sinus en route
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to reach the follicular B cells (54–56). Macrophages are known to
retain antigens for up to 72 h after being exposed to them (57).
The very first evidence that macrophages process large size anti-
gens (immune complexes, particulates, and viruses) to present to
follicular B cells were found by three impendent groups (58–61).
The subcapsular sinus macrophages possibly use CD169 or MAC1
(macrophage receptor 1) to retain antigens on their surface, and
consequently B cells acquire antigens from them cumulatively and
became the main antigen carriers inside the follicle before polariz-
ing to the B cell-T cell border (58, 59). These studies clearly defined
the essential roles of macrophage subsets in the initiation of B cell
activation toward lymph-born antigens through dual actions: (1)
as innate“flypaper”by preventing the systemic spread of pathogen;
(2) as “gatekeepers” at the lymph-tissue interface that facilitate
the recognition antigens by B cells and initiate humoral immune
responses.

Macrophages residing in the marginal zone have the sim-
ilar capacity to capture antigen in the spleen (62). Marginal
zone macrophages (MZM) express a distinct set of receptors
MARCO (macrophage receptor with a collagenous structure)
and/or SIGNR1 (a mouse homolog of DC-SIGN), and are
therefore different from metallophilic macrophages that express
MOMA-1. The first study performed by Ravetch and his col-
leagues showed that MARCO+ MZM migrate to the red pulp of
the spleen and transfer the intact antigens to B cells (63). It seems
that SIGNR1 is important for the MZM-mediated B cell response,
as MZM that lack expression of SIGNR1 failed to capture the
model antigen Ficoll (64), and mice deficient for SIGNR1 failed to
mount a humoral response following infection with Streptococcus
pneumoniae (65).

In humans, the evidence for an exclusive role of macrophages
in the induction of humoral response remains scarce. We recently
identified that resident tissue macrophages in human tonsils reside
closely to the terminally differentiated CD138+ PCs. We went on to
unravel that macrophage-derived IP-10 participates in PC devel-
opment (proliferation, class switching, and terminal differentia-
tion) in the context of an amplification loop where B cell-derived
IL-6 induces macrophages to secrete IP-10, which further boosts
the B cell autocrine secretion of IL-6 leading to PC differentiation
(Figure 2) (66). This is the first evidence that a chemokine plays
direct role in cell differentiation. In addition, macrophages use
VCAM-1 to tether B cells for the delivery of signals (66), support-
ing the earlier findings that VCAM-1 receptor-ligand interaction
promotes membrane-bound antigen recognition and formation
of an immune synapse (67).

Like DCs, macrophages promote TI class switching recombi-
nation by releasing the essential factors BAFF and APRIL (68–
70). Macrophage-derived BAFF and APRIL expression can be
enhanced by T cell signals such as IFN-γ and CD40L (68). B
cell proliferation and antibody secretion following by BAFF and
APRIL stimulation also requires co-stimulatory signals such as IL-
6, IL-10, and TGF-β (13, 68, 70). This also implies that there are
redundant signaling pathways involved in PC differentiation. For
example, in rodents, subcapsular macrophages activate extrafol-
licular B cells indirectly through presenting CD1d-restricted gly-
colipid antigens to iNKT cells. PCs homing to the bone marrow
require survival niches for long-term residence, and macrophages

FIGURE 2 | Macrophage mediates PC differentiation. Activated B cells
release IL-6 to activate macrophage through STAT3. Macrophage-derived
IP-10 sequentially binds to CXCR3 on B cells to trigger amplification loop
production of IL-6, leading to STAT3-dependent PC differentiation.

and their precursors provide such help through APRIL and IL-6
(71–73).

TARGETING APCs FOR A BETTER VACCINE FOR HUMORAL
IMMUNITY
Accumulating evidence suggest that APC subsets including DCs
and macrophages not only provide “signal 1” for BCR engagement
on B cells (74, 75), but further participate in a later stage of cell
proliferation and differentiation by providing an additional “sig-
nal 2 or 3” such as membrane-bound or soluble factors. While
interruption of this pathway might represent an efficient strategy
to treat autoimmune diseases, enhancing APC-B cell crosstalk, for
example by targeting Ag directly to APCs, may lead to enhanced
vaccine-induced Ab responses (Figure 3).

Lessons of early pioneering studies in vivo targeting DCs
through coupling the antigens to a specific receptors such as DEC-
205, or DCIR for T cell immunity have paved a solid path toward
understanding the efficiency of antigen degradation, and (cross-)
presentation (76–78). Indeed, targeting antigens to DC through
DCIR (79, 80), DC-SIGN (81), dectin-1 (82), ClEC9A (83), and
Langerin (84) generated both humoral and cellular responses.
Interestingly, in the absence of adjuvant, targeting antigens to
CLEC9A on DCs results in strong antibody response, which is
linked to the generation of Tfh cells (85), but no CD8+ T cell
immunity despite of the antigen capture and cross-presentation
by targeted CD8α+ DCs (83). However, an addition of adjuvant,
e.g., poly I:C, skewed a robust CD4+ and CD8+ T cell response
(83, 86). Thus, particular DC subsets, antibodies specific for sur-
face receptors, and appropriate adjuvants, combine to define the
sequential immune response by DC targeting (Table 1) (87).

The strategy of a targeted DC vaccine with an antigen to boost
antibody response has met the proof of concept. In two of the
studies, targeting DCs through CD11c (N418) showed robust
humoral immunity resulting from germinal center formation (88,
89), though mechanistic details about antigen internalization and
transfer and the factors involved in PC generation by DCs were
lacking. Likely, two principles must be followed to design a bet-
ter vaccine to boost Ab response by targeting DCs in humans;

www.frontiersin.org January 2014 | Volume 4 | Article 504 | 3

http://www.frontiersin.org
http://www.frontiersin.org/B_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Xu and Banchereau The cross-talk of antigen presenting cells and B cells

FIGURE 3 |Targeting APC subsets for a better vaccine for humoral
immunity. A fusion protein of Ab (recognizing a particular receptor on APC
subset) and Ag complex facilitates Ag uptake by targeted APC subset, which

processes Ag to B cells to trigger PC differentiation. An adjuvant (for example
IP-10) could be linked to the fusion protein to provide additional signals for PC
generation and maintenance.

Table 1 | Strategy to design a APC-targeted vaccine.

Selection of APCs Selection of targeting

receptors

Selection of

adjuvant

DCs FcγRIIB IP-10

DCIR IL-6

DC-SIGN APRIL

Dectin-1 BAFF

CLEC9A

Langerin

CD11c

Macrophages CD163

FcγRIIB

To design the appropriate targeted vaccine, three criteria need to be considered:

(1) Select the appropriate DC or macrophage subsets as the targeting APCs; (2)

Select appropriate receptor to target, preferentially those receptors with capacity

of Ag recycling and retention, such as DCIR or FcγRIIB; (3) Select appropriate

adjuvant to provide additional help for PC differentiation.

(1) preferentially target interstitial dermal DCs due to their capac-
ity to activate B cells (31); (2) preferentially deliver antigens
through inhibitory receptors such as FcγRIIB (50) or DCIR (52)
to enable long-term retention and recycling of native antigens to
the cell surfaces. The selection of adjuvant would be based on
whether it needs to promote B cell differentiation (such as BAFF
and APRIL), or it needs to educate Tfh cells (such as IL-6).

Our study on human macrophages in the induction of PCs
(66) suggests that targeting CD163 on resident tissue macrophages
would be another approach to potentially trigger preferred anti-
body response. IP-10 may act as a powerful adjuvant to provide
the feedback loop for IL-6 production on activated B cells. Using
systems biology approach, we observed that IP-10 signature was
quickly turned on after influenza vaccination in healthy individ-
uals, and it was corresponding to the late neutralizing antibody

and PC signature (90). Mice deficient for IP-10 showed reduced
antibody titers against the model antigen hapten, further support-
ing the wide application of this macrophage-derived molecule in
vaccine design (66).

Of note, targeting antigens to different subsets of APCs could
lead to a differential class switching. Our preliminary data indi-
cate that among the myeloid APCs generated from monocytes,
DCs preferentially induce IgG-producing cells, whereas type 2
macrophages (M2) preferentially promote IgA-producing cells
(Xu et al., unpublished). The mechanism of APC subset-mediated
preferential class switching remains to be explored further. It will
lead to a better understanding of vaccine design when a unique Ig
subclass response is needed.

CONCLUDING REMARKS
The past decade has witnessed the important roles of DCs and
macrophages in educating B cell activation, proliferation, and
differentiation toward PCs. These APC subsets residing at dis-
tinct organs might be equipped different sentinels to initiate the
prompt humoral response. For example, the subcapsular sinus
macrophages, which form a thick lining beneath the capsular in the
lymph node, represent the prime APCs to deliver combined signals
to naïve B cells for priming. As compared to DC-targeted vaccines
for T cell immunity that are applied for more than a decade (91),
we are just beginning to design APC-targeted vaccines aiming at
enhance antibody responses. As such, various studies have helped
our understandings that the interplay of several distinct factors
needs to be considered (1) selection of APC subsets as the target
cells; (2) selection of appropriate surface receptors as the antibody
target; (3) selection of adjuvant.
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