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Normal pregnancy is considered as a Th2 type immunological state that favors an
immune-tolerance environment in order to prevent fetal rejection. Preeclampsia (PE) has
been classically described as a Th1/Th2 imbalance; however, the Th1/Th2 paradigm has
proven insufficient to fully explain the functional and molecular changes observed dur-
ing normal/pathological pregnancies. Recent studies have expanded the Th1/Th2 into
a Th1/Th2/Th17 and regulatory T-cells paradigm and where dendritic cells could have a
crucial role. Recently, some evidence has emerged supporting the idea that mesenchy-
mal stem cells might be part of the feto-maternal tolerance environment. This review
will discuss the involvement of the innate immune system in the establishment of a
physiological environment that favors pregnancy and possible alterations related to the
development of PE.
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INTRODUCTION
Preeclampsia (PE), its complications and associated pathologies,
have become one of the main causes of maternal and fetal morbid-
ity and mortality in the world (1), causing nearly 40% of premature
births delivered before 35 weeks of gestation and complicating
around 2–8% of all pregnancies worldwide. Moreover, PE has been
strongly associated with an increased risk of later-life death due to
cardiovascular disease, independent of other risk factors (2–4).

Preeclampsia is classically defined as the new onset of hyperten-
sion during the second half of pregnancy accompanied by signifi-
cant proteinuria (5). Despite the breakthroughs in the understand-
ing of PE’s etiopathogenesis, the physiopathology that triggers the
disease is still not clearly elucidated. Nevertheless, it seems clear
that the development of PE requires the presence of a placenta,
since the clinical syndrome will not develop in the absence of a
placenta and it disappears soon after placental delivery (6). It is
also widely accepted that the pathophysiological process of PE
begins with an abnormal trophoblast invasion early in pregnancy,
which produces increased placental oxidative stress contributing
to the development of systemic endothelial dysfunction in the later
phases of the disease. This leads in turn to the characteristic clinical
manifestations of PE.

ETIOPATHOGENESIS OF PE: A SILENCING START EARLY IN
PREGNANCY
During the first weeks of a normal gestation, after the blasto-
cyst makes contact with the maternal decidua, cytotrophoblast
cells proliferate forming cell columns intruding maternal tissue
(7). From the tip of these anchoring villous structures, extrav-
illous trophoblast (EVT) cells derived from this proliferating
cytotrophoblast, invade the maternal decidua differentiating fur-
ther into interstitial and endovascular trophoblast cells. The inva-
sion process begins at the center of the placental bed, and expands
progressively to the lateral areas, like a ring-shape spread. During
the interstitial invasion, the compact decidual tissue is “swamped”

by interstitial EVT cells that, from 8 weeks onward, can be seen
both in the inner myometrium zone of the placenta – where they
stop the invasive process – and clustered around blood vessels
(8). At the same time, endovascular trophoblast cells migrate into
the maternal spiral arteries in order to plug these vessels. Around
10–12 weeks of gestation, trophoblast plugs begin to dissolve and
endovascular trophoblast replace maternal endothelial lining as
far as the inner third of myometrium, degrading the muscular
and elastic component of the vessel walls resulting in the for-
mation of low-resistance vessels that are required for adequate
uteroplacental circulation and fetal growth (7, 9). Thus, a new
onset of maternal blood flow into the intervillous space begins.
A deficient trophoblast invasion process and failures in the spiral
artery remodeling transformation have been demonstrated to be
associated with the development of placental diseases such as PE
(10, 11), but the trigger of these altered processes is still not well
understood.

Regarding abnormal trophoblast invasion process, in PE the
maternal vessels, such as spiral arteries, are poorly remodeled. In
these altered vessels, the diameter is diminished in comparison
with normal remodeled vessels, and also the extent of remod-
eling process is decreased. Further, the vascular smooth muscle
layer remains surrounding PE remodeled vessels, contributing to
a contractile tone of these arteries. This observation is in accor-
dance to the idea that a maternal pulsatile blood flow to the
placental bed could induce hypoxia–reperfusion events that can
be related to placental hypoxia, and placental oxidative stress
observed in PE (12).

The trophoblast invasion process and finally the successful
in pregnancy establishment relies on an orchestrated interac-
tion between trophoblast-derived cells and maternal tissue that
is crucial for normal pregnancy and that might give clues for the
understanding of PE development. In this regard, the maternal
immune system plays a key role, allowing the interaction of two
immunologically different beings, the embryo and mother.
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PREECLAMPSIA DEVELOPMENT AND THE IMMUNE SYSTEM
Several hypotheses have been proposed to explain the abnor-
mal trophoblastic invasion early in pregnancy associated with
PE, many of them suggesting that it might be triggered by an
altered maternal immune response or a defective development
of maternal tolerance to the semi-allogeneic fetus (13–17). Epi-
demiological evidence supporting this idea has been published by
many groups (18–20), suggesting the importance of the maternal
immune system in the pathogenesis of PE.

In order to elucidate if the deficient invasion of trophoblast
observed in PE might be due to an alteration of the immune-
tolerance environment in the decidua, different studies have been
performed in order to characterize the immune milieu of these
patients. An excessive activation of neutrophils and monocytes in
PE patients (circulating and in the decidua) have been described
by many groups (21–26). These monocytes have been found to
spontaneously synthesize greater amounts of pro-inflammatory
cytokines such as IL-1b, IL-6, and IL-8 (27). Furthermore, CD4+

and CD8+ T-lymphocytes along with natural killer (NK) cells
and dendritic cells (DCs) have also been found to respond differ-
ently in PE women compared to normal pregnancies, tending to a
pro-inflammatory response, similar to that seen in non-pregnant
women, instead of the immunotolerant and anti-inflammatory
response seen in normal pregnancies (28–30). Moreover, DCs
demonstrate a pro-inflammatory bias secondary to dysregulation
of toll-like receptors (TLRs) (31) and decidual NK cells, which play

a particularly important role in regulating cellular interactions in
successful placentation by promoting placental development and
maternal decidual spiral artery modifications, are found to secrete
lower amounts of invasion-promoting factors when taken from
decidual tissue from women with altered uterine artery Doppler
(non-invasive screening for PE development) (17).

PREECLAMPSIA: A Th1–Th17/Th2-Treg IMBALANCE
Another important immune aspect of PE development is the
Th1/Th2 imbalance. Normal pregnancy is considered to be a Th2
type immunological state, which favors an immunotolerant envi-
ronment for the prevention of fetal rejection (32) (Figure 1A). On
the other hand, PE pregnancies have been characterized as a mater-
nal pro-inflammatory state with Th1 predominance: increased
plasma levels of pro-inflammatory cytokines have been described
by different authors, mainly during the second and third trimester
of pregnancy (33, 34) (Figure 1B). However, the Th1/Th2 para-
digm has been proven incomplete to fully explain the functional
and molecular changes observed during normal/pathological
pregnancies. Recent studies have described several other immune
cells involved in this process, expanding the Th1/Th2 paradigm
into the Th1/Th2/Th17 and regulatory T cells (Treg) paradigm,
introducing Treg as regulators of Th17 lymphocytes and other
immune cell types involved in the feto-maternal tolerance (28, 35).

Th17 cells, a relatively novel CD4+ lymphocyte subpopulation
associated with Th1 cytokine profile, are characterized by the

FIGURE 1 | Possible immunomodulatory role of mesenchymal
stem cells (MSC) over immune cells involved in normal and
preeclamptic pregnancy. (A) Normal pregnancy is considered as a
Th2 type immunological state, where Th2 CD4+ T-cells and Treg cells
response and cytokine profile predominate. (B) On the other hand,
preeclamptic pregnancies have been considered as a maternal
pro-inflammatory state with Th1/Th17 predominance. (C) Possible MSC

effects over the immune cell types involved in normal and preeclamptic
pregnancies. MSC inhibit maturation of dendritic cells, maintaining a
tolerogenic DC phenotype; MSC inhibit Th1/Th17 proliferation and
function, whiles promote Treg and Th2 differentiation and cytokine
secretion. All these effects favor a Th2/Treg phenotype. DCs, dendritic
cells; Th2, T-helper 2; Th1, T-helper 1; Th17, T-helper 17; Treg,
T-regulators cells.
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production of IL-17. An up-regulation of this lymphocyte sub-
population has been related with the development and progression
of autoimmune and chronic inflammatory diseases, allergic disor-
ders, and graft-rejection reactions (36). Furthermore, Th17 sub-
population has been described as up-regulated in PE compared to
normal pregnancy. Darmochwal-Kolarz et al. have reported that,
IL-17-producing lymphocytes are increased in peripheral blood
of PE patients in the third trimester of pregnancy, compared to
a control group. Moreover, they described a significant correla-
tion between Th17, IL-2- and IFN-g-producing T-cells, and PE
development (37). Their data firmly support the idea that the up-
regulation of Th17 immunity is related to the activation of a Th1
response in PE, suggesting that regulatory role of Treg could be
also altered.

Regulatory T cell is another lymphocyte subpopulation, char-
acterized by the expression of a high level of CD25, cytotoxic
T-lymphocyte antigen 4 (CTLA-4), and the expression of the
transcription factor FOXP3 (38). Treg plays a crucial role in the
development and maintenance of tolerance in peripheral tissues,
as well as in the induction of transplantation tolerance, so it has
been also proposed as a key factor in the maintenance of materno-
fetal tolerance (39–41). A low amount and activity of Treg cells
has been described in PE, while normal human pregnancy is asso-
ciated with elevated numbers and immune suppressive effects
of these cells (42). Peripheral Treg cells are normally produced
within peripheral tissues, such as decidualized endometrium dur-
ing early pregnancy, and respond to antigens specifically restricted
to the tissue where they are found (43–45). Peripheral Treg must
meet antigens presented by “tolerogenic” DCs in an appropriate
cytokine environment to proliferate, get to functional maturity,
and exert their suppressive effects. Tolerogenic DCs are character-
ized by their immature or semi-mature phenotype, their altered
expression of co-stimulatory molecules CD80 and CD86, and
the lack of expression of the Th1-inducing cytokine IL-12 (46).
Only these DCs possess the functional characteristics of immature
DCs and consistently induce Treg cells with immunosuppressive
function (Figures 1A,B).

An important cell type that induces and maintains the tolero-
genic phenotype of DCs, are mesenchymal stem cells (MSC) (47).
Furthermore, a growing body of evidence supports the idea that
MSC can modulate the behavior and cytokine secretion of all
cell types previously described involved in feto-maternal toler-
ance development (48), suggesting a plausible role for MSC in the
regulation of trophoblast invasion, and conversely a potential role
in abnormal placentation, a feature of PE.

MESENCHYMAL STEM CELLS: A CELL WITH IMPORTANT
IMMUNOMODULATORY POTENTIAL
Mesenchymal stem cells are multipotent mesenchymal stro-
mal cells that proliferate in vitro as plastic-adherent cells, have
fibroblast-like morphology and can differentiate into bone, car-
tilage, and fat cells (49). They are found in almost all human
tissues and an endometrial mesenchymal stem cells (eMSC) pop-
ulation has also been identified by Gargett et al. These eMSC show
high clonogenic properties similar to bone marrow-derived MSC
(BM-MSC) (50, 51). Recent studies have described the influencing
MSC capacities over immune and inflammatory responses, and

especially in the endometrium these cells could be key players in
the immune regulation needed for a successful implantation and
normal invasion process carried out by the trophoblast. Inversely,
an abnormal performance of these cells at this crucial point could
lead to an abnormal development of the trophoblast and an
impaired placentation.

It has been shown that MSC suppress the differentiation of
DCs from monocytes by arresting them in G0 phase of cell cycle,
an effect that is mediated by soluble factors (47). Moreover, MSC
interfere in maturation of DCs avoiding a Th1 response typi-
cal of mature DCs, and promoting an immature DC phenotype
that helps to generate a tolerogenic environment (52). Besides,
Jiang et al. have reported that MSC maintain DC in an imma-
ture state and that MSC inhibit up-regulation of IL-12p70, a
pro-inflammatory cytokine (53). Similarly, it has been reported
that MSC can alter the cytokine profile secreted by DC to induce
a tolerogeneic microenvironment (54). Specifically, MSC induce
the DC-associated production of IL-10, which in turn, induce the
secretion of the anti-inflammatory cytokine IL-4 by Th2 cells (55).
All these effects depend on the cytokine environment, because it
has been shown that an increase of pro-inflammatory cytokines,
such as IL-6 and TNF-a, reverse the immunosuppressive effects of
MSC over DC cells (47).

Also, it has been described that MSC inhibit Th17 differenti-
ation and function, decreasing the number and activity of these
cells in the inflammation site. Moreover, it has been shown that the
co-incubation of MSC with Th17 induces “regulatory” features in
these cells even in an inflammatory environment. This effect is car-
ried out by the down-regulation of retinoic-acid-receptor-related
orphan receptor gamma t (RORgt) transcription factor and by the
up-regulation of FOXP3 transcription factor (56). These effects
could be associated to the release of soluble factors from MSC, such
as prostaglandin E2 (PGE2), or by the modification of cytokine
environment that favors a Treg phenotype (57).

Furthermore, it has been shown that MSC increase the num-
ber and the activity of Treg (58). It has been demonstrated that
co-culture of CD4+ T-cells with MSC induce the appearance of
FOXP3+CD25High T-cells. Another possible mechanism for the
increase of Treg number by MSC is the inhibition of IL-6 pro-
duction, which is a necessary cytokine in the Th17 differentiation
process from Tregs. Also, it has been shown that the influence of
MSC over DC cells favors the generation of Treg cells, because
of the tolerogenic environment generated both by MSC and by
tolerogenic DCs (47, 54).

Mesenchymal stem cell not only can influence the phenotype
of the different cells that play a role in the immune environment
of pregnancy, but also have a role in the regulation of Th1/Th2
balance. It has been shown that MSC can shift a Th1 phenotype
to a Th2. This effect could be performed through the modulation
of DC phenotype (shifting from a DC1 or Th1-associated phe-
notype to a DC2 or Th2-associated phenotype) or by the direct
effects over Th1/Th2 cells. In this regard, MSC inhibit CD4+ T-
cell proliferation by the inhibition of the entry to S phase of cell
cycle (47). This effect is mediated at least in part by soluble factors
such as TGF-β, hepathocyte growth factor (HGF), and PGE2 (54,
59). MSC inhibit proliferation of activated T-cells in respond to:
(i) non-specific stimuli such as DCs, phytohemagglutinin (PHA),
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and IL-2, (ii) their specific antigen (55). MSC also inhibit Th1 phe-
notype by the inhibition of IFN-g production, which is necessary
for Th1 cells development, and by increasing Treg cell number,
that works as a counterpart of Th1 cells. MSC not only sup-
press Th1 response, but favors the emergence and maintenance
of Th2 response by inducing IL-4 production that favor the Th2
differentiation (54, 55, 57). There are several studies that indicate
that MSC could positively alter the Th1/Th2 balance. Bai et al.,
showed in an experimental allergic encephalomyelitis model that
MSC induce neurological improvements by the reduction of T-
cells infiltration to the brain and by the increased production of
Th2 cytokines such as IL-4 and IL-5 production accompanied by
the reduction in Th1/Th17 related cytokines such as IL-17 IFN-γ
and TNF-α (60).

In summary, MSC regulate immune cell types involved in
the feto-maternal tolerance that allows a normal invasion of the
decidua by the EVT (Figure 1C). Dysregulation of this invasive
process is part of the etiopathogenesis of PE, but clear evidence of
the involvement of the immunomodulatory properties of eMSC
in this process remains to be elucidated.

MOLECULAR MECHANISMS OF MSC IMMUNOSUPPRESSIVE
EFFECT
So far, we have discussed about MSC effects on different immune
cell types and its potential role in the abnormal placentation
observed in patients that develop PE, but the mechanisms under-
lying these effects need to be explained. Inhibitory effects of MSC
over T-cell proliferation could be accomplished by at least two
different ways.

CELL-TO-CELL CONTACT-DEPENDENT MECHANISM
It is mediated mainly by PD1–PD1L pathway (61). PD-L1 is a
transmembrane glycoprotein and a ligand of the programed cell
death protein 1 (PD-1) that is expressed in various cell types,
including T-cells, macrophages, DCs, and placenta (62, 63). The
interaction of PD-L1 with PD-1 leads to the suppression of the
immune response (62). PD-L1 is considered a key suppressor
factor in maternal tolerance (64). It has been shown that PD-
L1 is up-regulated on decidual T-cells during pregnancy (65),
and that their expression on the surface of Tregs is essential to
exert their suppressive effect and to control the maternal immune
response (66). Moreover, placental MSC express higher levels
of PD-L1 than BM-MSC, although IFN-γ treatment proved to
have a lower immunomodulatory capacity on T-cell proliferation
(67). Furthermore, PD-L1 pathway in BM-MSC mediates sup-
pression of Th17 cell proliferation and IL-17 production (68).
However, there is no data to the best of our knowledge about the
expression of PD-L1 on the decidua and eMSC of patients that
develop PE.

METABOLISM OF THE ESSENTIAL AMINO ACID TRYPTOPHAN
Mesenchymal stem cells express the enzyme indoleamine 2,3-
dioxygenase (IDO), a tryptophan-degrading enzyme, that through
the consumption of tryptophan amino acid serves as a natural
immunoregulatory mechanism for the inhibition of T-cell prolif-
eration. Munn et al. showed that the functional inhibition of IDO
resulted in the uniform rejection of allogeneic fetuses, suggesting

the crucial role of this enzyme in maternal tolerance maintenance
(69). Similarly, it has been shown that placental MSC treated with
IFN-g showed an increase in IDO expression, inhibiting autolo-
gous T-cell proliferation (70). In PE, IDO expression is increased
(71) and this altered IDO expression has been postulated to be
associated with the reduction of Treg cell subset, a feature observed
in patients that develop PE (72).

On the other hand, MSC can produce immunosuppressive
effects by the production and release of immunosuppressive factor
such as HLA-G and PGE2.

• HLA-G: it has been shown that MSC express and secrete HLA-G
(73, 74). This expression can be up-regulated by progesterone
treatment (75) and pro-inflammatory cytokines (76). Further-
more, the induction of HLA-G expression as a strategy to
enhance the immunosuppressive properties of MSC in trans-
plantation has been postulated (77). HLA-G is a non-classical
MHC class Ib molecule that initially was identified in trophoblast
cells. HLA-G has soluble and membrane-bound isoforms (78,
79), and it is recognized by immunoglobulin-like transcript
receptor expressed in T-cells, B cells, NK cells, and macrophages
(79). The physiological role of HLA-G during pregnancy is to
establish immune-tolerance at the maternal-fetal interface,abro-
gating the cytolytic activity of maternal NK and cytotoxic T-cells
against fetal tissue (80). HLA-G exerts a direct suppressive effect
on CD4+ T-cells (40) and induces apoptosis in CD8+ T-cells
(81). A soluble form of HLA-G also participates in the vascular
remodeling of maternal uterine spiral arteries during pregnancy
(81). Defective HLA-G expression has been associated with PE
(82). HLA-G levels in plasma from women who subsequently
develop PE are lower than control patients (83, 84). MSC have
been shown to secrete and express HLA-G (73, 74).

• PGE2: it has been postulated that MSC immunosuppression is
also mediated by PGE2 (85). PGE2 is a bioactive lipid synthe-
sized by cyclooxygenase (COX) enzyme pathway. It elicits a wide
range of effects on inflammation process and immune cells.
PEG2 inhibits IFN-g production in CD4+ T-cells, which facil-
itates development of Th2 cytokine production (86), induces
the expression of inhibitory receptors on cytotoxic lymphocytes
(87), regulates Th17 differentiation and enhances Th17 cytokine
expression (88). PGE2 also has an effect on innate immune
response suppressing proliferation, cytokine secretion, and NK
cell-mediated cytotoxicity (89). PGE2 is produced by decidua
and fetal membranes, and is believed to play a role in the onset
of labor (90). Secretion of PGE2 by MSC inhibits inflammation
(91) and alters T-cell and NK cell proliferation and cytokine pro-
duction (92) in effector immune cells. However, the evidence of
the involvement of PGE2 in the development of PE is poor.

All the immunosuppressive properties of MSC have mainly
been studied using BM-MSC. However, it has been shown that
these cells have different immune behavior than eMSC (93), sug-
gesting that these two MSC types differ in their immunomod-
ulatory and anti-inflammatory effects. Those results converge
toward positioning the eMSC as a crucial endometrial cell type
that might have a role in uterine physiology and pregnancy. In
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order to understand the role of maternal immunotolerant mecha-
nisms and how an alteration in these mechanisms could trigger the
development of PE, it would be important to isolate and character-
ize the immune properties of eMSC. For this, further experimental
evidence is needed to unravel the functional role of MSC from
endometrial origin, the decidua, and in a pregnancy-associated
environment, and the possible alterations that could be related to
the development of PE.

CONCLUSION
The physiology of the immune interaction between the fetus and
the mother during pregnancy is an unexplored field that has
received increasingly attention during the past years. The under-
standing of immune interactions during normal pregnancy could
help guide the research of pregnancy-associated disorders such
as PE that finally allow the development and implementation
of effective therapeutic tools. In this regard, the study of MSC
biology as master immunomodulatory cell, specifically eMSC,
might become an important contribution to the understanding
of physiological and pathological immune interactions during the
establishment and maintenance of pregnancy that could be related
to the development of disease states, such as PE.
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