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Toll-like receptor (TLR) signaling represents one of the best studied pathways to implement
defense mechanisms against invading microbes in human being as well as in animals.
TLRs respond to specific microbial ligands and to danger signals produced by the host
during infection, and initiate downstream cascades that activate both innate and adap-
tive immunity. TLRs are expressed by professional immune cells and by the large majority
of non-hematopoietic cells, including epithelial cells. In epithelial tissues, TLR functions
are particularly important because these sites are constantly exposed to microorganisms,
due to their location at the host interface with the environment. While at these sites
specific defense mechanisms and inflammatory responses are initiated via TLR signaling
against pathogens, suppression or lack ofTLR activation is also observed in response to the
commensal microbiota. The mechanisms by which TLR signaling is regulated in mucosal
epithelial cells include differential expression and levels of TLRs (and their signaling part-
ners), their cellular localization and positioning within the tissue in a fashion that favors
responses to pathogens while dampening responses to commensals and maintaining tis-
sue homeostasis in physiologic conditions. In this review, the expression and activation of
TLRs in mucosal epithelial cells of several sites of the human body are examined. Specifi-
cally, the oral cavity, the ear canal and eye, the airways, the gut, and the reproductive tract
are discussed, along with how site-specific host defense mechanisms are implemented
via TLR signaling.
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INTRODUCTION
All organisms have some form of protective mechanisms against
pathogens. In many instances, innate immunity functions are the
first, and sometimes, the only barrier to infection by invading
organisms. In human beings, innate immunity is not only medi-
ated by professional immune cells, but also by non-professional
cell types that contribute to defense responses by secreting sub-
stances with anti-microbial activity and inflammatory mediators
that favor rapid and direct involvement of professional immune
cells. Many, if not all,of these responses are dependent on detection
of invading microorganisms. The toll-like receptors (TLRs) fam-
ily is one of the best characterized among several cellular effectors
for pathogen detection (1). TLRs are a family of trans-membrane
proteins widely expressed by eukaryotic cells and recognize lig-
ands that are present in virtually all types of microorganisms.
Once binding takes place, activation of signaling pathways down-
stream of TLRs plays a major role in directing both innate and
adaptive host immune responses. Thus, TLRs represent one of
the first and most important lines of defense against bacterial,
viral and fungal pathogens and parasites that may interact with
and harm the human host. However, two major aspects relative to
TLR-dependent pathogen recognition and subsequent responses
need to be carefully considered: most microorganisms that colo-
nize the human host are not pathogens, and, depending on the
site of colonization/infection, different defense responses may be

necessary or appropriate to counteract such infections. This review
explores how TLR signaling is regulated in mucosal epithelial cells
to mediate specific host responses to commensal or pathogenic
microbial infections. Such control is exerted via a number of
mechanisms, including regulation of receptor expression levels,
cellular localization (i.e. cytosolic or surface expression) and posi-
tioning within the tissue (apical or basolateral expression), and
also depending on the tissue body site.

TOLL-LIKE RECEPTORS: OVERVIEW OF STRUCTURE AND
SIGNALING PATHWAYS
Toll-like receptors were discovered almost two decades ago and
their importance in regulation of immune responses was imme-
diately recognized, enhancing our understanding of many phe-
nomena that define host innate and adaptive immunity. TLRs
recognize microbial and viral products with specific structural
features. Such products are classified as pathogen-associated mol-
ecular patterns (PAMPs) (2). As many microorganisms colonize
the human host without causing disease, the term CAMPs has been
introduced for commensal-associated molecular patterns (or the
more generic term MAMPs, for microbial-associated molecular
patterns) that are also recognized by TLRs (3). In addition, endoge-
nous ligands that induce inflammation in the absence of infection
can also activate TLR-dependent signaling and are defined as
danger-associated molecular patterns (DAMPs) (4).
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Toll-like receptors are trans-membrane proteins that contain a
horseshoe-shaped extracellular or cytoplasmic leucine-rich repeat
(LRR) domain and an intra-cytoplasmic toll/IL-1R (TIR) domain
[homologous to the corresponding intracellular domain of the
IL-1 receptor (IL-1R)], which are connected by a single trans-
membrane domain. The LRR domain is responsible for ligand
recognition and the TIR domain for intracellular signal transfer.

In humans 10 TLRs have been identified to date and comprise
both extracellular and intracellular receptors (1). TLR1, TLR2,
TLR4, TLR5, TLR6, and TLR10 are surface-expressed and recog-
nize extracellular microorganisms and ligands. TLR3, TLR7, TLR8,
and TLR9 are intracellular, localizing into cytosolic endosomal
compartments via a UNC-93B-assisted translocation mechanism
(5), and are engaged by microorganisms and ligands that have
already crossed the cell membrane barrier. In some instances,
intracellular TLRs, such as TLR3 and TLR9, can be expressed on
the cell surface, and extracellular TLRs, such as TLR4, can also have
an intracellular localization, depending on the cell type (6, 7). For
all TLRs, ligand binding to the LRR domain induces formation of
receptor homodimers or, in some cases, heterodimers (Figure 1). A
resulting TIR domain conformational change allows interactions
between TIR domains of adjacent TLRs and binding of additional
adaptor proteins essential for triggering intracellular signaling cas-
cades. Adaptor proteins identified to date include the myeloid
differentiation factor 88 (MyD88) (8), the MyD88 adaptor-like
(Mal) (9) [also called TIR domain-containing adaptor protein,
TIRAP (10)], the TIR domain-containing adaptor protein induc-
ing interferon-β (TRIF) (11) [also called TIR-containing adaptor
molecule, TICAM (12)], and the TRIF-related adaptor molecule
(TRAM) (13). TLR signaling is also subject to negative regulation
by a variety of inhibitory factors, including the Toll-interacting
protein (Tollip), IRAK-M, the sterile α- and HEAT-Armadillo-
motif-containing protein (SARM), and the B cell adaptor for
PI3K (BCAP) (14), which inhibit downstream steps in the TLR-
dependent signaling cascades. The crystal structure of several
TLRs has been solved, either alone or in complex with ligands
(15–19), expanding our understanding of the molecular mecha-
nisms of TLR activation and of the co-factors that are required for
signaling.

With the exception of TLR3, all TLRs require MyD88 recruit-
ment to the TIR domain. TLR2 and TLR4 signaling require not
only MyD88 but also the cooperation of Mal/TIRAP (Figure 1).
Through MyD88,members of the IL-1R-associated protein kinases
(IRAKs) IRAK4, IRAK1, and IRAK2 are activated (20). This
is directly followed by activation of the tumor necrosis factor
receptor-associated factor 6 (TRAF6) (21) and RIP (22), which
proceed to activate a complex made of TGF-β-activated kinase
1(TAK1) and TAK1-binding proteins (TAB1, TAB2, and TAB3).
Lastly, gene expression regulatory factors of the MAPK family
(ERK, JNK, p38) and NF-κB are activated (Figure 1), inducing cell
survival and proliferation, immune cell activation, production of
pro-/anti-inflammatory mediators (cytokines and chemokines),
interferons, and anti-microbial products. Activation of intracel-
lular TLR7, TLR8, and TLR9 also proceeds via MyD88, but can
trigger TRAF6, IRAK4, and TRAF3-dependent activation of IRF7,
which translocates to the nucleus and induces production of type-I
interferon (13, 23) (Figure 1).

FIGURE 1 | Schematic cartoon ofTLR signaling pathways. TLR2/TLR1
and TLR2/TLR6 heterodimers and TLR4 and TLR5 homodimers are located
on the cell surface, while TLR3, TLR7, TLR8 and TLR9 homodimers have an
intracellular localization. Occasionally, in specific epithelial cell types and
tissues, TLR4 can be expressed intracellularly or TLR3 and TLR9 on the cell
surface. Ligand binding to the leucine-rich repeat (LRR) domain of TLR
dimers brings the TIR domains of adjacent TLRs in proximity, allowing
multiple signaling pathways via different adaptor molecules. TLR2/TLR1 and
TLR3 potentially cooperate with CD14, TLR2/TLR6 with CD36 and TLR4
requires LBP, CD14 and MD-2. TLR1, TLR2, TLR4, TLR5, TLR6, TLR7, TLR8
and TLR9 activate the MyD88-dependent pathway, with cooperation of Mal
for TLR2 and TLR4. Through MyD88, IRAKs and TRAF6, TLR2/TLR1 and
TLR2/TLR6, TLR4, TLR5, TLR7, TLR8, and TLR9 signaling pathways lead to
activation of NF-κB and MAPKs, with production of inflammatory cytokines
and chemokines, type-II interferon, mucins, and defensins (solid thick
arrows). TLR7, TLR8, and TLR9 also induce MyD88-dependent activation of
TRAF6 and TRAF3 (dashed arrows). TLR3 and TLR4 activate a
MyD88-independent pathway via TRIF and, in cooperation with TRAM for
TLR4 (solid medium arrows), also leading to NF-κB and MAPKs activation
and of inflammatory mediators, type-II interferon, mucins, and
defensins.The MyD88-independent pathway also induces IRF3 and IRF7
activation, with production of type-I IFNs and IL-10 gene activation.

A MyD88-independent pathway is triggered by TLR3 and TLR4
(in addition to the TLR4/MyD88-dependent signaling pathway)
and, potentially, by TLR2 (24, 25). The TLR3 MyD88-independent
pathway is mediated by TRIF and the TNF receptor associated fac-
tor protein TRAF3, inducing non-canonical IKKs, TBK1, and IKKε

pathways, activation of IRF3, and secretion of type-I IFN (IFN-
β) and IL-10 (26) (Figure 1). TLR3-TRIF signaling can also drive
activation of MyD88-dependent downstream components TRAF6
and RIP1, thus converging on activation of NF-κB (Figure 1).
The TLR4/MyD88-independent pathway leads to recruitment of
TRIF via activation of TRAM and downstream segregation of cell
activation via both TRAF6/RIP1 and TRAF3/IRF3 pathways (27)
(Figure 1).

TLR LIGANDS: OVERVIEW OF INTERACTIONS
Toll-like receptors recognize a large variety of structurally defined,
but not necessarily structurally related ligands. TLR3, TLR5, TLR7,
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TLR8, and TLR9 recognize “unique type” of ligands. TLR3 recog-
nizes viral double-strand RNA (dsRNA) and synthetic analogs of
dsRNA, such as Poly I:C (28), with the potential contribution of
the adaptor molecule CD14 (29). Bacterial flagellin is the ligand
for TLR5 (30), TLR7 and TLR8 recognize viral single-strand RNA,
miRNA and the anti-viral compounds, imidazoquinolines (31–
34), and TLR9 recognizes unmethylated CpG DNA of bacterial
and viral origin (35) as well as the malaria pigment, hemozoin
[likely due to its being coated with malarial DNA (36)]. A unique
ligand for TLR10 is currently unknown but this receptor is thought
to heterodimerize with TLR2 and share recognition of ligands that
are in common with those that are recognized by TLR1. Recently,
a role for TLR10 has been suggested in responses to pathogen
infections (37, 38), Crohn’s disease (39), and even cancer (40).

Ligand discrimination by TLR2 and TLR4 is a complex process
that is not only dependent on ligand compatibility but also requires
the presence of specific co-receptors and accessory molecules. In
the case of TLR4, recognition of its best characterized ligand, bac-
terial lipopolysaccharide (LPS) occurs when this is in complex with
the accessory molecules lipid binding protein (LBP) and the lipid A
binding protein (CD14), and is presented to TLR4 in the presence
of the myeloid differentiation protein 2 (MD-2) (41). Homod-
imerization of the TLR4/MD-2 complex following ligand binding
then brings the TLR4 TIR domains in close proximity, which pro-
ceeds to trigger signaling cascades via the MyD88-dependent or the
MyD88-independent pathways (Figure 1). It has been suggested
that this dichotomy may be influenced by the LPS type (smooth
vs. rough or lipid A). In the presence of CD14, all LPS types can
induce TLR4 activation via both pathways. In the absence of CD14,
smooth LPS fails to induce TLR4 activation, while lipid A induces
signaling via Mal/MyD88 (42). The details of the molecular inter-
actions of TLR4 with its accessory molecules and ligands have
been elucidated in elegant crystal structure studies (17). A novel
factor involved in TLR4-mediated signaling has been described,
the TLR4-interactor with LRRs, TRIL, which is highly expressed
particularly in the brain and enhances TLR4-dependent signaling
by LPS (43). Some types of bacterial LPS signal via TLR2, for exam-
ple Porphyromonas gingivalis LPS, although some components of
TLR4-dependent signaling are also involved (44). In addition to
LPS, TLR4 also recognizes viral components and endogenous lig-
ands, such as β-defensin 2 (45), high mobility group box 1 protein
(HMGB1) (46), fibronectin extra domain A (F-EDA), heat shock
proteins and other molecules (47), although the contribution of
contaminating LPS to the effect of some of these molecules is still
unclear.

An even more complex picture characterizes signaling via
TLR2, which can form heterodimers with either TLR1 or TLR6.
TLR2 recognizes a broad range of ligands with very different struc-
tural features. The first described TLR2 ligands are lipopeptides
and lipoproteins, shown to engage TLR2/TLR1 or TLR2/TLR6
heterodimers depending on different acyl group patterns. The
synthetic triacylated lipoprotein Pam3CSK4 is a specific ligand
for the TLR2/TLR1 dimer (48) while the diacylated lipoprotein
Pam2CSK4 binds to and signals via the TLR2/TLR6 dimer (but
can also function via TLR2/TLR1) (49, 50). The molecular and
structural details of the TLR2/TLR1- and TLR2/TLR6-ligand com-
plexes have been elucidated by co-crystallization studies that have

paved the way in defining these sophisticated interactions and the
role of the accessory molecules CD14, LBP, and CD36 in ligand-
driven complex formation (16, 51, 52). Other bacterial ligands
for TLR2 include cell wall components such as lipoteichoic acid
(LTA) (53), glycolipids, lipoarabinomannan (54), β-glucans (55)
and zymosan (56). TLR2 activation by peptidoglycan (PG) is con-
troversial and this molecule is also known to signal via another
intracellular pattern recognition receptor, Nod2, a member of the
nucleotide oligomerization domain (NOD)-like receptors (NLRs)
family (57–59). In addition, bacterial proteins of diverse origin
with no structural similarities and no lipid components have
also been shown to activate cells via TLR2 signaling, for example
porins and toxins. Porins from Neisseriae species, Fusobacterium
nucleatum and Chlamydia induce TLR2/TLR1-dependent signal-
ing (60–64), while Shigella and Salmonella porins induce signaling
via TLR2/TLR6 (65, 66). Haemophilus porin is also considered a
TLR2 ligand (67). Other well-described TLR2 protein ligands are
the pentameric B subunit of the Escherichia coli type-II heat-labile
enterotoxin [LT-IIa-B(5) and LT-IIb-B(5)] (68), bacterial fimbriae
(69) and the PPE18 protein from Mycobacterium tuberculosis (70).
Furthermore, endogenous ligands and DAMPs are also associated
with TLR2-dependent signaling, including HSPs, HMGB1, uric
acid, fibronectin and other extracellular matrix proteins, and some
types of LPS, as discussed in the previous section.

TLRs IN HUMAN EPITHELIAL CELLS: OVERVIEW OF
EXPRESSION AND FUNCTIONS
In humans TLR expression is nearly ubiquitous in immune cells,
where it drives innate and adaptive immune mechanisms such as
activation of antigen-presenting cells (APCs), secretion of inflam-
matory mediators, T cell differentiation and antibody production.
By contrast, TLR expression is less widespread in cells of non-
hematopoietic origin, such as epithelial cells (Table 1). Since TLRs
are specialized in recognition of microbial products, it appears rea-
sonable that they have evolved to be localized at the best potential
host/microbe interface for a rapid initial response. For example,
depending on the cell type and the body location, TLR pro-
tein expression may not be detected despite the presence of TLR
mRNA, extracellular TLRs may present an intracellular localiza-
tion in endosomal compartments (i.e., TLR4) while intracellular
TLRs can be found on the cell surface (i.e., TLR3 or TLR9),
and selected TLRs can be expressed in a tissue-specific manner.
TLR-dependent activation of immune responses by a pathogen
is indiscriminately triggered in APCs, but a similar modality of
activation of epithelial cells may lead to unnecessary responses to
the large number of commensal organisms found throughout the
majority of non-sterile body surfaces that are in constant con-
tact with the environment (Figure 2). The best and most studied
examples include the selective expression of TLR2 and TLR4 by
cells of mucosal epithelial sites such as the oral cavity, the upper
and lower airways (including the nasal passage), the ear and the
eye, the gut and the reproductive tract, as well as the skin (even
if the majority of the skin tissue comprises cells of non-mucosal
nature). Although the first function of these cells is that of offering
a mechanical barrier against pathogens, they also have an intimate
relationship with both circulating and local immune cells [i.e.,
resident neutrophils, dendritic cells (DCs) and macrophages].
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Table 1 |TLR mRNA and protein expression in mucosal epithelial cells.

Tissue TLR

mRNA Protein

ORAL EPITHELIA

Gingival TLR1 (71, 72), TLR2 (73–75), TLR3 (73), TLR4 (73, 75,

76), TLR5 (71, 72), TLR6 (71, 72), TLR7 (73), TLR8

(71–73), TLR9 (71, 72)

TLR1 (71), TLR2 (71–73, 75–78), TLR3 (71, 73, 78),

TLR4 (71–76), TLR5 (71, 77, 78), TLR6 (71, 72, 78),

TLR7 (71, 73), TLR8 (71), TLR9 (71, 74, 75, 79)

Salivary TLR1–TLR10 (80, 81) TLR1–TLR4, TLR7 (80)

Tonsillar TLR1–TLR6, TLR9, TLR10 (80, 82) TLR2, TLR3 (82)

Ear epithelia TLR2–TLR4, TLR9 (83–86) TLR2–TLR4, TLR9 (83–86)

OCULAR EPITHELIA

Corneal TLR1 (87), TLR2 (6, 87–90), TLR3 (87–89), TLR4 (6,

87–89), TLR5 (87, 91), TLR6 (87), TLR7 (87, 88), TLR9

(87–89), TLR10 (87)

TLR1 (92), TLR2 (6, 87, 90, 92–96), TLR3 (6, 87–89, 92,

93), TLR4 (6, 88, 90, 93, 96–98), TLR5 (87, 91–95, 97),

TLR6 (92), TLR9 (87, 89)

Conjunctival TLR1 (87), TLR2, TLR3 (87, 88), TLR4 (87, 88, 99), TLR7

(87, 88), TLR9 (87, 88, 99), TLR10 (87)

TLR3 (88), TLR4 (88, 99), TLR9 (99)

Retinal TLR1–TLR7, TLR9 (100) TLR2–TLR4 (100)

Iris TLR4 (98) TLR4 (98)

AIRWAY EPITHELIA

Nasal TLR1–TLR10 (101, 102) TLR2 (102, 103), TLR3 (102), TLR4 (103)

Tracheal/bronchial TLR1 (7, 81, 104), TLR2 (7, 81, 104, 105), TLR3 (7, 81,

104), TLR4 (7, 81, 104, 106), TLR5–TLR10 (7, 81, 104)

TLR1, TLR2 (7, 104, 105, 107), TLR3 (7, 104, 107), TLR4

(7, 104, 106, 107), TLR5, TLR6 (7, 104, 107), TLR7,

TLR9, TLR10 (7)

Lung TLR1 (81, 108), TLR2 (81, 108–111), TLR4 (81, 101, 103,

109, 111, 112), TLR5, TLR6 (81, 108)

TLR2 (105, 109, 110), TLR4 (103, 109–112), TLR5 (108)

GUT EPITHELIA

Esophageal TLR1–TLR5 (113) TLR1–TLR3 (113), TLR4 (113, 114), TLR5 (113)

Gastric TLR2, TLR4, TLR5 (115–117) TLR2, TLR4, TLR5 (115–117)

Intestinal TLR1 (81), TLR2 (81, 118, 119), TLR3 (81), TLR4 (81,

118, 120–122), TLR5–TLR10 (81)

TLR2 (81, 118, 119) TLR3 (123), TLR4 (118, 120–122),

TLR5 (119, 123), TLR9 (123)

M cells/Paneth cells TLR2, TLR4, TLR5 (124)

GENITO-URINARY EPITHELIA

Male

Penile, urethra testis, prostate TLR1, TLR2 (81), TLR3 (81, 125–127), TLR4–TLR7 (81),

TLR8 (81, 125–127) TLR9, TLR10 (81)

TLR2 (81, 125–128), TLR3, TLR4 (128), TLR8 (125),

TLR9 (81, 125–127)

Female

Vagina TLR1–TLR6, TLR9, TLR10 (129, 130) TLR1 (129, 130), TLR2 (129–131), TLR3, TLR5, TLR6

(129–131)

Endocervix/endocervix TLR1–TLR3, TLR5–TLR9 (130, 132) TLR1- TLR3, TLR5, TLR6, TLR9 (130, 132)

Endometrium, uterus/fallopian tubes TLR1–TLR6 (130), TLR7–TLR9 (130, 133, 134) TLR1, TLR2 (130), TLR3 (130, 134), TLR4–TLR6 (130),

TLR7–TLR9 (130, 132–134)

Urinary tract/renal TLR1–TLR5, TLR9 (135, 136) TLR2–TLR4 (135, 137–140), TLR5, TLR9 (137)
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FIGURE 2 | Cartoon of epithelial cell/microorganisms dynamic
interactions. Bacterial recognition by TLRs expressed by epithelial cells
leads to activation of local defense responses in the epithelial tissues that
become colonized. TLR-dependent induction of anti-microbial substances
and inflammatory mediators contribute to bacterial clearance by controlling
organism survival and by triggering host local and systemic immune
responses, respectively. While such processes are pivotal against
pathogens, they are not desirable against the local commensal microflora.
In a Yin–Yang balance of epithelial tissue homeostasis and
defense/inflammatory responses, regulation of TLR signaling is crucial for
inducing appropriate cell responses to microorganisms of different nature.

Direct defense functions mediated by TLR signaling in mucosal
epithelial tissues include induction of anti-microbial substances
and other soluble mediators for local and systemic control of
infections. Production of anti-microbial substances is beneficial
for controlling mucosal epithelial tissue colonization/infection but
production of inflammatory mediators is a double-edged sword.
In fact, while pro-inflammatory cytokines trigger recruitment
and activation of APCs at the site of infection, they may also
favor inflammatory tissue damage. One example is the damag-
ing effect of TNF-α on oral bone integrity. Following infection
by oral pathogens such as P. gingivalis, gingival epithelial cells,
and macrophages that are recruited to this site secrete high lev-
els of TNF-α, which then causes enhanced inflammatory oral
bone loss. In addition, uncontrolled secretion of inflammatory
cytokines is not desirable for maintaining local tissue homeosta-
sis in the presence of the commensal microbiota. On the other
hand, lack of inflammatory responses is similarly dangerous in
the instances when pathogen infections or commensal imbalance
may occur.

The inflammatory cytokines and chemokines most frequently
produced by epithelial cells via TLR stimulation include those
directly involved in inflammatory and immune regulation (i.e., IL-
1α and IL-1β, IL-6, IL-10, IL-13, TNF-α, and TGF-β), those with
chemotactic effects (such as IL-8, MCP-1, MIP-1, and RANTES)
and growth and differentiation factors (i.e., IL-3, IL-7, G-CSF,
and GM-CSF). The activity of some of these mediators encom-
passes several of the categories mentioned above. However, some
promote inflammation and amplify immune responses, for exam-
ple IL-1β, IL-8, RANTES, or TNF-α, while others dampen such

responses, such as IL-10, IL-37, and TGF-β (141). Besides secreting
inflammatory mediators, epithelial cells influence mucosal innate
and adaptive immunity by also producing factors that directly
affect DC, B and T cell functions, such as the B cell-activating
factor of the TNF family (BAFF), a proliferation-inducing ligand
(APRIL) (142, 143) and type-I interferons.

TLR EXPRESSION AND RESPONSES IN HUMAN MUCOSAL
EPITHELIAL TISSUES
ORAL EPITHELIUM
The gingival epithelium is composed of a variety of cell types
including keratinized and non-keratinized, stratified and flat
squamous cells, which are exposed to an enormous number of
microorganisms of both commensal and pathogenic nature. It is
thought that up to 1010 bacteria can be found in the oral cavity.
In physiologic conditions, a relatively small number of resident
immune cells, including neutrophils, lymphocytes and mono-
cytes/macrophages, are located within the oral cavity epithelial
tissue. Upon oral pathogen infection, TLR-dependent gingival
inflammation causes an influx of neutrophils, monocytes and
lymphocytes to facilitate bacterial clearance (144).

Toll-like receptor expression and functions in the oral cavity
are very important for the maintenance of oral tissue home-
ostasis because of the constant presence of commensal microbes
(Table 1). Expression of mRNA for TLR1 to TLR9 has been
detected in oral epithelial cells (including the tongue), although
actual TLR protein expression and cellular localization can be vari-
able and inducible. TLR2 is highly expressed in cells of the gingival
basal layer but lower levels are observed in cells of the superficial
layers, more exposed to the environment and to microorgan-
isms. While an opposite spatial relationship may be expected to
insure recognition of colonizing microorganisms, this is a strategy
that facilitates TLR-dependent inflammatory response only when
invading pathogens are detected in the basal cell layer. A simi-
lar pattern is observed for TLR1, TLR3, TLR4, TLR5, and TLR9
expression, also depending on the state of the tissue (inflamed vs.
non-inflamed) (71, 72). TLR7 and TLR8 expression is comparable
in both healthy and infected tissues. In addition, acute and persis-
tent gingival inflammation also enhances the expression of TLR2
and TLR4, favoring downstream local innate immune responses
(73). In chronic oral inflammatory conditions (i.e. bacterial peri-
odontitis or other pathologies), TLR4 expression in the gingival
epithelium decreases, likely to dampen inflammatory responses
that may exacerbate damage to oral tissue and bone (76). Variable
levels of TLR expression have also been observed as a consequence
of other oral chronic inflammatory conditions, for example caused
by lichen planus. In this case, increased TLR4 and TLR9 protein
expression and decreased TLR2 mRNA have been detected (74,
75). High constitutive expression of TLR1, TLR2, TLR3, TLR4,
and TLR7 mRNA has also been shown in vitro in salivary gland
epithelial cells, with TLR3 protein levels being the highest (80).
mRNA for all TLRs except TLR7 and TLR8 has been observed
in tonsillar epithelial cells at the junction between the oral cavity
and the airways. A strong expression of TLR2 and TLR3 mRNA is
observed in both tonsillar cell lines and primary cells, and detec-
tion of actual TLR2 and TLR4 proteins and their activity appears
variable (82).
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The likely most relevant defense mechanism that is mediated by
TLR signaling in the oral cavity is induction of anti-microbial sub-
stances such as defensins (α-, β-, and θ-type). Human β-defensin
(hBD)-1 to hBD-4 mRNA and proteins are expressed in the oral
epithelium (145). hBD-1 is constitutively expressed, hBD-2 and
hBD-3 are inducible in the basal layer epithelial cells via TLR2,
TLR3, TLR4, TLR5 and TLR9 signaling, and by general inflamma-
tory conditions of the gingival epithelium (i.e., in the presence of
IL-1β and TNF-α). hBD-4 is only induced by bacterial infections
(146). In a feedback mechanism, β-defensins also induce TLR sig-
naling and recruitment/activation of immature DCs, monocytes
and memory T cells in the oral epithelium, which thus places
these substances at a cross-road between an immune effector
and an immune inducer produced by epithelial cells (147). Over-
all, activation of TLR2 signaling is generally more frequent than
that of TLR4 in gingival epithelial cells, inducing a strong activa-
tion of MAPKs and NF-κB pathways than controls production of
antibacterial substances (148).

Oral epithelial cells do not generally secrete high levels of
inflammatory mediators, likely to avoid excessive local innate
immune responses resulting in tissue destruction. Secretion of IL-
8 in response to TLR9, TLR2 and TLR5 stimulation and, to a lesser
extent, to TLR4 stimulation has been shown in gingival epithelial
cells, which is enhanced by a prior cell exposure to IFN-γ (77,
79, 149). Besides IL-8, secretion of other inflammatory cytokines
directly involved in innate immunity, such as IL-1β and TNF-α, as
well as that of APCs chemo-attractants has been shown. Thymic
stromal lymphopoietin (TSLP) is also expressed by oral epithelial
cells following TLR3, TLR5 and TLR2/TLR6 activation (78).

EAR EPITHELIA
Toll-like receptor expression has been detected in the ear epithe-
lium (Table 1), indicating that this tissue is suited to respond to
pathogens and initiate immune and defense responses accordingly.
Primary epithelial cells of the human ear and middle ear/inner
ear epithelial cell lines express functional TLR2 but not TLR4,
shown by their responsiveness to Haemophilus influenzae whole
cell lysates stimulation in vitro and up-regulation of defensins
mRNA expression, but not to purified LPS (83). TLR2-dependent
stimulation is inhibited by anti-TLR2 blocking antibodies (84).
From immunohistochemistry studies of biopsies from the nor-
mal ear canal and acquired cholesteatoma (an abnormal growth
of keratinized squamous epithelium), it appears that expression
of TLR2, TLR3 and TLR4 is detected and regulated as a function
of cholesteatoma (85). Studies on TLR expression and function in
animal models support expression of TLR2, TLR4, and TLR9 in
auditory cells (86).

OCULAR EPITHELIA
A larger number of studies exist regarding TLR expression in the
human eye (93) as compared to the ear (Table 1). Expression of
mRNA for TLR1, TLR2, TLR3, TLR4, TLR5, TLR6 and TLR9 has
been shown in human corneal epithelial cells (88), where extra-
cellular TLR3 and intracellular TLR2 and TLR4 expression can be
detected (6). TLR2 and TLR5 functionality in these cells has been
assessed by loss-of-activity using anti-TLR2 and -TLR5 antibodies.
It is not clear whether lack of TLR4 or MD-2 protein expression

is involved in un-responsiveness to TLR4 ligands (97). Corneal
epithelial cells respond to TLR stimulation mostly by secreting
defensins and by further regulating expression of TLR mRNA
(87, 92, 94, 95). In retinal epithelial cells, TLR2, TLR3, and TLR4
mRNA expression has been detected and is regulated by signaling
via TLR3, which induces high levels of TLR3 and TLR9 protein
expression (89, 100). Induction of interferons, IL-8 and MCP-
1 can be inhibited by anti-TLR3 antibodies, but stimulation via
TLR9 only induces IL-8 secretion. mRNA for TLR1, TLR6, TLR7
and TLR9 and TLR4 protein expression has also been detected in
section of whole human eyes and iris epithelial cells (98). Lastly,
TLR9 is expressed in conjunctival epithelial cells and its expres-
sion is regulated by nerve growth factors (99). In the human eye,
the major function of TLR-dependent signaling is induction of
anti-microbial substances. While hBD-1 to hBD-4 are expressed
constitutively, hBD-2 expression is increased by TLR2 and TLR5
stimulation for example, in a Pseudomonas aeruginosa infection
model of corneal epithelial cells (90, 95). In the ocular epithe-
lial tissue, expression of hBD-9 is also induced by TLR2, TLR3,
TLR4 and TLR5 signaling (150, 151). In immortalized human eye
tissue, mRNA expression and secreted IL-1β, IL-6, IL-8, MCP-
1 and sICAM-1, IL-32, IL-33 and TNF-α are induced by TLR2,
TLR3, TLR4 and TLR5 signaling in response to viral and bacterial
stimulation (91, 94, 96, 152).

AIRWAY EPITHELIUM
Crucial regulation of TLR expression is well-documented in the
airways (Table 1), where it critically influences airway defense
mechanisms and local immune responses. While expression of
TLR mRNAs is generally detected in respiratory tract epithelial
cells, protein expression often varies, depending on tissue site and
on host physiologic vs. disease condition (i.e., normal vs. inflam-
mation or allergy) (7, 104). The most relevant TLRs in the airways
epithelia are TLR2 and TLR4. Their expression is maintained at
low levels and preferentially on the basal cell layers. Following
infection by pathogens and in inflamed tissues, increased expres-
sion of TLR2 and TLR4 has been reported (101, 109, 110). TLR4
is often intracellular, initially located in the Golgi complex, but
is readily transferred to the cell surface for pathogen recognition
(112). TLR2 and TLR4 responses in the airway epithelium are also
influenced by the constitutively low or absent expression of MD-2
and CD36 (106, 153) and by negative TLR regulatory factors such
as IRAK-M and Tollip, which dampen cell activation in physiologic
conditions. Exposure to TLR4 ligands, such as killed H. influenzae
or its purified P6 outer membrane protein, to TNF-α and IFN-γ
can induce MD-2 expression and cell responsiveness. TLR3 and
TLR5 also play important roles in the human airway epithelia by
recognizing viral and bacterial ligands (107, 108).

Toll-like receptor-dependent activation of airway epithelial cells
can induce different responses, depending on the tissue location
along the respiratory tract. The upper respiratory epithelium,
which includes the nasal cavity, pharynx, and the larynx, is gener-
ally in contact with a high number of (mostly commensal) organ-
isms [up to 107organisms/nostril and up to 108 organisms in the
nasopharynx (154)]. The first and most common defense response
in these epithelia is production of mucus. Expression of mucins,
the major protein components of mucus, is induced directly, by
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TLR signaling and indirectly, by high levels of IL-8 and TNF-α
induced via TLRs (155). In turn, mucins can also further regulate
TLR signaling (156). In epithelial cells of the nasal mucosa, TLR
signaling induces production of anti-microbial substances includ-
ing hBD-1 to hBD-4, relevant for defense mechanism in both
disease conditions and allergy (103). In the lower respiratory tract,
which includes the trachea, primary bronchi, and the lungs, TLR-
dependent responses are also regulated through expression levels
and localization mechanisms. These epithelial tissues are relatively
sterile but can become exposed to microorganisms descending
from the upper respiratory tract. Studies of human lung epithe-
lial tissues have shown TLR4 expression and signaling in response
to bacterial LPS (112) and in disease conditions, such as chronic
obstructive pulmonary disorder (COPD), asthma and allergy (103,
111). In tracheal epithelial cells, TLR3 expression on the luminal
and basal side, and TLR2, TLR6 and TLR1 basolateral expression,
have been reported. Low levels of TLR2, TLR4, TLR5, TLR7, TLR9
and TLR10, and high levels of TLR6 are shown, and TLR3, TLR7,
and TLR9 are present in both intracellular compartments and on
the cell surface (7). Also in lower respiratory tract, TLR signaling
induces production of anti-microbial substances. HBD-1 is con-
stitutively expressed in these epithelia, hBD-5 and hBD-6 are not
expressed and increased expression of hBD-2 to hBD-4 is observed
in a TLR-dependent manner (105, 106, 157). Besides defensins,
other antibacterial molecules are induced by TLR signaling, such
as lysozyme, nitric oxide (NO), and LL-37 (158). TLR signaling
also leads to production of cytokines. Soluble inflammatory medi-
ators in the upper and lower respiratory epithelia are desirable for
promoting local recruitment of professional phagocytic cells that
participate in pathogen clearance. Accordingly, TLR-dependent
secretion of TNF-α, IL-8, MIP-1α, MIP-1β, RANTES, GRO-α, -β,
and -γ, IL-6, IL-5, and TGF-β promotes an influx of neutrophils,
eosinophils, monocytes, NK cells, macrophages and DCs at these
sites (102, 159). Secretion of type-I and type-III IFNs (including
IL-28 and IL-29) is also reported, predominantly via TLR3 signal-
ing (7, 160), suggesting an active protective process against viral
infections. Other TLR-dependent mediators of immune responses
that are induced in the airways include BAFF and APRIL, which
favor interaction of airway epithelial cells with B cells and DCs
(161).

GUT EPITHELIUM
The mucosal epithelial tissue of the digestive system, or gut, is
tightly connected to both the oral cavity and the respiratory tract.
This epithelium is also colonized by an enormous number of
commensal microorganisms (approximately 1013–1014) and occa-
sionally, a small number of pathogens from similar species to
those found in the oral and respiratory tracts. Differential TLR
expression and functions are observed in epithelial cells of these
tissues, depending on the specific location (i.e., the esophagus, the
stomach, the small intestine or the large intestine) (Table 1), and
depending on the local commensal flora in each of these tracts.
Generally, mRNA for TLR1 to TLR9 has been reported, but only
a low, constitutive expression of TLR2, TLR4 and TLR5 (and of
MD-2) is observed on the cell basolateral side (120).

Few studies have shown TLR expression in the esophagus.
TLR4 mRNA expression and functional activity in response to LPS

have been shown in biopsies of cancerous and normal esophageal
epithelial tissues in vitro and ex vivo (114). Esophageal epithe-
lial cells also express high levels of TLR2 and TLR3 mRNA and,
to a lower extent, TLR1 and TLR5 mRNA. Following stimulation
of TLR3 with Poly I:C, TLR2 mRNA expression is up-regulated,
although these cells are unresponsive to PG and Pam3CSK4.

In addition, cell incubation with flagellin also fails to induce
esophageal epithelial cell activation, suggesting that both TLR2
and TLR5 proteins may not be expressed. Secretion of high levels
of IL-8 via TLR3 activation is consistent with responses triggered
by infection with intracellular pathogens (113). Only a few studies
exist on stomach epithelial cells. In normal gastric epithelial cells,
constitutive and inducible expression of TLR2, TLR4 and TLR5
mRNA and protein has been shown in response to bacterial com-
ponents and whole organisms (115, 116). Inducible expression of
TLR4 and TLR2-dependent secretion of cytokines in vitro can be
inhibited by blocking anti-TLR2 antibodies (117).

The small and large intestine areas present the highest concen-
tration of commensal microorganisms as compared to all the other
mucosal epithelial sites. Here, TLR expression and control of sig-
naling pathways is extremely important. Intestinal epithelial cells
(IECs) may either lack expression of TLR4, MD-2 and CD14 or, if
expressed, TLR4 may be located in intracellular compartments
to avoid hyper-responsiveness to LPS from commensal organ-
isms (118, 121, 122). Up-regulation of MD-2 and TLR4 can be
induced by high local levels of IFN-γ or TNF-α, which is thought
to contribute to chronic colitis associated with Crohn’s disease
(120). TLR2 mRNA and low levels of TLR2 protein are expressed
in these cells at a sub-apical location and high levels of TLR5
are detected on the cell’s basolateral side, thus sensing flagellin
only when microorganisms cross the intestinal epithelial barrier
during active invasion (119). TLR9 activation at the apical or baso-
lateral side of IECs may induce secretion of different cytokines,
depending on whether NF-κB pathways are triggered (123). Polar
expression of TLRs is a mechanism common to the oral, airway and
gut epithelia for preventing unnecessary and potentially detrimen-
tal inflammatory response to commensal colonizers. Additional
control mechanisms for TLR-mediated intestinal cell activation
include negative regulation of TLR signaling via Tollip and the
single Ig IL-1 receptor-related molecule (SIGRR) (162).

Toll-like receptor-dependent production of α-defensins (hD-5
and hD-6), β-defensins (hBD-1, hBD-2, and hBD-3) and other
bactericidal substances has been shown in the gut (163). In
contrast to the predominant induction of TLR-dependent anti-
microbial products in the oral and airway epithelium, secretion
of inflammatory mediators is an important outcome in the gut
epithelium. Pro-inflammatory cytokines including IL-1β, IL-7,
IL-8, IL-15, and IL-18 drive local recruitment of PMNs and
other leukocytes (164, 165), and IL-18 secretion further ampli-
fies IL-2 and INF-γ production, influencing production of mucus
and its composition. However, considering that an overly robust
inflammatory response is detrimental to the host, gut epithelial
cells also produce IL-10 and TGF-β, which play a role in tissue
repair processes and re-establish the barrier function of the gut
epithelia (166).

The significance of TLR-dependent cytokine production by
IECs is also related to the presence of M cells, Paneth cells,
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and mucus-producing goblet cells within the epithelial tissue. M
cells, or membranous epithelial cells, are located above Peyer’s
patches and other lymphoid areas and provide an important bridge
between epithelial cells and professional immune cells. These cells
facilitate antigen sampling and transport through the epithelial
layer into lymphoid areas and accelerate both innate and adaptive
immune responses (167). M cells express higher levels of TLR4 on
the apical surface, in contrast to enterocytes, and provide signals
for further activation of immune cells to produce secretory IgA
for control of both pathogens and commensals and other medi-
ators of immunity such as BAFF and APRIL (168). Paneth cells,
epithelial cells of the small intestine, express TLRs for recognition
of pathogens and produce anti-microbial substances (124).

GENITO-URINARY TRACT EPITHELIUM
Toll-like receptor expression by epithelial cells of the genito-
urinary tract is also fine-tuned to specifically respond only to
pathogens, because of the potential large number of commen-
sal organisms in the different compartments of this mucosal site
(Table 1). In this epithelium, additional variables need considera-
tion, such as the diversity of cell composition of the reproductive
tract epithelium in females vs. males, the nature of the commensal
flora and the likelihood of exposure to pathogens for each anatom-
ical section, thus suggesting a tissue-specific immune surveillance.
Few studies have been carried out on the human male genital tract
(MGT), while more abundant data exist on mouse and rat mod-
els (169). TLR expression in the human MGT is generally low. In
different sections of the MGT, for example in the epididymis, vas
deferens, seminal vesicles and testes, epithelial cells do not appear
to express TLR mRNA. In the prostate, intracellular expression of
TLR3 and TLR8 is detected and that of TLR9 in the penile ure-
thra, although it is not widespread to all individual cells. In vitro
studies of primary urethral and prostate cells, epididymal-vas def-
erens have indicated a potential cell susceptibility to activation by
TLR2 ligands. Similar observations have been made in seminal
vesicles (although overall TLR expression is not well-studied in
these cells) (81, 125–127). One of the reasons for such low TLR-
dependent signaling in the MGT also correlates with protection of
sperm cells development, which would not benefit from occurring
in a pro-inflammatory environment where cells are highly respon-
sive to stimulation via TLRs (despite protective functions against
infections) (170). In addition, the commensal microflora burden
of the MGT is rather low.

Toll-like receptor expression is better described in epithelial
cells of the female genital tract (FGT). In vaginal epithelial cells,
TLR1 to TLR6 and TLR9 are expressed, with high levels of TLR2
and TLR4 proteins (129, 130). In epithelial cells of upper FGT
regions, TLR4 expression is not fully ascertained (133). It is likely
low in the endocervical and ectocervical epithelial tissues (171)
but these cells express TLR1, TLR2, and TLR6 and are responsive
to TLR2 and TLR5 activation. Other reports indicate expression
of mRNA for TLR7, TLR8 (weak), TLR9 and detectable protein
levels of TLR3 (extracellular) and TLR9 in these cells (130, 132).
In the sterile regions of the FGT, the fallopian tubes and uterus,
TLR1, TLR7, TLR8 and TLR9 mRNA is detected, likely due to the
sensitivity of these sites to viral infections (130). Uterine epithelial
cells express TLR1 to TLR9 but are only susceptible to activation

by TLR2, TLR3, TLR5, and to some extent, TLR4 agonists (134).
Endometrial epithelial cells express TLR1 to TLR6 and TLR9, but
low TLR5 and TLR6 levels are observed in isolated endometrial
epithelial cells as compared to the whole tissue (130). In most of the
FGT epithelia, TLR10 mRNA is also detected. Clearly, such vari-
able expression of TLRs throughout the FGT supports different
responses to potential pathogens and controls local homeostasis
in the absence of infection.

Although in part physically distinct from the genital tract
epithelium, cells of the urinary tract epithelia (comprising the ure-
thra, bladder, ureters, and the kidneys) have also been shown to
express TLRs. TLR2, TLR3, TLR4, TLR5, and TLR9 are expressed
in various sites of the urinary tract epithelium (137), but renal
epithelial cell lines and primary human proximal tubule cells
do not express TLR4 and are unresponsive to LPS (138, 139).
Expression of soluble MD-2 and CD14 also correlates with respon-
siveness of these cells to LPS. In the bladder and in the kidney
epithelia, expression of TLR4 is an important surveillance strategy
against Gram negative bacteria infections, particularly uropatho-
genic E. coli, controlling inflammatory responses to such infections
(140). Heightened susceptibility to urinary tract infections (UTIs),
asymptomatic and persistent bacteriuria have been associated to
low levels of TLR4 expression and TLR4 polymorphisms in human
being (135).

Although there are tissue-specific differences in TLR expres-
sion in the MGT and the FGT, production of anti-microbial
substances is observed in both tissues. TLR-dependent secretion
of hBD-1, DEFB118, DEFB126, and SPAG11 (172) is elicited in
the epididymis, testis, and prostate (173) and that of hD-5 and
hBD-1 in the vagina, the ectocervix and at high levels particu-
larly in the endocervix, uterus and fallopian tubes. By contrast,
different patterns of cytokine and chemokine secretion char-
acterize TLR-dependent responses in the MGT and the FGT,
where the delicate balance between homeostasis and inflamma-
tion can influence fertility and reproduction processes. In the
FGT, mild inflammatory responses are observed, possibly due
to an intrinsic bias of this tissue to exposure to large numbers
of commensals. TLR-dependent stimulation of FGT epithelial
cells in vitro induces secretion of IL-1α, IL-1β, IL-6, IL-8 and
TNF-α (64, 174), and cyclooxygenase 2 (COX-2), an inducible
enzyme associated with mucosal inflammation (131), but few
studies exist to support these findings in vivo. During infection
by sexually transmitted pathogens, such as Chlamydia or Neisse-
ria gonorrhoeae, secretion of IFN-γ, IL-10, IL-12, IL-1β, IL-6, and
IL-8 has been reported in the cervix, fallopian tubes, and cervi-
cal secretions (174, 175). In the fallopian tubes and the uterus,
the presence of endometrial epithelial cells, with similar func-
tions than the intestinal M cells, favors secretion of inflammatory
cytokines that can influence local immune responses (176). In
epithelial cells of the MGT, data gathered mostly from in vitro
studies have identified secretion of IL-6, IL-8, TNF-α, and IL-
1β following TLR stimulation (64, 128, 177). A consequence of
genito-urinary tract epithelia inflammation, recruitment of pro-
fessional APCs and PMNs to the site of infection leads to symp-
toms such as purulent discharge and local tissue inflammation.
These symptoms are observed at varying extent in both the MGT
and FGT.
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CONCLUSION
It is well established that cell activation and signaling via TLRs
is crucial for induction of host immune and defense responses
against microorganisms. During the course of life, human beings
encounter a large number of commensal bacteria. The major-
ity of commensals do not alter local homeostasis and integrity
of the tissues that they colonize, and some have even beneficial
affects at mucosal sites, for example the gut or the reproduc-
tive tract. Naturally, host mucosal epithelia are also exposed to
potential pathogens. In many cases, these microorganisms only
cause disease when they succeed in colonizing the appropriate
infection site(s) or in crossing the mucosal epithelial barriers that
separate the host from the environment. Potential pathogenicity
and diseases may also arise in the event of cross-colonization of
mucosal epithelial tissues by commensal organisms that are not
specific for that given body site. Thus, epithelial cells of mucosal
sites have evolved to implement specific control mechanisms for
bacterial recognition and for initiating or suppressing local tissue-
specific immune responses against disease-causing organisms or
commensals, respectively. Regulation of TLR expression, cellular
localization, and functions in mucosal epithelial cells provides one
of the mechanisms by which bacteria/host cell interactions are
directed to avoid onset of persistent local inflammation. For exam-
ple, in mucosal epithelia, expression of TLRs on the cell surface
is strongly regulated between the apical and basolateral sides of
cells, ensuring that immune response only takes place if pathogens
cross these tissues and preventing tissue damage in the absence of
benefits for the host. Similarly, expression of endosomal TLRs and
other cytosolic PRRs including NLRs (165) and RIG-like receptors
(RLRs) (178) ensures recognition of intracellular pathogens. Thus,
induction of specific responses is targeted to pathogen organisms’
clearance and resolution of infection. The importance of TLR
regulation is also apparent in the control of host diseases and
conditions that can result from abnormal TLR expression and tlr
gene polymorphisms. For example,Lupus and other auto-immune
conditions have been suggested to be caused, in part, by dysregula-
tion of TLR expression (179). Host susceptibility to infections can
also be linked to some TLR polymorphysms, as shown for malaria,
uropathogenic E. coli, and a number of other bacterial infections
(135, 136).

Toll-like receptor expression also can influence specific micro-
bial communities present at mucosal epithelial sites, as shown for
the gut or the genito-urinary tract. Although a number of fac-
tors likely influence the intimate relationship between host and
microbes, TLRs may play a role in determining specific coloniza-
tion sites for commensal bacterial. The expression and regulation
of TLRs in epithelial cells is thus of critical importance for microor-
ganisms sampling and act to direct downstream host responses
and, ultimately, disease outcomes.
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