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Eosinophils are tissue-dwelling leukocytes, present in the thymus, and gastrointestinal and
genitourinary tracts of healthy individuals at baseline, and recruited, often in large numbers,
to allergic inflammatory foci and sites of active tissue repair. The biological significance of
eosinophils is vast and varied. In health, eosinophils support uterine and mammary gland
development, and maintain bone marrow plasma cells and adipose tissue alternatively acti-
vated macrophages, while in response to tissue insult eosinophils function as inflammatory
effector cells, and, in the wake of an inflammatory response, promote tissue regenera-
tion, and wound healing. One common mechanism driving many of the diverse eosinophil
functions is the regulated and differential secretion of a vast array of eosinophil-derived
cytokines. Eosinophils are distinguished from most other leukocytes in that many, if not
all, of the over three dozen eosinophil-derived cytokines are pre-synthesized and stored
within intracellular granules, poised for very rapid, stimulus-induced secretion. Eosinophils
engaged in cytokine secretion in situ utilize distinct pathways of cytokine release that
include classical exocytosis, whereby granules themselves fuse with the plasma mem-
brane and release their entire contents extracellularly; piecemeal degranulation, whereby
granule-derived cytokines are selectively mobilized into vesicles that emerge from gran-
ules, traverse the cytoplasm and fuse with the plasma membrane to release discrete
packets of cytokines; and eosinophil cytolysis, whereby intact granules are extruded from
eosinophils, and deposited within tissues. In this latter scenario, extracellular granules can
themselves function as stimulus-responsive secretory-competent organelles within the
tissue. Here, we review the distinctive processes of differential secretion of eosinophil
granule-derived cytokines.

Keywords: secretion, eosinophil, granule, degranulation, piecemeal degranulation, cytolysis, cytokine

INTRODUCTION
EOSINOPHILS ARE DISTINGUISHED BY THEIR EOSIN-LOVING SPECIFIC
GRANULES
Paul Ehrlich’s discovery of eosinophils in 1879 was based on
the distinctive “eosin-loving” property of eosinophil intracellu-
lar granules. The characteristic dark pink punctate staining seen
in standard hematoxylin and eosin (H&E) preparations is due to
the high cationic protein content of eosinophil granules react-
ing with the acid dye eosin (1). The most abundant (and most
cationic) of the eosinophil granule-derived proteins is major basic
protein (MBP), and it is MBP that forms the crystalline lattice
structure of the eosinophil granule core, an identifying ultrastruc-
tural feature of eosinophils (Figure 1). Eosinophils store their
hydrolytic enzymes and cationic granule proteins, including MBP,
eosinophil cationic protein (ECP), eosinophil peroxidase (EPO),
and eosinophil-derived neurotoxin (EDN), within the core and
surrounding matrix of eosinophil specific granules (Figure 1),
and it has been long appreciated that secretion of these granule-
derived proteins can exert toxic effects on parasites, microbes, and
host tissue cells [reviewed in Ref. (2)].

More recently appreciated is that in addition to cationic pro-
teins and hydrolytic enzymes, eosinophils are sources of numerous
(over three dozen identified to date) cytokines and chemokines,

with a range of biological functions (3, 4). It is now recognized that
along with the cationic proteins, many, if not all, of these cytokines
are stored within eosinophil specific granules, available for very
rapid secretion without the need for de novo synthesis (5). A recent
study demonstrated co-expression of at least seven immunomod-
ulatory cytokines preformed within specific granules of human
blood eosinophils (6), and a number of physiological stimuli have
been identified that elicit differential secretion of granule-stored
cytokines from eosinophils (7–10). Therefore, it is fitting that the
distinguishing morphological feature of eosinophils (i.e., their spe-
cific granules) should also represent a functional distinction for
these cells.

VAST ARRAY AND BIOLOGICAL RELEVANCE OF EOSINOPHIL
GRANULE-DERIVED MEDIATORS AND MECHANISMS OF SECRETION
With the growing awareness of the diverse repertoire of eosinophil
granule-derived cytokines has come an evolution in understanding
the varied roles eosinophils play in biology. Previously consid-
ered strictly end-stage effector cells in parasitic helminth infec-
tions and allergic diseases such as asthma, eosinophils, and their
secreted products are now regarded as participants in organ devel-
opment (11, 12), metabolism (13), maintaining (14–16) and/or
recruiting (17) lymphocyte populations, anti-microbial (18–22)
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Spencer et al. Eosinophil secretion of granule-derived cytokines

FIGURE 1 |Transmission electron microscopy of a human
eosinophil. This cell is characterized by a major population of specific
granules (Gr) with a unique morphology – an internal often
electron-dense crystalline core and an outer electron-lucent matrix

surrounded by a delimiting trilaminar membrane. Note the typical
bilobed nucleus (Nu) and large tubular carriers (arrowheads). The inset
shows secretory granules and a tubular vesicle at higher magnification.
Bars: 500 nm; 300 nm (inset).

and fungal (23–25) immunity, tissue repair and regeneration (26–
31), immunomodulation (32–37), and tumor immunity (38), and
reviewed in Ref. (39).

How does the eosinophil accomplish the highly selective process
of secretion of its granule-derived proteins? Basic Immunology
textbooks often define degranulation from granulocytes such as
eosinophils to occur by a process of classical exocytosis, whereby
intracellular granules fuse with the plasma membrane and engage
in a wholesale release of granule contents, or in more extreme
instances compound exocytosis, whereby intracellular granules
fuse together prior to fusion with the plasma membrane and
release of their combined contents (Figure 2). Although degran-
ulation via classic and compound exocytosis is observed upon
interaction with very large metazoan parasites, in most other
physiologically relevant scenarios eosinophils either (1) differ-
entially and progressively secrete their granule-stored contents
through a vesicle-dependent process termed piecemeal degran-
ulation (PMD) or (2) deposit intact granules directly into the
tissue through a distinctive mode of cell death, termed eosinophil
cytolysis (Figure 2). To appreciate the extensiveness of PMD and
cytolysis in tissue eosinophils in situ, we would refer the reader
to Erjefalt et al. (40), and Saffari et al. (41), wherein using mor-
phological criteria the authors quantify the number of tissue
eosinophils undergoing PMD and/or cytolysis in association with
allergic diseases (i.e., allergic rhinitis and asthma), eosinophilic

esophagitis (EoE), or inflammatory bowel diseases (IBDs). In the
former study, nearly all eosinophils from tissue sections of aller-
gic disease patients exhibited evidence of PMD, and 27% of the
eosinophils showed signs of cytolysis. In IBD samples, greater
than 50% of the tissue eosinophils exhibited signs of PMD, while
14% were cytolytic (40). In the latter study, approximately 93% of
esophageal eosinophils in EoE exhibited two or more features of
degranulation, including loss of cell membrane integrity (marker
of cytolysis), cytoplasmic vesiculation (PMD), or reversal of gran-
ule core staining (PMD). A total of 70% of esophageal eosinophils
exhibited all three features (41). In the remainder of this man-
uscript, we will explore these two distinct modes of eosinophil
secretion of granule-derived proteins.

PIECEMEAL DEGRANULATION
The process of PMD was first identified ultrastructurally
through electron microscopy studies of mast cells, basophils, and
eosinophils in the mid 1970s (42). PMD is characterized by a pro-
gressive emptying of granule contents without granule to plasma
membrane fusions, rather PMD is accomplished by numerous
spherical and tubular secretory vesicles that shuttle granule-
derived proteins from the granule to the plasma membrane for
secretion. Within the past decade, biochemical and advanced
microscopic techniques have enabled an unprecedented look into
the process of PMD, and are revealing eosinophil intracellular
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Spencer et al. Eosinophil secretion of granule-derived cytokines

FIGURE 2 | Processes of eosinophil secretion. Eosinophils may secrete
their granule proteins by classic exocytosis (individual granule fusion with
the plasma membrane and release of the total granule content); compound
exocytosis (intracellular granule–granule fusion before extracellular release);
piecemeal degranulation (vesicular transport of small packets of materials
from the secretory granules to the cell surface); and/or cytolysis
(extracellular deposition of intact granules upon cell lysis). More than one
process can be involved in inflammatory responses.

granules to be dynamic organelles, which undergo protein sorting
and vesicle formation.

EOSINOPHIL GRANULES ARE DYNAMIC INTRACELLULAR ORGANELLES
Among the earliest ultrastructural indications of PMD are alter-
ations within granules; the crystalline core may become less
sharply defined, and variations in the electron density of the
core and surrounding matrix occur, representative of disassem-
bled matrices and cores and a reorganization of granule contents
(Figure 3). Small spherical vesicles and elongated tubule carri-
ers [eosinophil sombrero vesicles (EoSVs), discussed in the next
section] are seen budding from emptying granules, and num-
bers of spherical vesicles and tubular carriers increase within
the cell cytoplasm [(43) and Figures 4A–C]. Immuno-electron
microscopy using antibody Fab fragments conjugated to very small
nano-gold particles confirm budding vesicles contain granule-
derived cytokines and cationic proteins [(43–45) and Figures 4D–
F]. Vesicles fuse with the plasma membrane and secrete cytokines
extracellularly in discreet packets (Figures 4G,H).

Several lines of evidence support the conclusion that these
vesicles are actually generated by and emerge from the granules
themselves. Vesicular structures are apparent within emptying
granules in the early stages of PMD, and treatment with the vesic-
ular transport inhibitor brefeldin-A (BFA) inhibits the number of
cytoplasmic vesicles (Figure 4B) and cytokine secretion by PMD,
and causes depositions of membrano-lipid deposits within gran-
ules (43). Eosinophils undergoing PMD were further studied by
dual-axis automated electron tomography, allowing for tracking of
granule structures and content in three dimensions. Tomographic

reconstructions demonstrate that granule contents within emp-
tying granules are rearranged into intragranular vesiculotubular
compartments and mobilized to the granule membrane. More-
over, both elongated tubular and small spherical vesicles contain-
ing granule contents were observed emerging directly from the
eosinophil granules in tomographic reconstructions (43, 44, 46).

TUBULAR CARRIERS AND RECEPTOR-MEDIATED TRAFFICKING OF
GRANULE-DERIVED CYTOKINES
As noted above, eosinophils contain over three dozen preformed
cytokines; most, if not all, of these cytokines are stored within
intracellular granules. Eosinophil granule-derived cytokines are
differentially secreted in response to exogenous stimulation,
indicating that mechanisms must exist to sort granule-stored
cytokines into granule-derived secretory vesicles. One mecha-
nism has been described for the specific mobilization of IL-
4. Analysis of eosinophil lysates after subcellular fractionation
revealed IL-4 receptor alpha chains (IL-4Rα) are enriched within
granule- and vesicle-containing fractions. Upon stimulation of
eosinophils with eotaxin-1, a chemokine known to elicit PMD of
eosinophil granule-stored IL-4, complementary approaches based
in immuno-electron microscopy and flow cytometry demon-
strated granule-expressed IL-4Rα is mobilized into secretory vesi-
cles in parallel with IL-4 (47). Importantly, antibodies that com-
pete with IL-4 for binding to IL-4Rα failed to detect vesicle-
mobilized IL-4Rα, suggesting that the receptor engages IL-4 during
loading into secretory vesicles, and remains engaged while travers-
ing the cytoplasm. This conclusion is supported by immuno-EM
studies wherein IL-4 detected within secretory vesicles appears
to be membrane-bound (47), in contrast to the free lumi-
nal expression pattern exhibited by vesicle-contained MBP (48)
(Figures 4D–F). Vesicle-carried TGF-α also exhibits a membrane-
associated expression pattern (49), and eosinophils express recep-
tors for most (if not all) of the cytokines that they also store, sug-
gesting that receptor-mediated chaperoning of cognate cytokines
might be a universal method of regulating eosinophil-derived
cytokine secretion.

This observation of receptor-mediated transport of granule-
derived cytokines also provides a function for the large tubular
carriers (EoSVs) characteristic of eosinophils undergoing PMD.
EoSVs represent a distinct vesicle population, distinguishable from
smaller spherical vesicles by morphology and subcellular density.
EoSVs observed within the cytoplasm by electron microscopy are
viewed as elongated tubes, or when curled, may appear to take on
the shape of a “c” or a donut ring (Figures 4A,C). A key aspect
of EoSV morphology is the large surface area:volume ratio, a
conformation that is optimal for a receptor-mediated transport
mechanism (44).

Although the number of cytoplasmic vesicles increases in
eosinophils undergoing PMD, spherical vesicles and EoSVs are also
observed in non-stimulated eosinophils (see Figure 1). For exam-
ple, a substantial pool of MBP-loaded vesicles can be observed
in intimate association with secretory granules in unstimulated
eosinophils (48). It is unclear whether cargo-laden cytoplasmic
vesicles are vestiges of a previous round of PMD, and/or whether
eosinophils might utilize secretory vesicles as another, rapidly
mobilizable, depot for intracellular cytokine storage. Of note, this
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Spencer et al. Eosinophil secretion of granule-derived cytokines

FIGURE 3 | Ultrastructure of an eotaxin-activated human
eosinophil showing piecemeal degranulation (PMD). (A) After
stimulation, specific granules (Gr) exhibit different degrees of emptying
of their contents and morphological diversity indicative of PMD, such
as (B) lucent areas in their cores, (C) enlargement and reduced

electron density, and (D) residual cores. Eosinophils were isolated by
negative selection from healthy donors, stimulated with eotaxin-1 for
1 h, immediately fixed and prepared for transmission electron
microscopy as before (43). Nu, nucleus; LB, lipid body. Scale bar:
500 nm (A); 170 nm (B–D).

issue might be relevant to eosinophil postmortem function as well,
as we will later see that EoSVs are released along with cell-free
granules from cytolytic eosinophils (see Cytolysis below).

INTRACRINE REGULATION OF EOSINOPHIL PMD
Despite large strides in delineating dynamic intragranule vesic-
ulation and receptor-mediated cytokine sorting, how exogenous
signals are transmitted to and decoded by intracellular granules
remain unclear. Exposure of eosinophils to a number of physiolog-
ical stimuli, such as chemotactic lipids and chemokines, cytokines
(e.g., IL-3, IL-5, and GM-CSF), and complement components can
result in their priming, effectively lowering the signaling threshold

for inducing subsequent stimulus-induced cytokine secretion.
Intracellular mechanisms that drive eosinophil priming upstream
of enhanced secretion are not fully understood. However, inside-
out signaling that upregulates the expression, affinity, and/or
valency of eosinophil-expressed integrins (e.g., αMβ2) appears to
play a significant role [reviewed in Ref. (50)] and may be mediated
through a pathway involving PKCβII-dependent phosphorylation
of the actin bundling protein l-plastin (51).

In addition to a role for priming in eosinophil secretion,
data suggest the existence of intracrine mediators that act on
intracellular receptors, possibly expressed on granules. For exam-
ple, eotaxin-1-induced secretion of IL-4 is dependent upon an
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FIGURE 4 | Vesicular trafficking of granule-derived products from
human eosinophils. (A) Eosinophil sombrero vesicles – EoSVs –
[highlighted in pink in (Ai)] are observed in the cytoplasm surrounding an
emptying, enlarged secretory granule (Gr). An intact granule (Gr) with typical
morphology is also observed. (B) Quantification of EoSV numbers revealed
significant formation of these vesicles and association with granules
undergoing release of their products, after eotaxin-1 (EOT) stimulation (45).
Brefeldin-A (BFA) pretreatment suppressed all EoSV numbers dramatically
(P < 0.05). NS, not stimulated. (C) Three-dimensional (3D) models obtained
from electron tomographic analyses show EoSVs as curved tubular and

open structures surrounding a cytoplasmic center. (D–F) As demonstrated
by immunonanogold electron microscopy, major basic protein (MBP) (D,E) is
transported within the EoSVs lumen, while IL-4 mobilization is associated
with vesicle membrane (F). In (G,H), human blood eosinophils suspended in
an anti-IL-4 capture antibody-containing agarose matrix were stimulated with
eotaxin-1. 3D reconstructed images demonstrate released and captured IL-4
as focal fluorescent green spots at the outer surface of the cell membrane
(stained in red). (B,F–H) were reprinted from Ref. (45) and (C–E) from Ref.
(46) with permission. Scale bar: 250 nm (A); 150 nm (C–F); 4 µm (G);
6 µm (H).

intracrine pathway involving the lipid mediator leukotriene C4

(LTC4). Eotaxin-1 stimulation of eosinophils elicits the genera-
tion of LTC4 from intracellular lipid bodies; this LTC4, acting via
an intracellular receptor, is necessary for subsequent IL-4 release

(52, 53). Eosinophil intracellular granules express leukotriene
receptors on their outer granule membranes (54). Further studies
are necessary to determine the specific intracellular target(s) of the
LB-generated LTC4.
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In addition to the intracrine signaling mediators, cytoskeletal
elements, GTPases, and membrane-associated proteins further co-
ordinate granule and vesicle trafficking, and membrane fusions in
PMD. For example, specific SNARE proteins [Soluble NSF Attach-
ment Protein (SNAP) receptors] expressed by granule, vesicle, and
plasma membranes within eosinophils co-ordinate membrane
tethering, docking, and fusions [reviewed in Ref. (55)]. SNARE-
mediated membrane interactions are discussed in more detail in
another article within this thematic issue.

CYTOLYSIS
Intriguingly, secretion of eosinophil granule-derived mediators
does not necessarily cease upon cell death. The realization that
eosinophils can undergo a distinct mode of cell death that results
in the expulsion of intact intracellular granules has been a long
time in coming. Structures resembling eosinophil cell-free gran-
ules appeared in drawings and stainings of asthmatic sputum
as early as the 19th century, and in the early 20th century, free
eosinophil granules were observed within pulmonary tissues from
fatal asthma, a portion of which were attributed to eosinophil
death [reviewed in Ref. (56)]. Importantly, in the late 1990s,
Persson et al. helped to validate these earlier descriptions by
demonstrating the existence of eosinophil cell-free granules in
guinea pig trachea after provocation (i.e., epithelial shedding),
using a methodology that could not be discounted on the basis
of mechanical artifact, that of performing deep tissue staining of
whole mounts (57). However, it is only within the last decade that
cytolysis has been more widely appreciated as a physiologically
significant mode of eosinophil activity, defined ultrastructurally,
and evaluated within the context of specific diseases.

EOSINOPHIL CYTOLYTIC CELL DEATH DEPOSITS GRANULES, BOTH FREE
AND ASSOCIATED WITH NUCLEAR DNA NETS, INTO SURROUNDING
TISSUE
In addition to eosinophils exhibiting morphological evidence of
PMD, micrographs of diseased tissues reveal eosinophils undergo-
ing a cytolytic process of cell death morphologically distinct from
both apoptosis and necrosis (58, 59). In contrast to the chromatin
condensation and fragmentation of apoptotic nuclei, cytolytic
eosinophils are characterized by dissolution of the nuclear mem-
brane and DNA de-condensing into the surrounding cytoplasm
(Figure 5). Membrane blebbing characteristic of necrotic cells
also does not occur, rather cytolytic eosinophils are typified by
a loss of membrane integrity, and release of intracellular contents,
including eosinophil specific granules, into the surrounding tissue.
Of note, EoSVs are also expelled from cytolytic eosinophils and
deposited within the tissue alongside cell-free granules [Figure 5
and (41)]. Tissue-deposited, eosinophil cell-free granules are
observed both within the spatial limits of the original cell and
also scattered, independently or in clusters, outside of the confines
of the originating cell.

The morphological sequelae associated with eosinophil cytol-
ysis are elicited in vitro by a number of stimuli, including expo-
sure to a Ca2+ ionophore, immobilized IgG or IgA, PMA, and
GM-CSF or IL-5 in combination with PAF (58, 60, 61). Closer
examination of eosinophil death induced by cross-linking Siglec
8 (62) or exposure to Staphylococcus aureus supernatant (63)

might implicate these as eosinophil cytolytic stimuli as well (64).
By analyzing eosinophils undergoing cytolytic cell death in vitro
induced by the calcium ionophore A23187, Ueki et al. recently
reported a sequence of events that included, chronologically (1)
alterations in nuclear shape and density, (2) expulsion of single
or small clusters of granules from the cell, (3) decondensation of
nuclear contents into the cytoplasm, and (4) loss of membrane
integrity, accompanied by the release of single granules or granule
clusters (58).

Ueki et al. also demonstrated that under these conditions,
eosinophil cytolysis was accompanied by extrusions of nuclear
DNA nets. Cell-free granules liberated from cytolytic eosinophils
were observed both incorporated into the DNA net-like lat-
tices, and also standing alone as DNA-free granule clusters (58).
One might speculate that this so-called “DNA trap cell death”
serves a protective function by bringing the anti-microbial power
of eosinophil granule-derived proteins into close proximity to
pathogens immobilized by a DNA trap. Of note, eosinophil
cytolytic DNA trap cell death is reminiscent of the anti-microbial
DNA traps described by Yousefi et al. (22) and Morshed et al. (65),
wherein mitochondrial DNA is catapulted from live eosinophils
along with granule-derived proteins (i.e., ECP and MBP), form-
ing extracellular nets with demonstrated microbicidal functions.
However, two important distinctions exist between the DNA nets
elicited through eosinophil cytolytic death and the DNA traps
described by Yousefi and Morshed. First, in contrast to eosinophil
cytolysis-generated nets, the DNA traps described by Yousefi and
Morshed emerge from eosinophils that remain viable. Second, the
origin of the catapulted DNA in the latter case is mitochondrial,
while cytolytic eosinophils extrude DNA nets of nuclear origin.
Stimuli causing the expulsion of mitochondrial DNA traps from
viable eosinophils include brief stimulation of IL-5-, or IFN-γ-
primed eosinophils with LPS, C5a, or eotaxin (22), or stimulation
of non-primed eosinophils with TSLP (65). It has yet to be seen
how, if at all, the processes of DNA net extrusion from cytolytic
eosinophils and the expulsion of mitochondrial DNA nets from
viable eosinophils might relate to one another.

SOME EOSINOPHIL GRANULES EXTRUDED FROM CYTOLYTIC
EOSINOPHILS REMAIN SECRETORY-COMPETENT ORGANELLES
One might predict that the consequence of extracellular gran-
ule release through eosinophil cytolysis, whether in association
with or distinct from DNA nets, would be the continued capac-
ity of eosinophils to deliver their granule contents postmortem.
Micrographs of diseased tissues reveal eosinophil extracellular
granules exhibiting varying degrees of dissolution of their delimit-
ing membranes (56), suggesting some fraction of cell-free granules
with compromised granule membrane integrity might “leak” their
protein content within tissues. However, very recent studies now
indicate that a portion of extracellularly deposited granules retain
the integrity of an intact granule membrane (58). Moreover, extra-
cellularly deposited granules express chemokine, cytokine, and
lipid receptors on their outer membrane, such that the ligand
binding domains are outwardly oriented and thereby available
to interact with exogenous stimuli within the tissue [reviewed in
Ref. (66)]. Neves et al. demonstrated outwardly oriented granule-
expressed receptors to be functional; in response to exogenous
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FIGURE 5 | Ultrastructure of a tissue human eosinophil undergoing
cytolysis. Note the disintegrating nucleus (Nu) and extracellular free
secretory granules (Gr) in the surrounding tissue. (Ai, Aii) are boxed areas
of (A) seen at higher magnification. Note the presence of free, intact

eosinophil sombrero vesicles (EoSVs – highlighted in pink) in the tissue,
after cell lysis. Tissue eosinophils were present in a biopsy performed on a
patient with inflammatory bowel disease. Scale bar: 800 nm (A); 300 nm
(Ai, Aii).

eotaxin-1, IFN-γ, or leukotrienes, eosinophil cell-free granules
exhibited kinase phosphorylation suggestive of activation of sig-
nal transduction pathways within the granule, and differentially
released cationic proteins and cytokines in a stimulus dose- and
kinase-dependent manner (54, 67). The implication of these find-
ings is that cell-free granules liberated from cytolytic eosinophils
function as stimulus-dependent, secretory-competent organelles
within tissues.

CONCLUDING REMARKS AND FUTURE DIRECTIONS
Biological functions of eosinophil-derived cytokines are a bur-
geoning field. Earlier views of eosinophils as strictly end-stage
effectors in parasitic diseases are now being expanded to encom-
pass a new understanding of eosinophils as multifunctional leuko-
cytes participating in developmental, metabolic, and immune cell
functions. Keeping pace with newly appreciated eosinophil func-
tions in heath and disease is a growing understanding of the
dynamic complexities involved in the stimulus-dependent, differ-
ential liberation of cytokines from eosinophil intracellular gran-
ules, both through the vesicular transport-based process of PMD
in viable eosinophils, and postmortem through tissue-deposited
eosinophil cell-free granules and EoSVs elicited from cytolytic
eosinophils. These cutting edge mechanistic insights will be crit-
ical to the next generation of therapeutic approaches in targeting
eosinophil-associated diseases, where one must now consider the

manner by which eosinophils die when devising anti-eosinophil
strategies, and must measure contributions of tissue-deposited
eosinophil cell-free organelles when evaluating cytokine-mediated
functions of eosinophils in situ in disease.
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