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Interferons (IFNs) are key players in the antiviral response. IFN sensing by the cell activates
transcription of IFN-stimulated genes (ISGs) able to induce an antiviral state by affecting
viral replication and release. IFN also induces the expression of ISGs that function as neg-
ative regulators to limit the strength and duration of IFN response. The ISGs identified so
far belong to coding genes. However, only a small proportion of the transcriptome cor-
responds to coding transcripts and it has been estimated that there could be as many
coding as long non-coding RNAs (lncRNAs). To address whether IFN can also regulate the
expression of lncRNAs, we analyzed the transcriptome of HuH7 cells treated or not with
IFNα2 by expression arrays. Analysis of the arrays showed increased levels of several well-
characterized coding genes that respond to IFN both at early or late times. Furthermore,
we identified several IFN-stimulated or -downregulated lncRNAs (ISRs and IDRs). Further
validation showed that ISR2, 8, and 12 expression mimics that of their neighboring genes
GBP1, IRF1, and IL6, respectively, all related to the IFN response.These genes are induced
in response to different doses of IFNα2 in different cell lines at early (ISR2 or 8) or later
(ISR12) time points. IFNβ also induced the expression of these lncRNAs. ISR2 and 8 were
also induced by an influenza virus unable to block the IFN response but not by other wild-
type lytic viruses tested. Surprisingly, both ISR2 and 8 were significantly upregulated in
cultured cells and livers from patients infected with HCV. Increased levels of ISR2 were also
detected in patients chronically infected with HIV. This is relevant as genome-wide guilt-
by-association studies predict that ISR2, 8, and 12 may function in viral processes, in the
IFN pathway and the antiviral response. Therefore, we propose that these lncRNAs could
be induced by IFN to function as positive or negative regulators of the antiviral response.

Keywords: IFN, lncRNAs, HCV, HIV, viral infection, IRF1, GBP1

INTRODUCTION
Transcriptome analysis by tiling arrays and RNA sequencing has
led to the conclusion that while 70–90% of the genome is tran-
scribed, only 2% is dedicated to the transcription of protein-
coding sequences (1, 2). Among the non-coding transcriptome,
there is a group of poorly studied transcripts longer than 200 nt
and with low coding potential that have been collectively called
long non-coding RNAs (lncRNAs) (1, 3). It has been estimated
that there could be as many lncRNA genes as coding genes, but the
number of lncRNAs is still growing and some authors consider
that it could increase to up to ~200000 (4, 5). Therefore, there is
a great need to identify novel lncRNAs and to understand their
function and regulation.

Long non-coding RNAs genes are very similar to coding genes
at the chromatin, DNA, and RNA level (6). Compared to mRNAs,
most lncRNAs are more cell-type specific, less expressed, and
less conserved at the nucleotide sequence level (7). Many lncR-
NAs have been shown to be functional. Some lncRNAs function
to regulate the expression of neighboring or antisense genes by

transcriptional interference, by recruitment of chromatin modi-
fiers and remodelers, or by regulation of imprinting, editing, splic-
ing or translation, and stability (8–12). Enhancer RNAs (eRNAs)
and lncRNA-activating RNAs (lncRNA-a) are transcripts that con-
trol the expression of neighboring genes in“cis”(13–15). However,
lncRNAs can also function in “trans,” away from their site of syn-
thesis. For instance, some pseudogenes regulate the expression of
their parental gene, located in a distant genomic location (16–19).
LncRNAs have especially emerged as regulators of development,
pluripotency, and proliferation as some function as oncogenes or
tumor suppressors (6, 12, 20–23). Therefore, several lncRNAs have
been implicated in cancer and in other human diseases (24–26).

Proliferation, differentiation, and pluripotency factors regulate
the expression of some lncRNAs (27). Besides, several signaling
molecules, including those involved in the immune response, have
been shown to induce the expression of specific lncRNAs (28–31).
Induction of TLR2, TLR3, or TLR4 leads to the activation of lncR-
NAs, including lncRNA-COX2, which regulates the expression of
several immune genes or NEAT1, which functions to increase the
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expression of some antiviral genes such as IL8 (32–34). Down-
regulation of IL1β-eRNA and IL1β-RBT46 lncRNAs decreases
IL1β and the accumulation of LPS-induced RNAs (34). Similarly,
downregulation of lnc-IL7R decreases the LPS-induced inflam-
matory response (35). Treatment of THP1 macrophages with an
innate immunity activator also induces the expression of several
lncRNAs. One of them, linc1992 (or THRIL) activates the expres-
sion of TNFα and other genes involved in the immune response
(36). In turn, TNFα also induces many lncRNAs in fibroblasts,
including Lethe, a pseudogene that responds to NFκB and inhibits
NFκB DNA-binding activity leading to reduced inflammation
(37). Besides, dendritic cells (DCs), CD4+, and CD8+ T-cells
express a specific set of lncRNAs that may regulate cell activa-
tion and differentiation (6, 38, 39). NEST lncRNA controls the
IFNγ locus in CD8+ T-cells causing decreased Salmonella enter-
ica pathogenesis (40, 41). Downregulation of lnc-DC, expressed
in conventional DCs, impairs DC differentiation from monocytes,
and reduces the capacity of DCs to activate T-cells (42). LncR-
NAs also respond to viral infections. Infection with enterovirus,
influenza virus, HIV, hepatitis B, and C (HCV) viruses as well
as the SARS coronavirus leads to altered levels of lncRNAs (33,
43–50) (Carnero et al., in prep). From the collection of infection-
altered lncRNAs, it is difficult to distinguish those that respond to
the virus from those that respond to the cellular antiviral path-
ways activated by the infection. Recently, some lncRNAs regulated
by infection have also been found to be regulated by IFNα in
mice (46).

Interferon is a key molecule in the cellular antiviral response
(51). Detection of pathogens by the cell triggers transcription of
the interferon (IFN) genes. When type I/III IFN is released, it is
sensed by the IFN receptors, which induce the JAK/STAT pathway.
STAT1 and 2 coupled to IRF9 form a complex that binds IFN-
stimulated response elements (ISRE) in the promoters of IFN-
stimulated genes (ISGs) and activates their transcription. ISGs
induce an antiviral state by several means, including inhibition of
viral replication, transcription,and translation. Well-characterized
ISGs are Mx1, OAS, GBP1, but also STAT1 and IRF9, which amplify
the IFN response. Further, STAT1 induces the expression of pro-
inflammatory genes such as IRF1, a transcription factor that also
activates ISGs, and whose induction is dependent on de novo pro-
tein synthesis (52, 53). Besides, IFN also induces the expression
of negative regulators that limit the strength and duration of the
IFN response (54–56). Finally, IFN activates expression of several
miRNAs that contribute to the antiviral state or to the control of
the IFN response (57).

Here, we have postulated that IFN could also regulate the
expression of lncRNAs that may have key roles in the antiviral
response. Therefore, we have performed a high-throughput analy-
sis of lncRNAs whose expression is deregulated in response to
IFNα. The conditions we used aimed to identify genes controlled
by the IFN pathway directly or by other ISGs. The results show
that several lncRNAs are controlled in response to type I IFN in
several cell lines tested. The best candidates are lncRNA genes
upregulated in response to IFN that are found in the genome adja-
cent to IFN-related coding genes. They have been called ISR2,
8, and 12. Interestingly, guilt-by-association genome-wide stud-
ies predict that the function of these lncRNAs is related to the

cellular antiviral response and to viral infections. In fact, ISR2, 8,
and their neighboring genes are also increased after infection of
cultured cells with HCV. A similar increase is detected in the livers
of patients infected with this virus or, in the case of ISR2, in blood
cells of patients infected with HIV.

MATERIALS AND METHODS
CELLS AND PATIENT SAMPLES
HuH7 cells, derived from a human hepatocarcinoma, were pro-
vided by Dr. Chisari’s lab (Scripps Research Institute, La Jolla, CA,
USA). A549 and THP1 cells were kindly provided by Estanislao
Nistal (CIMA, University of Navarra, Spain), and HeLa and 293
cells were obtained from ATCC. Liver samples from patients with
or without HCV infection were obtained from the Biobank of the
University of Navarra under approval from the Ethics and Scien-
tific Committees. Liver tissue sections were snap frozen and stored
at −80°C. The clinical data from HCV and HIV-infected subjects
are shown in Table S1 and S2 in Supplementary Material.

CELL CULTURE
Cells were grown in Dulbecco’s Modified Eagle Medium (DMEM)
enriched with 10% fetal bovine serum (FBS) and 1% penicillin–
streptavidin in a 5% CO2 atmosphere. Twenty-four hours before
treatment with IFN, HuH7, A549, THP1, 293, or HeLa cells were
seeded in six-well plates. Then, 0, 5, 50, 250, 1000, or 10000 u/ml
of IFNα2 (Sicor Biotech) or IFNβ (PBL Pestka Biomedical Labo-
ratories) were used in a final volume of 2 ml. HuH7 cells were also
treated with 250 ng/ml IL28B/IFN-λ3 (R&D Systems) in a final
volume of 2 ml. Cells were harvested for RNA extraction 6, 12, 24,
48, and/or 72 h after treatment.

VIRAL INFECTIONS
HCV JFH-1 was obtained from an initial viral stock from the geno-
type 2a JFH-1 plasmid (pJFH-1) previously described by Wakita
et al. (58). To amplify the virus, HuH7 cells were infected at low
multiplicity of infection (moi) with the initial viral stock and
supernatants from the cells were harvested at different days post-
infection. The presence of virus was evaluated by infecting fresh
cells with the supernatant and checking infected cells by immuno-
fluorescence against the HCV core protein. The supernatants with
higher titers were selected to perform the experiments. Influenza
virus strain A/PR8/34 WT (PR8) and the mutant lacking NS1
(∆NS1) were kindly provided by Estanislao Nistal (CIMA, Uni-
versity of Navarra, Spain) (59), Semliki Forest Virus (SFV) was a
gift from Cristian Smerdou (CIMA, University of Navarra, Spain),
and Adenovirus serotype 5 (Ad5) was amplified as described (60).
Twenty-four hours before infection, cells were seeded in six-well
plates in a final volume of 2 ml. Cells were infected with HCV at
a moi of 0.3, and with a moi of 10 of Influenza A, ∆NS1, Ad5,
and SFV. In the case of the lytic viruses, we used a moi of 10 as
this led to cytopathic effects at 24 h (for Influenza and SFV) or
48 h (for Ad5) in HuH7 cells. Infection with HCV was performed
for 4 h, versus 2 h in the case of Ad5 and 1 h in the case of the
other viruses. A final volume of 1 ml was used for infection. After
infection, the virus was removed and fresh medium was added to
the cells. Cells were harvested for RNA extraction at the indicated
times post-infection.
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CELLULAR FRACTIONATION
Two million HuH7 cells were incubated in 100 µl of cytoplasmic
buffer (50 mM Tris HCl pH7.4, 1 mM EDTA, and 1% NP40) for
5 min at 4°C. Then, cells were centrifuged for 5 min at 3000 g and
the supernatant was used to isolate cytoplasmic RNA. The pellet
was washed with cytoplasmic buffer and centrifuged as before. The
supernatant was discarded and the pellet was used to isolate the
nuclear RNA. RNA from nuclear and cytoplasmic fractions was
isolated with MaxWell 16 research system (Promega).

RNA EXTRACTION AND MICROARRAY HYBRIDIZATION
Total RNA from tissue samples was extracted in 1 ml TRIZOL
(Sigma-Aldrich) using the ULTRA-TURRAX homogenizer (t25
basic IKA-WERKE) (61). Then, 200 µl chloroform was added
and the samples were mixed vigorously and then centrifuged at
12000 g for 15 min at 4°C. The aqueous phase was mixed with
800 µl isopropanol and centrifuged at 12000 g for 10 min at 4°C.
The pellet of total RNA obtained from the centrifugation was
washed with 70% ethanol. Finally, the pellet was resuspended in
30 µl DNase/RNase-free PCR water (Bioline). DNase I (Fermen-
tas) treatment was performed to eliminate DNA from the samples
before the reverse transcription (RT)–PCR reactions.

To isolate RNAs from total blood, 2.5 ml blood were collected
into PAXgene Blood RNA tubes with RNA stabilization solution.
Total RNA was extracted by using the PAXgene Blood RNA kit
(Qiagen GmbH) according to the manufacturer’s instructions.
Briefly, prior to the actual RNA isolation, the frozen samples were
first incubated at RT for at least 2 h to achieve complete lysis of
blood cells. Then, the PAXgene Blood RNA tubes were centrifuged
for 10 min at 3000 g, the supernatant was removed and the pellet
was washed with 4 ml RNase-free water. The pellet was then dis-
solved in 350 µl of the provided lysis buffer BM1 and transferred
into a 1.5 ml microcentrifuge tube. To this mixture, 300 µl buffer
BM2 and 40 µl proteinase K were added and incubated for 10 min
at 55°C in a shaking incubator at 1000 rpm. The samples were next
transferred to a PAXgene Shredder spin column and centrifuged
for 3 min at full speed. The flow-through was transferred into a
new tube without disturbing the pellet and mixed with 700 µl iso-
propanol (100%, purity grade p.a.). This mixture was then passed
through a PAXgene RNA spin column by centrifugation for 1 min
at 8000 g. Following a wash step (350 µl BM3), an on-column
DNase digest (RNase-Free DNase Set, Qiagen) was performed by
addition of DNase I and incubation on the benchtop (20–30°C)
for 15 min. The column was washed three times, before RNA was
eluted with 80 µl buffer BR5. The final eluate was incubated for
5 min at 65°C, and several aliquots of the RNA were stored at
−80°C.

RNA extraction from cells or cellular fractions was performed
using the MaxWell 16 research system from Promega according
to the manufacturer’s recommendations. For each condition, a
minimum of a confluent well of a M6-plate was used in order to
obtain enough RNA. In all cases, the RNA concentration was mea-
sured using a NanoDrop 1000 Spectrophotometer. The quality of
the RNA was determined in a Bioanalyzer (Agilent technologies).
For microarray hybridization, the samples were processed using
manufacturer protocols and hybridized to the Agilent SurePrint
G3 Human Gene Expression 8× 60 K microarray. Transcriptome

data are available at the NCBI Gene Expression Omnibus (GEO)
data repository1.

QUANTITATIVE POLYMERASE CHAIN REACTION
Reverse transcription was performed using 1.2 µl M-MLV-RT and
8 µl M-MLV-RT 5× buffer (Promega), 4 µl 5 mM dNTPs, 4 µl
Random Primers at 100 ng/µl, 2 µl DTT 0.1 M, and 1 µg RNA
in a final volume of 40 µl. The reaction was run in the C1000
Touch Thermal Cycler from Bio-Rad. The samples were incubated
at 37°C for 60 min, then at 95°C for 60 s, and next immediately
placed at 4°C.

Quantitative polymerase chain reaction was performed in the
CFX96 Real-Time system from Bio-Rad. For the reaction, 10 µl IQ
Syber Green mix from Bio-Rad, 0.4 µl of each primer at 15 µM,
and 2 µl of the DNA sample at 0.01 µg/µl were mixed in a final
volume of 20 µl. The mixture was first incubated at 95°C for 3 min,
and then at 95°C for 15 s, 60°C for 15 s, and 72°C for 25 s for 34
cycles. The PCR ended after 1 min at 95°C and 1 min at 65°C.
The results were analyzed with Bio-Rad CFX-manager software.
GAPDH levels were evaluated in all cases as a reference. Only the
samples with similar GAPDH amplification were analyzed further.
The primers used are listed in Table S3 in Supplementary Mater-
ial and were designed using the Primer3 program2. Initial setups
included GC percentage between 30 and 70%, product size from
150 to 300 bp and primer length between 18 and 27 nt.

BIOINFORMATIC AND STATISTICAL ANALYSIS
Microarray data normalization was performed using the quantile
algorithm. After quality assessment, a filtering process was carried
out to eliminate low expression probe sets. Applying the criterion
of an expression value >64 in the three samples of at least one
of the experimental conditions, 45322 probe sets were selected
for statistical analysis. LIMMA (Linear Models for Microarray
Data) (62) was used to identify the probe sets with significant
differential expression between experimental conditions. Genes
were selected as significant using a B statistic cut-off of B > 1.5.
Data processing and statistical analyses were performed with R
and Bioconductor (63).

Functional enrichment analysis of Gene Ontology (GO) cat-
egories was carried out using standard hypergeometric test
(64). The biological knowledge extraction was complemented
through the use of Ingenuity Pathway Analysis (Ingenuity Sys-
tems)3, whose database includes manually curated and fully trace-
able data derived from literature sources. All the differentially
expressed sequences obtained by the analysis were compared to
the ENSEMBL and ENCODE databases and searched for in the
Genome Browser from UCSC4 for more information (65, 66).
ORF Finder (NCBI) was used to evaluate the length of all proba-
ble ORFs in ISR2, 8, and 12. Coding potential was assayed with the
coding potential assessment tool (CPAT) (67, 68) and by search-
ing the LNCipedia database (69) for the presence of our candidates
in the Pride archive (70) or in lists of transcripts associated with

1http://www.ncbi.nlm.nih.gov/geo
2http://frodo.wi.mit.edu
3http://www.ingenuity.com
4https://genome.ucsc.edu/
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ribosomes (71, 72). Phylogenetic Codon Substitution Frequencies
(PhyloCSF) was also used to predict the coding potential of ISR2,
8, and 12 (73).

A guilt-by-association approach was used to predict the GO
categories (74) in which the differentially expressed lncRNAs
could be implicated. First, we collected data from 120 samples
hybridized to SurePrint G3 microarrays. These samples include
the 6 RNAs isolated from HuH7 cells treated or not with IFN,
and 114 RNAs obtained from human samples of different origin,
including healthy tissues and several leukemias and other tumors.
Then, a Pearson correlation analysis was performed between ISR2,
8, and 12 and all the genes represented in the SurePrint G3 Human
microarray. Coding genes related to cellular antiviral pathways
were randomly selected and included in the analysis as positive
controls. The obtained correlation matrix was used as input for
giTools (75) where an enrichment analysis of GO categories was
performed using Z -score (76) and FDR (77).

Statistical analysis of the expression levels obtained by
quantitative RT-PCR (qRT-PCR) was performed using graph-
path. Statistical significance of treated or infected versus non-
treated or non-infected samples was calculated using a two-tailed
non-parametric Mann–Whitney t -test. In correlation studies, a
two-tailed non-parametric Spearman analysis was used. Similar
results were obtained by Pearson correlation. P values lower than
0.05 were deemed as significant.

RESULTS
HIGH DOSES OF IFNα INDUCE THE EXPRESSION OF SEVERAL GENES
INVOLVED IN THE IFN RESPONSE
We wanted to identify lncRNAs that respond to IFN. IFN induces
the expression of ISGs very fast. Some ISGs are transcription
factors able to regulate the expression of genes with antiviral
potential in a secondary wave of IFN response. Other ISGs are
inhibitory factors that function to decrease the response. There-
fore, to identify lncRNAs regulated by IFN or by ISGs, one should
analyze the transcriptome of cells treated by IFN at different time
points. However, to simplify the analysis, we decided to check first
whether we could find conditions showing a wide IFN response
at a single time point. To this aim, we tested whether high doses
of IFN could lead to increased expression of well-known ISGs
even at late times post-IFN treatment. HuH7 cells were treated
for 6, 24, 48, or 72 h with increasing doses of IFNα2 up to
10,000 units/ml, and the expression levels of GBP1, IRF1, BST2,
OAS, IL6, and ISG15 were evaluated by qRT-PCR (Figure 1). The
results show that GBP1 and IRF1 are induced to highest levels
at 6 h post-treatment, while BST2 and OAS are induced to simi-
lar levels at all times tested. In contrast, IL6 is only significantly
induced at 3 days post-treatment (Figure 1 and data not shown).
However, compared to untreated cells, a significant upregulation
of all the genes, including GBP1 and IRF1, can be detected at
3 days post-treatment with 10,000 units/ml of IFNα2 (Figure 1B).
In fact, this dose induced the highest levels of these transcripts
at most of the time points. Before analyzing the transcriptome
of cells treated with 10,000 units/ml of IFNα2 for 3 days, we con-
firmed that these conditions induced antiviral effects. When HuH7
cells infected with HCV were treated with these conditions, we
indeed detected a drastic decrease in viral protein expression by

FIGURE 1 | High doses of IFN induce the expression of genes involved
in the IFN response at late times post-treatment. HuH7 cells were
treated for 6, 24, 48, or 72 h (A) or for 72 h (B) with 0, 5, 50, 250, 1000, or
10,000 units/ml of IFNα2 and the expression levels of GAPDH, GBP1, IRF1,
BST2, OAS (A and B), or of IL6 and ISG15 (B) were evaluated by qRT-PCR.
The relative expression was calculated using GAPDH as a reference. The
experiment was performed three times and each value shows the average
of three replicas from a representative experiment. Error bars indicate
standard deviations.

immunofluorescence and a decrease in the levels of HCV viral
genomes by qRT-PCR (data not shown).

IDENTIFICATION OF LncRNAs REGULATED BY IFNα

An Agilent array that evaluates expression of 27958 Entrez genes
and 7419 lncRNAs was used to hybridize RNA isolated in three
independent experiments from control cells or HuH7 cultures
treated with 10,000 units/ml of IFNα2 for 3 days. Analysis of the
array showed that genes upregulated with a high statistical signif-
icance (B > 7) includes well-known IFN-related genes from the
GBP, IFI, OAS, ISG, MX, or IRF families (Figure 2A). Analysis
using less stringent criteria (B > 1.5) showed that 90% of the genes
were upregulated in response to IFN treatment (Figure 2B). Inge-
nuity analysis of this set indicated that IFN signaling is the pathway
with the highest enrichment followed by other antiviral responses
(Figure 2C). Similarly, the IFN-induced STAT pathway and the
TLR/IRF network are well represented in the set of upregulated
genes (Figure S1 in Supplementary Material).

We selected the probes described as long intergenic non-coding
RNAs (lincRNAs) that showed a significantly altered expression by
the IFN treatment (B > 1.5). First, we determined the position in
the genome of the sequences from these probes using the BLAT
searches available at UCSC (78, 79). Many sequences corresponded
to coding genes or seemed to be 3′UTR extensions of coding
genes and were discarded for further analysis. The remaining
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FIGURE 2 | Microarray analysis of samples treated with IFN. HuH7
cells were treated for 72 h with 0 or 10,000 units/ml of IFNα2 in three
independent experiments. RNA isolated from these cells was hybridized
to an Agilent array that interrogates the expression of 27958 Entrez
genes and 7419 lncRNAs. Heat map clustering of all genes with

B > 7 (A), B > 1.5 (B), or the curated probes described as lincRNAs with
B > 1.5 (D) is shown. Ingenuity analysis of the set described in B is also
shown (C). The color scale is indicated for each heat map and uses log 2
units. Upregulated probes are shown in red. Downregulated probes are
shown in green.
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sequences corresponded to 48 genes, including 29 genes annotated
as lncRNAs and 19 located in non-annotated areas of the genome
(Figure 2D, Table S4 in Supplementary Material). Surprisingly,
while 90% of coding genes were upregulated by IFN, only 54% of
the lncRNAs were upregulated. Most of the downregulated lncR-
NAs corresponded to the non-annotated category. This suggests
that there could be a relevant IFN-mediated repression of genes
that more strongly affects lncRNAs. We named these genes IDRs,
for IFN-downregulated RNAs, and accordingly named the IFN-
stimulated RNAs ISRs. The fact that almost 40% of the ISRs and
IDRs correspond to non-annotated areas of the genome suggests
that the percentage of the genome able to react to different stimuli
could be even larger than expected.

As many lncRNAs have been described to regulate the expres-
sion of neighboring genes, we looked for the closest coding
gene for each ISR or IDR (Table S4 in Supplementary Mater-
ial). We considered candidates to have no neighbor when the
closest coding gene was not within a distance of 100 kb from
the start or the end of the candidate or when the closest gene
was non-coding. Forty candidates had neighboring coding genes
according to these criteria. Half of the coding-non-coding pairs
were in tandem, convergent, or divergent, 12 were antisense to
each other, 4 were overlapping, and 5 pairs seem to share the
same promoter according to the DNase I hypersensitivity and
the histone marks described by ENCODE for the respective area.
Therefore, these couples of coding-non-coding genes could be co-
regulated. Three upregulated candidates, ISR2, ISR8, and ISR12
were neighbors of the IFN-related genes GBP6, IRF1, and IL6,
respectively.

IFNα ALTERS THE EXPRESSION OF LncRNAs AT DIFFERENT TIME
POINTS AND IN DIFFERENT CELL LINES
We next wanted to validate the IFN effect on these candidates in
independent samples using a different technique. Furthermore,
we wanted to determine whether the levels of ISRs and IDRs were
altered early after IFN treatment. Therefore, the expression levels
of 24 ISRs and 16 IDRs were evaluated by qRT-PCR in HuH7 cells
treated with 0 or 10,000 units/ml of IFNα for 6, 12, 24, 48, or 72 h.
The fold-change observed for each candidate at each time point
is shown in Figure 3 and Table S5 in Supplementary Material. At
72 h post-treatment, 11 ISRs and 8 IDRs showed a fold-change
higher or lower, respectively, than 1.5. Only ISR13 and 20 were
not significantly upregulated, or IDR3, 5, 9, 12, and 13 were not
significantly downregulated, at any time tested. However, the fold-
change was relatively low in most of the cases, indicating a weak
response to IFN. Moreover, 40% of the candidates showed low
overall expression levels (Table S4 in Supplementary Material and
data not shown). Interestingly, ISR2 and ISR8 were induced more
than 50-fold at 6 h post-IFN treatment, and ISR1 was induced
more than 20-fold at later times. Therefore, we decided to study
these candidates further. We also opted to focus on ISR10 and 12, as
they were upregulated at later time points. IDR1 and IDR2, which
were downregulated at most times studied, were also analyzed
further.

As many lncRNAs are cell-specific, we decided to study the
response to IFN of these selected ISRs/IDRs in different cell
lines. HeLa, 293, A549, or THP1 cells were treated with 0 or

FIGURE 3 | Validation of IDRs and ISRs at different times after IFN
treatment. Expression levels of 24 ISRs (A) and 16 IDRs (B) were
evaluated by qRT-PCR in HuH7 cells treated with 0 or 10,000 units/ml of
IFNα for 6, 12, 24, 48, or 72 h. GAPDH was also evaluated by qRT-PCR and
used as a reference to calculate the relative levels of each transcript. The
ratio of levels with IFN versus no IFN is shown for each candidate at each
time point. The results have been clustered and are shown in the form of a
heat map. The color scale is shown at the top. Red denotes upregulation
and green downregulation. A maximum of linear units from −5 to +5 (A) or
−3 to +3 (B) has been set as indicated in the color scale.

10,000 units/ml of IFNα for 6, 12, 24, 48, or 72 h and RNA was
isolated and used to evaluate the expression of ISR1, 2, 8, 10, and
12 as well as IDR1 and 2. The results showed that in the new cell
lines tested, expression of ISR1 and 10 was not detected and IDR1
and 2 showed only a mild downregulation in response to IFN (data
not shown). Importantly, ISR2, 8, and 12 were well expressed in all
cell lines tested and their expression was strongly induced by IFN
at early (ISR2 and 8) or late times (ISR12) (Figure 4A and data
not shown).

Interestingly, ISR2, 8, and 12 have neighboring genes related to
IFN response (Figure 4B). ISR2 is located in tandem with GBP6,
at the end of the cluster of GBP genes formed by GBP3, 1, 2, 7, 4, 5,
and 6. In fact, ISR2 is GBP1P1, a pseudogene of GBP1. This may be
interesting as some pseudogenes have been described to regulate
the expression of their parental genes (16–19). ISR12 is located
in tandem with IL6 and ISR8 is convergent with IRF1. There-
fore, we decided to evaluate the expression of GBP1, IRF1, and
IL6 in response to IFN in the same cell lines. The results showed
a similar induction pattern of each ISR and of the correspond-
ing neighboring coding gene in response to IFN (Figures 4A,C).
Note that in the case of ISR2, we evaluated the expression of its
parental neighboring gene GBP1 instead of the closest neighbor
GBP6, as we speculated that there could be a co-regulation of the
parental gene and the pseudogene. Furthermore, we could not
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FIGURE 4 | ISR2, 8, and 12 and their neighboring coding genes respond
to IFN in different cell lines. A549 or HeLa cells were treated with 0 or
10,000 units/ml of IFNα for the indicated times and RNA was isolated and
used to evaluate the expression of ISR2, 8 [(A), A549], ISR12 [(A), HeLa] or
their neighboring genes GBP1, IRF1 [(C), A549], and IL6 [(C), HeLa].
GAPDH was also evaluated by qRT-PCR and used as a reference to
calculate the relative levels of each transcript. The experiment was
performed three times and each value shows the average of three replicas
from a representative experiment. Error bars indicate standard deviations.
The fold-change of IFN-treated versus non-treated samples is indicated at
the top of each bar. (B) Schematic representation of the genomic location
of ISR2, 8, and 12 and their neighboring genes taken from UCSC database.
Coding genes are shown with rectangles and non-coding genes with thick
lines. GBP6, IRF1, and IL6 are shown with filled rectangles and in bold.
ISR2, 8, and 12 are also in bold. Arrows indicate sense and antisense
orientation. The scale bar is shown at the bottom to the right.

detect expression of GBP6 in control or IFNα-treated HuH7 cells
(data not shown).

All the experiments performed so far with these lncRNAs have
studied the response to high doses of IFN. To determine whether
ISR2, 8, and 12 also respond to lower doses, their expression level
was evaluated in HuH7 cells treated for 6, 24, 48, or 72 h with
5, 50, 250, 1000, or 10,000 units/ml of IFNα2 (Figure 5). The
results show that induction of these lncRNAs is similar to that
observed for their corresponding neighboring coding genes (com-
pare Figure 5 with Figure 1). Similar results were observed when
IFNβ was used instead of IFNα2 (data not shown). Further, we
evaluated whether expression of these transcripts was induced
after treatment with TNFα. TNFα, similarly to some pathogen-
associated molecular patterns, induces NFκβ signaling and expres-
sion of pro-inflammatory genes. However, the NFκβ pathway is a
poor inducer of ISGs. A treatment of HuH7 cells with 20 ng/ml
of TNFα for 6 h, induced the expression of CXCL10, used as a
positive control, more than 100-fold. A significant increase in
expression of only 2–3-fold was observed after TNFα treatment
for GBP1, IRF1, IL6, and ISR12, but not for ISR2. Similar results

were obtained in HuH7 cells treated with LPS or polyI:C (data not
shown).

To obtain more information about these ISRs, we looked in
detail at the data from ENCODE. Even though we did not observe
a strong activation after TNFα treatment, transcription factor chIP
Seq from ENCODE showed that ISR8 and ISR12 promoters have
NFκB binding sites. Interestingly, the ISR8 promoter has sites for
STAT1 and 2 as well as IRF1 and 2, suggesting that ISR8 could
be a bona fide ISG. Besides the non-coding transcript that we
name ISR8, six other transcripts could be expressed from the
ISR8 area according to UCSC and Ensembl databases (Figure
S2A in Supplementary Material). These transcripts have certain
coding capacities and could be translated to proteins of up to 126
amino acids named C5ORF56. The syntenic region in the mouse
also comprises non-coding transcripts together with transcripts
with certain coding potential that lead to peptides no longer than
32 amino acids (data not shown). Only five amino acids in the
N-terminal part of the putative protein predicted in mouse are
conserved in human. Given the poor conservation and the short
size of the predicted peptides all the transcripts from this mouse
region could be classified as non-coding (80, 81). To analyze the
expression of ISR8 and all the putative coding transcripts anno-
tated in the human ISR8 area, we used qRT-PCR. The results show
that most of the transcripts are poorly detected in HuH7 or HeLa
cells treated or not with IFN. The highest expression is observed
for the ISR8 lncRNA (Figure S2B in Supplementary Material).

Finally, UCSC database also shows that ISR8 is convergent to
IRF1 and antisense to a longer IRF1 transcript with poor coding
capacity that we named lncIRF1 (Figure 4B, Figure S2A in Supple-
mentary Material). If expressed, lncIRF1 could regulate the level
of ISR8 via antisense mechanisms. Therefore, we have evaluated
the expression of lncIRF1 in response to IFN. The results show
that lncIRF1 is expressed and its levels are induced at short times
after IFN treatment (Figure S2C in Supplementary Material).
Unlike ISR8, ISR2, or ISR12 transcripts did not overlap with anno-
tated transcripts from GBP6 or IL6 (Figure S3 in Supplementary
Material).

ANALYSIS OF THE CODING POTENTIAL OF ISR2, 8, AND 12
We evaluated the coding capacity of ISR2, 8, and 12 bioinformati-
cally. ORF Finder (NCBI) was used to determine all possible open
reading frames in these ISRs (Figure S4A in Supplementary Mate-
rial). The analysis shows that all putative ORFs are shorter than
100 aa. Then, we evaluated their coding potential with the CPAT
(67, 68) (Figure S4B in Supplementary Material). CPAT uses a
model built with open reading frame size and coverage together
with codon (Ficket score) and hexamer (hexamer score) usage bias.
According to this program, ISR2, 8, and 12 are non-coding as they
have a coding probability much lower than 0.364, used as a thresh-
old with the highest sensitivity and specificity to differentiate
between coding and non-coding transcripts in humans (68). ISR2,
8, and 12 were also described as non-coding in LNCipedia (69).
This lncRNA database shows that ISR2, 8, or 12 are not found in
the Pride archive, a database for proteomic data, or in lists of tran-
scripts associated to ribosomes in ribosome profiling experiments
(70–72). ISR8 and ISR12 were also described as non-coding by the
analysis of PhyloCSF, which uses multiple alignments to calculate
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Carnero et al. lncRNAs regulated by IFN

FIGURE 5 | ISR2, 8, and 12 respond to low doses of IFN. HuH7 cells
were treated for 6, 24, 48, or 72 h with 0, 5, 50, 250, 1000, or
10,000 units/ml of IFNα2 and the expression levels of ISR2 and 8 and
ISR12 were evaluated by qRT-PCR. GAPDH expression was also
evaluated and used as a reference to calculate the relative levels of

each transcript. The experiment was performed three times and each
value shows the average of three replicas from a representative
experiment. Error bars indicate standard deviations. The fold-change of
treated versus non-treated cells is indicated at the top of each bar
when higher than two.

the phylogenetic conservation score and determines whether a
multi-species nucleotide sequence alignment is likely to represent
a protein-coding region (73).

Finally, we evaluated the subcellular localization of ISR2, 8, and
12 in HuH7 cells mock-treated or treated with 10,000 units/ml
of IFNα. RNA was isolated from nuclear or cytoplasmic fractions
and quantified by qRT-PCR. The results show that the coding
GAPDH or ISG15 mRNAs accumulate preferentially in the cyto-
plasm while the nuclear lncRNA MALAT1 is preferentially nuclear
(Figure 6). Similarly, ISR2, 8, and 12 accumulate preferentially in
the nucleus. This result, together with the bioinformatic analyses,
strongly suggests that ISR2, 8, and 12 are non-coding RNAs.

PREDICTION OF ISR2, 8, AND 12 FUNCTION
As indicated above, each ISR and its neighboring coding gene have
similar induction patterns in response to IFN (compare Figure 1
and Figure 5 or Figures 4A,C). This suggests that they could be
co-regulated and therefore, that they could share similar func-
tions. To analyze in more detail whether the expression level of
each ISR correlates significantly with the expression level of its
neighboring coding gene, we performed correlation studies. We
compared the levels of each coding/non-coding pair in all the
samples evaluated in Figures 1, 4, and 5. The results show a highly
significant positive correlation between ISR2 and GBP1 or ISR8
and IRF1. In contrast, ISR12 had a non-significant correlation with
IL6 (Figure 7A). Expression of neither ISR2 nor ISR8 significantly

FIGURE 6 | ISR2, 8, and 12 accumulate preferentially in the nucleus.
HuH7 cells were mock-treated or treated with 10,000 units/ml of IFNα2 and
divided into nuclear and cytoplasmic fractions. RNA was isolated from each
fraction and used to evaluate the expression levels of ISR2, 8, and 12 by
qRT-PCR. MALAT1, GAPDH, and ISG15 mRNA was also quantified and
used as a reference to calculate the relative levels of each transcript and as
a control to evaluate the subcellular fractionation. The ratio of cytoplasmic
to nuclear levels is shown. The experiment was performed three times and
each value shows the average of three replicas from a representative
experiment. Error bars indicate standard deviations.

correlated with the expression of other ISGs such as OAS or BST2
(data not shown).

Arguably, this correlation analysis has been done with few ISGs
and using homogeneous samples. Therefore, we decided to per-
form a more stringent high-throughput analysis of correlation.
Accordingly, we carried out a guilt-by-association genome-wide
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FIGURE 7 | Correlation of expression between ISR2, 8, and 12 and their
coding partners, and guilt-by-association analysis. (A) Expression levels
observed for ISR2, 8, and 12 in Figures 4A and 5 were compared to the
expression levels of their coding neighbors GBP1, IRF1, and IL6, respectively,

in Figures 1 and 4C. A correlation analysis was performed and statistical
significance was calculated using a two-tailed non-parametric Spearman
analysis. (B) Clustering of the guilt-by-association results showing significant
GO terms. The z -score color scale is shown at the bottom of the image.

analysis (74), which also predicts the function of unknown genes
with high statistical confidence (Figure 7B). We compared the
expression levels of ISR2, 8, and 12 and coding genes related
to cellular antiviral pathways, used as positive controls, with the
expression levels of all the genes represented in a SurePrint G3
microarray. We used data obtained from microarray experiments
performed with 120 human samples of different origin. The results
show a significant positive correlation between ISR8 and IRF1
(corr= 0.41 and p < 10e−0.5), indicating that these genes are co-
regulated. Significant correlations were not observed for GBP1 and
ISR2 or IL6 and ISR12. Furthermore, the correlation analysis of
each candidate organized all the microarray genes from the ones
with the highest positive correlation to the ones with the high-
est negative correlation. This matrix was used to search for GO
categories with highly significant enrichment in genes that cor-
relate positively (positive z-score) o negatively (negative z-score)
with ISR2, 8, or 12. This analysis revealed that ISR2, 8, and 12
clustered very closely but away from other genes related with the
IFN pathway and the antiviral response. ISR2, 8, and 12 showed
a negative correlation with genes that significantly enriched GO
categories related to viral processes including viral life cycle and

viral transcription. ISR2 and 12 also shared a negative correlation
with response to viral infection and IFN pathway genes. However,
ISR8, similar to IRF1 and TLR3, showed a positive correlation with
IFN signaling and immune response genes.

ISR2 AND ISR8 RESPOND TO VIRAL INFECTIONS
The results obtained in the guilt-by-association analysis led us to
hypothesize that ISR2, 8, and 12 could respond strongly to viral
infections or to the IFN response induced by viral infections. To
study this hypothesis, we evaluated the expression of these lncR-
NAs in cells infected with Ad5, a DNA virus, or RNA viruses such as
influenza virus, SFV, or HCV. All of them have developed mecha-
nisms to block the cellular antiviral response. Influenza virus con-
trol of IFN is exerted primarily by the influenza NS1 protein (59).
Therefore, we also infected cells with an influenza virus mutant
that lacks NS1. All the viruses used, with the exception of HCV, lead
to a fast lytic infection that initiates cell death at 24 h post-infection
in the case of influenza virus and SFV, or at 48 h post-infection in
the case of Ad5. Therefore, several time points post-infection were
evaluated in each case. The results show that ISR12 expression
was not altered by infection (data not shown). ISR2 and ISR8
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expression was only induced in cells infected with the influenza
virus unable to control IFN at later times post-infection, when
the IFN response is strongest (Figure 8). In general, the induction
pattern was similar for GBP1 and IRF1.

We were surprised to see that the strongest increase in ISR2
and 8 was observed in cells infected with HCV, an IFN-sensitive
virus that employs several viral proteins to block the IFN pathway.
Increased expression was also observed for GBP1 and IRF1 but
not for other ISGs such as OAS (Figure 8 and data not shown).
To determine whether a similar upregulation could be observed
in HCV patients, levels of ISR2, 8, and 12 were evaluated in livers
from HCV-negative (n= 19) to HCV-positive (n= 13) patients.
The results show that both ISR2 and 8 are significantly upregulated
in HCV patients (Figure 9A). No differences were observed in
the levels of ISR12 in the same samples. Finally, we wanted to
determine whether these lncRNAs also respond to other chronic
viral infections relevant for human health. Therefore, we evalu-
ated the expression of ISR2, 8, and 12 in blood cells isolated from
healthy patients or from patients chronically infected with HIV.
We could not detect expression of ISR8 or 12 in these samples.
However, both ISR2 and GBP1 were significantly upregulated in
HIV-infected patient cells (Figure 9B).

DISCUSSION
In this work, we show that IFN treatment alters the expression of
several lncRNAs in human cells. These lncRNAs were identified in
a high-throughput analysis using conditions that detect increased
levels of coding genes that respond to IFN both at early or late times
(Figures 1 and 2 and Figure S1 in Supplementary Material). In the
cells treated with IFN for 3 days, we found, with a very high sta-
tistical significance (B > 7), an upregulation of well-characterized
ISGs such as Mx1, STAT1, IRF9, ISG15, BST2 and several members
of the GBP, OAS, and IFI families (Figure 2). Besides, the IFN-
induced STAT pathway shows the highest enrichment by Ingenuity
analysis (Figure S1 in Supplementary Material). This suggests that
high levels of IFN could maintain an active JAK/STAT pathway in
HuH7 cells even at late times post-IFN treatment. Therefore, we
feel that among the lncRNAs identified in this work, there may
be some candidates whose expression is controlled directly by the
JAK/STAT pathway, while other candidates could be controlled by
other ISGs or by later downstream effectors of the IFN response.

Comparison of the results obtained in the array between coding
and lncRNA genes gave an unexpected result: 90% of the altered
coding genes but only 54% of the lncRNAs were upregulated by
IFN. This suggests that there could be an IFN-mediated repression
of genes that affects more strongly lncRNAs. However, even if IDRs
showed a generally decreased expression in the presence of IFN
(Figure 3B), the downregulation was mild. Validation of down-
regulated genes showed that only IDR16 was strongly affected by
IFN at late times post-treatment (Table S5 in Supplementary Mate-
rial). Further experiments will be required to determine whether
there is a relevant downregulation of lncRNA genes in response
to IFN. Notably, the majority of the IDRs match with genomic
regions that have not been associated with active transcription in
public databases. This is surprising, as some of them such as IDR4,
7, 15, or 16 are expressed at high levels in HuH7 cells according to

FIGURE 8 | ISRs respond to viral infections in cultured cells. HuH7 cells
were mock-treated or infected with wild-type influenza virus (PR8) or a
mutant that lacks NS1 (∆NS1), SFV, Ad5, or HCV for the indicated times.
RNA was isolated and the expression levels of ISR2, GBP1, ISR8, and IRF1
were evaluated by qRT-PCR. GAPDH expression was also evaluated and
used as a reference to calculate the relative levels of each transcript. The
experiment was performed three times. The fold-change of infected versus
non-infected cells is indicated. Each value shows the average of three
replicas from a representative experiment. Error bars indicate standard
deviations. The fold-change of treated versus non-treated cells is indicated
at the top of each bar when higher than 2.5.

the qRT-PCR data (Table S5 in Supplementary Material). There-
fore, it would be interesting to analyze IFN regulation of lncRNAs
using RNASeq, as this may yield a more comprehensive picture
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FIGURE 9 | ISRs respond to viral infections in vivo. Expression levels of
ISR2 (A and B), ISR8 (A), ISR12 (A), and GBP1 (B) were evaluated in livers
from HCV-negative (n=19) to HCV-positive (n=13) patients (A) and in
blood cells (B) isolated from healthy patients (n=14) or from patients
infected with HIV (n=7). Statistical significance was calculated using a
two-tailed non-parametric Mann–Whitney t -test.

of the lncRNA transcriptome and its manipulation by IFN. In
fact, during the revision of this paper, another manuscript was
accepted showing that transcriptome analysis by RNASeq allowed
the identification of several lncRNAs whose expression is altered
in response to IFN (82). Similar results have been obtained using
RNASeq in our lab (Barriocanal et al., submitted).

Several ISRs were clearly validated by qRT-PCR. Specifically,
ISR1, 2, 8, 12, and 22 were upregulated more than fivefold, and
ISR2 and ISR8 even more than 50-fold. ISR1 was expressed at very
low levels. In contrast, ISR2, 8, and 12 were well expressed in all cell
lines tested and their expression was strongly induced by IFN at
early (ISR2 and 8) or late times (ISR12) (Figure 4A). Furthermore,
low doses of type I IFNα or IFNβ also induced the expression of
these ISRs (Figure 5 and data not shown). We did not detect sig-
nificant induction of these ISRs, GBP1, IRF1, or IL6 with type III
IFNλ using doses able to induce other ISGs such as OAS, ISG15,
or BST2 (data not shown). Further experiments are required to
determine whether these genes could show some specificity for
type I IFN, as the repertoire of genes that are induced by type III
IFNs is essentially the same as those induced by type I IFNs (83).
Finally, ISR12 was also induced after the activation of the NFκβ

pathway by TNFα, LPS, or polyI:C (data not shown). This result
is in line with the identification of NFκβ binding sites in ISR12
promoter by chIP Seq.

Our molecular and bioinformatic analyses strongly suggest that
ISR2, 8, and 12 are indeed long non-coding RNAs. The reasons are:
(i) they accumulate preferentially in the nucleus of IFN-treated
or untreated cells (Figure 6); (ii) they are marked as lncRNAs
with high sensitivity and specificity after analysis of their ORF size

and coverage, analysis of their codon and hexamer usage bias,
or analysis of PhyloCSF; (iii) they have not been identified as
associated with ribosomes in ribosome profiling experiments; and
(iv) if they are translated to small peptides, such peptides have not
been identified by proteomic analyses (Figure S4 in Supplementary
Material).

Given that some lncRNAs regulate the expression of neigh-
boring genes, we searched for the closest coding gene for each
ISR or IDR. Interestingly, ISR2, 8, and 12 have neighboring genes
related to the IFN response (Table S4 in Supplementary Material,
Figure 4B, Figure S2 and S3 in Supplementary Material). ISR2 is
in tandem and downstream of GBP6. It is very unlikely that ISR2
results from run-off transcription from GBP6, as GBP6 expression
could not be detected in HuH7 cells (data not shown). ISR12 is in
tandem and upstream of IL6 while ISR8 is convergent with IRF1.
None of the transcripts annotated for ISR2 or ISR12 overlaps with
the transcripts annotated for GBP6 or IL6, respectively (Figure
S3 in Supplementary Material). However, the region of ISR8 and
IRF1 is more complex. While ISR8 does not overlap with its coding
neighbor IRF1, the IRF1 gene also transcribes a longer transcript
of poor coding capacity called lncIRF1 (Figure 4B, Figure S2A
in Supplementary Material). LncIRF1 expression is induced by
IFNα to similar levels than ISR8 (Figure S2C in Supplementary
Material). As ISR8 is antisense to lncIRF1, they could potentially
regulate each other by transcriptional interference or by antisense
mechanisms, although only 17 nt of the mature form of ISR8 are
antisense to the mature form of lncIRF1 (Figure 4B and Figure
S2A in Supplementary Material).

None of the coding/non-coding pairs share the promoter, mak-
ing it unlikely that they are co-regulated at the transcriptional level,
which would otherwise be a way to explain that both are induced
in response to IFN. Instead, the promoters of these ISRs seem
to be independent. ISR2 is located within the GBP locus, which
could be indicative of a general co-regulation in response to IFN.
The ISR8 and ISR12 promoters have NFκB binding sites, although
only ISR12 is reproducibly induced in response to TNFα under the
conditions tested. Furthermore, ISR8 seems a bona fide ISG as the
promoter has sites for STAT1 and 2 as well as IRF1 and 2. In spite
of this, the possibility exists that IFN activation of a coding ISG
could result in an unintended recruitment of transcription factors
to the promoter of lncRNAs located nearby. We do not think that
this is a general phenomenon, as in the microarray or RNASeq
analysis, we do not observe that many lncRNAs located close to
ISGs are induced after IFN treatment. Besides, if such unintended
transcription occurs, we would expect that the expression of ISR2,
8, and 12 should always correlate with the expression of their
neighboring coding genes. This, however, is not the case.

Upon further analysis of the results in Figures 1, 4, and 5,
we observed a highly significant positive correlation between
the expression levels of ISR2 and GBP1, or of ISR8 and IRF1
(Figure 7A). These correlations may reflect the fact that ISR2
and ISR8 are genes induced by IFN at early time points. In fact,
the expression of ISR2 and ISR8 also correlated significantly with
the expression of IRF1 and GBP1, respectively (data not shown).
Therefore, to analyze correlation in a more stringent manner, we
compared the expression of ISR2, 8, and 12 with the expression
of all the genes represented in the SurePrint G3 microarray using
data from 120 human samples. In this case, we only observed
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a significant correlation for ISR8 and IRF1 (corr= 0.41 and
p < 10e−0.5), suggesting that these two genes are co-expressed.
In fact, the ISR8 promoter has a conserved IRF1 binding site.

Guilt-by-association genome-wide analysis predicts that ISR2,
8, and 12 could function in the IFN pathway and the antiviral
response (Figure 7B). Furthermore, they could be involved in
viral processes including viral life cycle and viral transcription.
In fact, ISR2 and 8 are upregulated at later times post-infection
with an influenza virus mutant that lacks NS1, unable to block
the IFN response (Figure 8). This suggests that ISR2 and 8 are
increased in response to the physiological amounts of IFN secreted
by the cells as a consequence of infection. We did not observe sig-
nificant responses of ISR2, 8, and 12 to other lytic viruses able
to block the IFN response. However, both ISR2 and 8 were sig-
nificantly upregulated in cells infected with HCV compared to
controls. This was observed in HCV-infected cells in culture but
also in the livers of HCV-infected patients (Figure 9A). Intrigu-
ingly, increased levels of ISR2 and GBP1 were also detected in
patients chronically infected with HIV (Figure 9B). We did not
observe significant correlations between the levels of ISR2 and
ISR8 and clinical symptoms, although patients with higher HIV
load tend to have higher levels of ISR2 and GBP1 (data not shown).

HCV is a chronic virus that employs several viral proteins to
block the IFN pathway (84). However, the ISG expression profile
of some patients with chronic HCV infections indicates that IFN
is being produced by the infected cells as well as by neighboring
cells (85). This may in turn explain upregulation of ISR2 and ISR8.
Upregulation was also observed for the neighboring genes GBP1
and IRF1 but not for other ISGs such as OAS (Figure 8 and data not
shown). This raises the question why the infection persist in spite
of increased levels of antiviral factors? Different viruses are tar-
geted by unique sets of ISGs (86). In the case of HCV both GBP1
and IRF1 have been shown to have antiviral potential (86–88).
IRF1 overexpression on its own can activate a similar set of genes
as IFN and can lead to a control of the replication of HCV and
other viruses (86). Therefore, for infection to persist, the effects
of IRF1 and probably other ISGs should be inhibited in infected
cells (84). One intriguing hypothesis for future work is that this
inhibition is in fact exerted by ISG lncRNA neighbors.

Further experiments will be required to determine whether
these ISRs have a proviral or an antiviral role by affecting the
function of ISGs. The only preliminary evidence of an anti-IFN
role is the highly significant anti-correlation between ISR2/ISR12
and key factors of the IFN pathway found by genome-wide guilt-
by-association studies. Similarly, inhibition of a lncRNA located
close to viperin, an ISG that also inhibits HCV replication, has been
shown to increase the levels of many IFN-inducible genes (82, 89).
Therefore, several lncRNAs could act as negative regulators of the
IFN pathway. The guilt-by-association study also shows a positive
correlation of ISR8/IRF1 and the IFN response, suggesting that
ISR8 could have a positive role in the IFN pathway. One possible
approach to further dissect the function of these ISRs in the future
will be their inhibition via RNAi. However, resistance to RNAi
is a common feature of many lncRNAs that locate in the nucleus
away from the RNAi machinery or contain poorly accessible struc-
tured sequences. An alternative could be the use of gene editing
technologies, provided that the function of the targeted lncRNAs

is not essential for the cell, which would prevent their complete
deletion. Moreover, it may also be feasible to overexpress selected
lncRNAs from plasmids or viral vectors, in order to study gain-of-
function phenotypes. In the long run, we are optimistic that these
and other approaches will help to further delineate the potential
role of lncRNAs in the IFN pathway and in the antiviral response.
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