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γδ T cells represent a major T cell population in epithelial tissues, such as skin, intes-
tine, and lung, where they function in maintenance of the epithelium and provide a crucial
first line defense against environmental and pathogenic insults. Despite their importance,
the molecular mechanisms directing their activation and function have remained elusive.
Epithelial-resident γδ T cells function through constant communication with neighboring
cells, either via direct cell-to-cell contact or cell-to-matrix interactions. These intimate rela-
tionships allow γδ T cells to facilitate the maintenance of epithelial homeostasis, tissue
repair following injury, inflammation, and protection from malignancy. Recent studies have
identified a number of molecules involved in these complex interactions, under both
homeostatic conditions, as well as following perturbation of these barrier tissues. These
interactions are crucial to the timely production of cytokines, chemokines, growth factors,
and extracellular matrix proteins for restoration of homeostasis. In this review, we discuss
recent advances in understanding the mechanisms directing epithelial-T cell crosstalk and
the distinct roles played by individual receptor-ligand pairs of cell surface molecules in this
process.
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INTRODUCTION
Epithelial tissues represent barriers between the body and the out-
side world. These barrier tissues contain resident populations of T
cells that help maintain homeostasis and provide a defense against
disruption to the epithelium. One such T cell population is the γδ

T cell. Subsets of γδ T cells are present in virtually all epithelial
tissues of all species and, in many cases represent the major, or
even exclusive, T cell population in the tissue (1). A variety of roles
have been ascribed to these tissue-resident γδ T cells, including
maintenance of epithelial homeostasis, tissue repair, inflamma-
tion, response to infection, and protection from malignancy (2–5).
Thirty years have already passed since the discovery of γδ T cells
and, although a considerable amount of progress has been made
in the understanding of the varied functions of these cells, much
remains unknown about the mechanisms by which these functions
are elicited.

Like αβ T cells, γδ T cells express a rearranged T cell receptor
(TCR), although with far more limited diversity than αβ T cells
(1, 6). In contrast to αβ T cells, most epithelial-resident γδ T cells
do not express the CD4 or CD8 coreceptors or the well charac-
terized αβ T cell costimulatory molecule, CD28 (7, 8). This gave
rise to the hypothesis that alternate molecules on γδ T cells may
serve analogous functions to those well characterized as essen-
tial for αβ activation and that additional novel interactions may
be responsible for some of the functions unique to epithelial γδ

T cells.
Indeed, the intimate contact between γδ T cells and the neigh-

boring epithelial cells they surveil, suggests that multiple receptor–
ligand interactions likely maintain γδ T cells in their homeostatic
state as well as participate in their activation and effector functions.

This review will focus on recent advances in the identification and
characterization of such molecules and the unique roles they play
in epithelial γδ T cell function.

ANTIGEN RECOGNITION
Stress-induced self-antigens have been postulated for many years
to represent ligands for γδ T cells (7, 9). Although γδ T cell ligands
are not the focus of this review, the γδ TCR forms an essential
component of the cell’s ability to survive and function and the
importance of TCR–ligand interactions for γδ T cell activation are
undisputed. In some cases, bone fide ligands have been identified
[reviewed in Ref. (10)]. Despite the restricted use of the γδ TCR,
ligands appear to be varied and diverse in nature and the majority
of those identified to date are ligands for circulating γδ T cells as
opposed to the tissue-resident epithelial γδ T cells.

One of the populations of epithelial-resident γδ T cells that
has received much attention, yet TCR-ligands remain unidenti-
fied, is the dendritic epidermal γδ T cell (DETC) of the murine
epidermis (11, 12). These cells express an invariant Vγ3Vδ1 TCR
[nomenclature according to Garman (13)]; alternative nomen-
clature Vγ5Vδ1 (14), that is expressed exclusively by DETC in
skin and DETC precursors in fetal thymus (15). Recent work has
demonstrated rapid and transient expression of the unknown TCR
ligand following wounding, as well as a restricted distribution of
expression to sites immediately adjacent to the wounds (16). In
this study, no ligand was detectable under steady-state conditions
in non-wounded tissue. In contrast, another study using intrav-
ital microscopy found constitutive Vγ3Vδ1 TCR signaling from
interaction with neighboring epithelial cells, with wounding elic-
iting a reorganization of TCR molecules rather than an increase
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in signal strength (17). This suggested constitutive TCR–ligand
interactions under homeostatic conditions. As neither study iden-
tified a TCR ligand, both lack definite proof of constitutive ligand
absence or presence, respectively. The Skint1 molecule does repre-
sent an attractive candidate for a steady-state Vγ3Vδ1 TCR ligand,
as it is constitutively expressed by keratinocytes (18). However,
as yet, no direct binding of Skint1 to the Vγ3Vδ1 TCR has been
demonstrated. Until the identity of the Vγ3Vδ1 TCR ligand is
firmly established, it cannot be concluded that this constitutive
signaling in DETC in the steady state is indeed ligand-induced.
Nevertheless, Skint1 deficiency has a profound effect on DETC
development (19, 20) and studies in Skint1-deficient animals have
added to the body of evidence demonstrating the importance of
the Vγ3Vδ1 TCR to DETC function.

Studies of animals with disruption of the Vγ3 gene provided the
first evidence that TCR conformation was essential for localization
to, and residence in, the skin (21). The epidermis of mice lacking
the Vγ3 gene product is populated by γδ T cells expressing alter-
nate Vγ chains, yet these T cells are still recognized by a Vγ3Vδ1
clonotype-specific monoclonal antibody (21). This demonstrates
the requirement of TCR conformation for localization of γδ T cells
to the epidermal layer of the skin.

Subsequent studies, disrupting the entire TCRδ locus, demon-
strated the functional importance of the γδ TCR to both epidermal
homeostasis and wound repair. In these TCRδ-deficient animals,
the epidermis is populated by replacement T cells bearing diverse
αβ TCRs (22). The lack of true DETC in these animals results
in keratinocyte apoptosis due to IGF-1 deficiency (23) and grad-
ual decline in epidermal T cell numbers over time as the atypical
αβ T cell population is not maintained in the epidermis (22).
Upon damage to the epidermal layer, the αβ T cell population
found in the epidermis of TCRδ−/− animals is unable to mount
an efficient response to repair the epidermal damage and facilitate
the return to homeostasis. One major defect in these animals is a
lack of KGF-1 production (24) by the replacement αβ T cells. This
results in reduced keratinocyte proliferation and delayed wound
closure. In addition, hyaluronan production is defective, result-
ing in reduced or delayed recruitment of additional immune cells,
such as macrophages, required to facilitate the repair process (25).

Wound repair functions of γδ T cells are not restricted to
the epidermis. In the DSS-induced mouse model of colitis, it is
possible to analyze both tissue damage and repair in the intes-
tine, and thus the role of γδ T cells in these processes. In this
model, the importance of γδ T cells in the intraepithelial com-
partment of the intestine (γδ IEL) to the repair process is clear,
yet once again the ligand for the γδ TCR is unknown. Fol-
lowing DSS treatment, γδ IEL localize to sites of epithelial cell
damage and express KGF-1, resulting in vigorous epithelial cell
proliferation to repair the damage (26). In the absence of γδ T
cells, there is increased severity of DSS-induced damage and a
delay in tissue repair due, at least in part, to defective KGF-1
production resulting in severely impaired epithelial cell prolif-
eration (26). Together, studies in skin and intestine highlight
the importance of the communication between γδ TCR bear-
ing cells and epithelial cells for homeostatic tissue maintenance
as well as repair from epithelial damage. What is becoming
increasing clear is that TCR–ligand interactions are not the sole

communicators for epithelial γδ T cell interactions with their
neighboring epithelial cells.

COSTIMULATION
Costimulation, integral to effective αβ T cell activation, has not
been as clearly defined for γδ T cells. However, recent stud-
ies have begun to identify novel molecules, and decipher their
costimulatory mechanisms, for epithelial γδ T cells.

Junctional adhesion molecule-like (JAML) is a type I trans-
membrane glycoprotein found on a variety of effector cells of
both the innate and adaptive immune system. Most notably, JAML
expression has been demonstrated on neutrophils, monocytes, and
memory T cells (27, 28). More recently, JAML was found to be
expressed at low levels on epithelial γδ T cells under steady-state
conditions and rapidly upregulated upon stimulation (29). In vitro
assays with isolated epidermal γδ T cells demonstrated a key role
for JAML in γδ T cell costimulation (29). Strikingly, this costimu-
latory function of JAML appears restricted to the epithelial subsets
of γδ T cells. Emerging evidence suggests that circulating γδ T cells
may too have their own unique set of costimulatory and accessory
molecules (30–32).

JAML binds to coxsackie and adenovirus receptor (CAR) (28,
29) expressed on epithelial cells (29). CAR ligation of JAML
recruits PI3K to JAML (33) and subsequently costimulates DETC
proliferation and cytokine production (29). Of note is that PI3K is
also able to mediate costimulatory signals through the prototypic
αβ T cell costimulatory molecule, CD28, through a binding motif
similar to that found in JAML and another αβ costimulatory recep-
tor, ICOS (34). In the absence of JAML-CAR interactions in vivo
in the skin, DETC activation in response to wounding is impaired,
cytokine responses are diminished and subsequent wound closure
is delayed (29). Thus, crosstalk between JAML and CAR is a key
component of DETC activation and the wound repair process.
The comparable expression of JAML and CAR in the mouse intes-
tine (29), suggests that these molecules may play a parallel role in
γδ IEL activation in the intestine. Whether interactions between
JAML and CAR are also vital for human skin and intestinal T cell
activation and damage repair is still unknown.

In addition to JAML, the C-type lectin-like NKG2D receptor
is also expressed on effector cells of both the innate and adap-
tive immune systems. NKG2D can be found on NK, NKT, γδ,
and CD8+ T cells and is best characterized as providing activating
signals upon ligation to one of its multiple ligands (35–37). In
humans, NKG2D ligands include MICA and MICB and members
of the ULBP family of molecules, while in the mouse, H60a-c,
MULT1, and RAE1 serve as ligands (37–39). The expression of
NKG2D ligands is generally low under homeostatic conditions,
but can be upregulated by a variety of signals of cellular stress
including infection, tumorigenesis, and tissue damage.

In the mouse, epidermal γδ T cells express NKG2D. While lig-
and engagement of NKG2D activates these DETC (40), it is not
yet clear whether this activation signal relies on concomitant TCR
signaling or can alone activate DETC. H60c is an NKG2D ligand
expressed in the epidermis upon skin damage and on cultured
keratinocytes (41). H60c engagement of NKG2D, in the absence
of TCR-mediated signals, is unable to activate DETC in vitro.
Instead, H60c provides a costimulatory signal to DETC through
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NKG2D (41). Blockade of interactions between H60c and NKG2D
impairs KGF production and the wound repair response (42). In
contrast, keratinocyte specific upregulation of another NKG2D
ligand, RAE1, is able to activate DETC directly without an apparent
requirement for simultaneous TCR engagement (43, 44). Whether
this difference in TCR requirement could be due to the nature
of the damage and thus the nature of the induced ligand, and
elicited DETC response, is an intriguing question that remains
unanswered.

In human beings, the NKG2D ligands MICA and MICB can
be recognized by intestinal epithelial T cells expressing the Vδ1
γδ TCR (45, 46). As expression of MIC in the intestinal epithe-
lium is apparently stress induced, these NKG2D ligands have been
proposed to be recognized by Vδ1 γδ T cells in their surveillance
for signs of damaged, infected, or transformed intestinal epithe-
lial cells (47). Data suggest that MIC recognition can be either
directly through the TCR or via NKG2D and that recognition may
in fact be sequential, utilizing both molecules (48). This hypothe-
sis, however, remains to be tested experimentally. In addition, both
circulating and intestinal γδ T cells have been shown to recognize
lipid antigens bound to CD1d [reviewed in Ref. (49)]. Recently, a
previously described MICA binding Vδ1 TCR was also found to
interact with high affinity with CD1d-sulfatide (50), opening the
possibility of multiple ligands for some γδ TCRs.

MORPHOLOGY AND MIGRATION
Epidermal γδ T cells develop in the thymus during fetal life and
migrate to the epidermis, proliferate locally, and then remain in
the epidermis for the life of the animal. These cells are sessile
under homeostatic conditions (17, 51), and one of their most
unique features is their striking dendritic morphology (11, 12),
with basal dendrites being highly motile and immobile dendrites
apically oriented, anchoring DETC at keratinocyte tight junctions
(17). Adoption of these dendritic features seems to be dictated
somewhat by environment, as recent work has shown a similar
morphology of CD8+ TRM in the epidermis (52, 53). Interestingly,
TRM cells form short dendrites and small projections that extend
laterally within the epidermis (52, 53), in contrast to the long den-
drites of DETC projecting upwards toward the stratum corneum
(17), indicating that additional non-microenvironmental cues
may control epidermal T cell morphology. At least for the γδ

T cells in the skin, this dendritic morphology is dramatically
lost upon activation of DETC (24). Activated DETC assume
a rounded shape and recent studies have identified the sema-
phorin, CD100, and one of its ligands, Plexin B2, in regulating
this process (54). Mice deficient in the CD100 molecule were
found to exhibit delayed DETC rounding upon wounding. A direct
role for CD100 and plexin B2 in this morphology change was
demonstrated by in vitro ligation of CD100 leading to ERK kinase
and cofilin activation, concurrent with rapid DETC rounding.
The importance of the CD100-plexin B2 mediated rounding in
epithelial wound repair was demonstrated by the delayed wound
closure observed in animals deficient for the CD100 molecule (54).
Plexin B2 is broadly expressed on many epithelial tissues where
CD100-expressing γδ T cells reside, suggesting a more general
role for CD100-plexin B2 in epithelial cell–T cell interactions.
Indeed, a more severe colitis and a similar delay in repair, is

seen in the absence of CD100 in a mouse model of DSS-induced
colitis (55).

Despite an increased understanding of the mechanisms con-
trolling the characteristic DETC rounding upon activation, the
function of this morphology change remains to be determined.
One idea that has been put forth is that rounding is required for
motility of DETC, either to the site of damage following a wound
(54), or to draining lymph nodes in response to contact hypersen-
sitivity reactions (56). Interestingly,CD103 has been demonstrated
to play a role in DETC dendrite attachment to keratinocytes (17)
and has recently been shown to be important for retention of TRM

in the skin (57). By analogy with this, CD103 is down-regulated
upon DETC activation (22), which may thus allow detachment
from keratinocytes and movement of the normally sessile DETC.
Consistent with this hypothesis is the reduced number of DETC
in the epidermis of CD103-deficient animals (58), although it has
not been shown definitively that this is due to a lack of retention
of DETC in the skin. Other possible explanations for the reduced
DETC numbers in these animals are a defect in DETC development
or reduced homing of DETC to the epidermis.

Persistence in the epidermis is also reliant on the aryl hydrocar-
bon receptor (AhR). AhR is expressed by keratinocytes, Langer-
hans cells, melanocytes, and DETC (59). In the absence of AhR,
DETC undergo apparently normal intrathymic development and
are able to home to the epidermis (59, 60). However, DETC in
AhR−/− animals do not exhibit their normal dendritic morphol-
ogy (59). They do not extend dendrites to neighboring epithelial
cells, instead remaining round. Furthermore, DETC do not take up
residence in the epidermis, but steadily decline in number in the
first weeks after their initial homing to the tissue (59, 60). Condi-
tional knock-out animals have demonstrated that it is specifically
a deficiency in AhR in the DETC themselves that is responsible
for the lack of retention in the epidermis (60), possibly as a result
of a defect in c-kit interaction with its ligand, stem cell factor
caused by the AhR deficiency (59). AhR-deficient DETC may thus
be unable to make the necessary contacts with keratinocytes, and
possibly Langerhans cells, that are required for maintenance in the
epidermal compartment.

A similar loss of intestinal epithelial T cells in the absence of
AhR has been described (60). While normal numbers of γδ T cells
were found in lymph node, spleen, and thymus, AhR-deficient ani-
mals were virtually devoid of small intestinal TCRαβCD8αα and
γδ IEL. As in the epidermis, loss of AhR activity was found to be
responsible for a lack of maintenance of these cells in the intes-
tine. Additionally, a reduction in AhR ligands or AhR deficiency
itself results in increased immunopathology in DSS-induced col-
itis (60). Although clearly important for epithelial homeostasis,
just how AhR signals maintain DETC and IEL at epithelial sites is
unknown. In addition, the role of AhR in the activation of these
cells during the wound repair process still requires investigation,
but likely requires coordinated interactions between resident γδ T
cells and their neighboring epithelial cells.

Interestingly, differences exist between epidermal-resident and
intestinal-resident γδ T cells. The epithelia in these two tissues are
quite distinct with the epidermis containing a stratified epithelial
layer and the intestine lined with a single layer epithelium which
may account for some of the differences in the features of γδ T
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FIGURE 1 | Epithelial γδT cell interactions with keratinocytes in the
epidermis. Distinct functional interactions occur between dendritic
epidermal T cells (DETC) and neighboring keratinocytes in the epidermis of
murine skin. DETC respond to an unknown T cell receptor (TCR) ligand
expressed by keratinocytes. This response is concomitant with interactions
regulating costimulation, morphology, migration, and adhesion, as well as
likely through interactions that mediate retention of DETC in the epidermis.
All these interactions are required for efficient DETC activation and effector
function.

cells in these tissues. As mentioned above, DETC are sessile under
homeostatic conditions using their multiple dendritic projections
to survey multiple neighboring keratinocytes simultaneously (17).
In contrast, γδ T cells in the intestine migrate actively within the
intraepithelial compartment in the normal steady state (61). In
this way, the limited number of γδ IEL are presumably able to
surveil the entire intestinal epithelium for signs of damage or dis-
ease. Evidence points to occludin expression by IEL as vital to this
process (61) but the contribution of other molecules thought to
be involved in epithelial γδ T cell migration, such as CD100 and
CD103, is unknown at this time.

CONCLUDING REMARKS
Although sharing some characteristics with αβ T cells, the identifi-
cation of an increasing number of novel molecules functioning in
various aspects of epithelial γδ T cell activation (Figure 1), high-
lights the distinct nature of these cells. Numerous molecules, such
as integrins, adhesion molecules, cytokine receptors, and known
markers of activation are expressed by DETC and other γδ IEL and
are modulated in vitro and/or in vivo by activation signals (62–64).
Future studies designed at elucidating the precise role of these vari-
ous molecules in epithelial γδ T cell activation, should shed further
light on the unique functional properties of this enigmatic T cell
population.
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