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Solid organ transplantation is the only treatment for end-stage organ failure but this life-
saving procedure is limited by immune-mediated rejection of most grafts. Blood vessels
within transplanted organs are targeted by the immune system and the resultant vascular
damage is a main contributor to acute and chronic graft failure.The vasculature is a unique
tissue with specific immunological properties. This review discusses the interactions of
the immune system with blood vessels in transplanted organs and how these interactions
lead to the development of transplant arteriosclerosis, a leading cause of heart transplant
failure.
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INTRODUCTION
The success of organ transplantation as a curative therapy is hin-
dered by the eventual failure of almost all grafts due largely to
immune-mediated rejection (1). Also, transplant recipients need
to take non-specific immunosuppressive drugs that are associ-
ated with many morbid side effects. A better understanding of
how immune responses that are directed toward foreign organ
grafts cause transplant failure is needed to develop strategies that
specifically prolong survival and increase quality of life of graft
recipients.

By its nature, organ transplantation results in the exposure of
the immune system to an abundance of foreign antigens associated
with inflammation, the former being a result of genetic differences
between organ donors and recipients and the latter being caused
by ischemic and mechanical damage during the transplantation
procedure. The result is that T and B cells of the adaptive immune
system specifically recognize graft-derived antigens (an alloim-
mune response) and become activated to elicit effector responses
that reject transplanted organs. T cells recognize graft-derived
peptides bound to major histocompatibility complexes [pMHCs;
human leukocyte antigens (HLAs) in humans] expressed by graft
cells and recipient antigen-presenting cells (e.g., dendritic cells
and macrophages). This leads to the induction of cell- and

Abbreviations: AMR, antibody-mediated rejection; APC, antigen-presenting
cell; EC, endothelial cell; EDCF, endothelial-derived constrictor factors; EDRF,
endothelial-derived relaxation factor; eNOS, endothelial nitric oxide synthase; ET-1,
endothelin-1; HLA, human leukocyte antigen; IDO, indoleamine 2,3-dioxygenase;
IFNγ, intergeron-γ; ILT, immunoglobulin-like transcript; MHC, major histocom-
patibility complex; NO, nitric oxide; PD-1, programed cell death-1; PD-L1, pro-
gramed cell death ligand-1; TA, transplant arteriosclerosis; TNF, tumor necrosis
factor.

antibody-mediated alloimmune responses (2, 3). Alloimmune-
mediated arterial injury and dysfunction causes the development
of transplant arteriosclerosis (TA), a vascular occlusive condition
that causes ischemic graft failure. TA is prevalent in all solid organ
transplants and is the main challenge in heart transplants because
its incidence has not been diminished by advancements in current
immunosuppressive drug therapies despite their ability to prevent
acute rejection (1, 4). This may be because the immune response
in arteries has unique features that necessitate distinct approaches
for intervention. We review the current knowledge on the mecha-
nisms by which alloimmune responses lead to vascular cell injury
and dysfunction, the alarmin molecules released in response to
alloimmune-mediated cell injury, and how these processes drive
the development of TA.

IMMUNE TARGETING OF VASCULAR CELLS
In response to T cell recognition of pMHC molecules, T cells
undergo rapid activation, proliferation, and differentiation into
effector cells. Effector CD8 T cells are equipped to specifically
induce cell death of target cells by expressing cytotoxic molecules,
such as granzymes and perforin, which are contained within cyto-
toxic granules. Death ligands, such as FasL and TRAIL, are also
expressed on CD8 T cell membranes (5–8). In addition to cytotoxic
effector mechanisms, CD8 T cells also secrete interferon-γ (IFNγ),
which induces cellular changes that lead to tissue remodeling.
Effector properties of CD4 T cells mainly involve the production of
cytokines to induce inflammation and that alter cell function in tis-
sues. Three main types of CD4 effector T cells have been described
in peripheral tissues: Th1 (that produce IFNγ), Th2 (that produce
IL-4, IL-5, and IL-13), and Th17 (that produce IL-17, IL17F, IL-21,
and IL-22) (9). Follicular helper T cells (Tfh; that produce IL-21

www.frontiersin.org January 2015 | Volume 5 | Article 684 | 1

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00684/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00684/abstract
http://www.frontiersin.org/people/u/15190
mailto:jonathan.choy@sfu.ca
http://www.frontiersin.org
http://www.frontiersin.org/Alloimmunity_and_Transplantation/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

von Rossum et al. Pathogenesis of transplant arteriosclerosis

and express ICOS and CXCR5) reside within lymphoid tissues
and control antibody production and class switching (10). Finally,
antibodies that are secreted by B cells bind antigens within tissues
and damage cells through complement-mediated cell lysis, acti-
vation of inflammation, and antibody-dependent cell cytotoxicity
that is mediated by natural killer (NK) cells (11).

In addition to providing a conduit for tissue oxygenation
and delivery of nutrients, blood vessels also interact intimately
with the immune system to control the outcome of immune
responses. Endothelial changes in the microvasculature are essen-
tial for leukocyte migration into sites of inflammation. Human
endothelial cells (ECs) also basally express MHC class I and II
molecules and up-regulate both molecules in response to inflam-
matory cytokines such as IFNγ and TNF, thereby enabling them
to directly present alloantigens to T cells and be targeted by
alloreactive effector T cells (12–16). Further, this vascular cell
type expresses a variety of co-stimulatory molecules and, as such,
human ECs are able to directly activate alloreactive memory T cells
within the vessel wall (17). In addition to ECs, most arteries also
contain resident dendritic cells that elicit immune activation after
activation by inflammatory stimuli (18–20). Importantly, animal
models have established that antigen presentation by both human
ECs and arterial dendritic cells activate immunopathological T
cell responses within arteries that lead to arteriosclerotic thicken-
ing (21–23). In contrast to activating T cells, the endothelium also
expresses some immunoregulatory cell surface and soluble factors
that inhibit effector T cell responses and some types of dendritic
cells induce tolerance to arterial antigens (19, 24–29). Vascular
smooth muscle cells within arteries also interact with T cells. This
vascular cell type basally expresses MHC class I molecules and
can be induced to express MHC class II molecules in response
to inflammatory cytokines (30). T cell recognition of alloantigens
presented by vascular smooth muscle cells attenuates T cell acti-
vation through the production of indoleamine 2,3-dioxygenase
(IDO) and a lack of co-stimulatory molecule expression, imply-
ing that vascular smooth muscle cells possess properties that
may define immunoprivilege-like status in arteries (31–33). All
together, the distinct combination of immune-stimulatory and
immune-regulatory features of vascular cells and artery-associated
dendritic cells may define the uniqueness of immune responses in
blood vessels.

Once activated by alloantigens, immune targeting of the graft
vasculature occurs through processes mediated by cytotoxic CD8 T
cells, effector CD4 T cells, and B cell-derived antibodies. Cytotoxic
T cells induce EC death through a granzyme/perforin mechanism
that is inhibited by Bcl-2. Moreover, granzyme B and perforin
are sufficient to induce rapid cell death of human ECs in vitro
and granzyme B alone is capable of inducing EC death in a
delayed fashion by proteolyzing extracellular proteins required for
adhesion-mediated cell survival (34–38). With regard to death
receptors, vascular ECs express low levels of Fas and are relatively
resistant to FasL-mediated apoptosis due to their expression of
c-FLIP, which is an endogenous inhibitor of caspase-8 (39, 40).
However, IFNγ and oxidized low-density lipoproteins (which are
present in human TA lesions) sensitize ECs to Fas-mediated cell
death by down-regulating expression of c-FLIP (41–43). The death
ligand TRAIL, which is expressed by some types of T and NK cells,

induces EC death in vitro so may also induce EC death in certain
inflammatory settings (44). In addition to cytotoxic T cells, ECs
also activate alloreactive CD4 T cells, which lead to the produc-
tion of mainly IFNγ and IL-2, although a small subset of T cells
produce IL-17 (22, 45).

B cell responses contribute to allograft injury through the
production of graft-reactive antibodies (46). The presence of anti-
donor antibodies is associated with a high rate of rejection and
poor long-term outcome (47, 48). The histological description of
antibody-mediated rejection (AMR) is vascular in nature includ-
ing morphological changes to the microvascular endothelium,
such as EC swelling, and the intravascular accumulation of mono-
cytes. The observation of complement deposition in the vascular
compartment of biopsies adds additional prognostic value (49).
Foreign HLA molecules are the predominant antigens recognized
by pathologic antibodies in the setting of transplantation but some
non-HLA molecules are also targeted (50–53).

There are several cellular mechanisms by which antibodies
can cause pathological changes in ECs. One of the main effec-
tor processes triggered by antibodies is complement activation.
The presence of complement-binding anti-HLA antibodies is
associated with extremely poor kidney graft survival as com-
pared with the presence of non-complement-binding antibodies
or the absence of donor anti-HLA antibodies (54). Also, grafts
and/or recipients that are unable to activate complement fail to
reject grafts in preclinical models, and therapeutic inhibition of
complement with blocking antibodies prevents acute AMR in
preclinical studies and clinical trials (55–59). Although vascular
deposition of complement is used as a diagnostic feature of AMR,
complement-mediated lysis of ECs is rarely observed (60, 61).
Instead, membrane deposition of the membrane attack complex of
the complement cascade augments immune responses by increas-
ing inflammation and supporting the activation of T cells by the
endothelium (62). The complement fragments C3a and C5a also
have pro-inflammatory effects that increase the ability of antigen-
presenting cells to activate alloreactive T cells, which oppose the
induction of regulatory T cells, and that directly amplify the
activation of effector T cells (63, 64).

Binding of antibodies to HLA antigens on ECs also initi-
ates complement-independent processes that cause phenotypic
changes in vascular cells. Cross-linking of HLA I molecules by
antibodies triggers the downstream activation of Rho kinase and
ERK1/2 signaling pathways (65). This leads to phenotypic changes
that include cell proliferation, survival, and migration (66–68).
HLA cross-linking also induces the rapid cell surface presenta-
tion of P-selectin and secretion of von Willebrand factor, which
increases transendothelial migration of leukocytes (69, 70). Other
effects of HLA cross-linking include up-regulation of cell adhesion
molecules such as ICAM, chemokines such as IL-8 and RANTES,
and cytokines such as IL-6 (71). This could result in prolonged
activation of the endothelium that supports leukocyte recruitment
and chronic inflammation.

In the discussion above, we have introduced the mechanisms
by which alloimmune responses damage the graft vasculature. The
effect on transplantation of these processes depends on whether
the microvasculature or macrovasculature is affected. Microvascu-
lar injury results in hemorrhage and thrombosis, thereby causing
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ischemic graft damage that leads to acute graft failure or chronic
fibrosis (72, 73). EC death also results in the release of fibrotic fac-
tors that can directly drive tissue fibrosis (74, 75). Macrovascular
damage of arteries and arterioles triggers the development of TA,
as discussed below (76).

IMMUNOPATHOLOGICAL MECHANISMS IN TA
Transplant arteriosclerosis is characterized by intimal hyperplasia
and vasomotor dysfunction that develops as a result of immuno-
logical targeting of vascular endothelial and smooth muscle cells.
The intima in TA is formed by the accumulation of smooth mus-
cle cells, CD4 and CD8 T cells, B cells, macrophages, dendritic
cells, and occasional NK cells. Structurally, there is concentric
intimal expansion, alteration of extracellular matrix composi-
tion, aberrant lipid deposition, and intraplaque hemorrhage (77–
79). In addition to intimal thickening, vasodilatory function is
compromised in allograft arteries (80). The combination of inti-
mal thickening and vasodilatory dysfunction occludes the arterial
lumen, resulting in reduced blood flow and ischemic damage of
downstream tissues (81).

It is clear that the development of TA is driven by alloimmune
targeting of the graft vasculature because intimal thickening is
confined to the graft and does not develop in experimental mod-
els in which grafts are placed in genetically identical animals or in
recipients that lack adaptive immune responses (82, 83). Targeting
of graft arteries by T cells and antibodies causes the develop-
ment of intimal thickening through the induction of vascular cell
injury, and cytokine- and antibody-mediated alteration of graft
vascular cell phenotypes. T cells also cause vasoregulatory dys-
function of allograft arteries. These processes are discussed below
and summarized in the Table 1.

VASCULAR CELL INJURY IN TA
Elegant studies in the 1970s and 1980s examining the response of
arteries to mechanical injury demonstrated that vascular dam-
age can initiate a “response-to-injury” process that culminates

in the development of arteriosclerotic thickening (84). In these
models, intimal thickening is caused by vascular damage that
triggers the migration of leukocytes and platelets to regions of
injury. The resultant production of cytokines and growth factors,
such as PDGF and bFGF, by infiltrating leukocytes and injured
vascular cells in turn stimulates smooth muscle cells to migrate
into the intima and proliferate, thereby forming the nexus of
hyperplastic intimal thickening (85–91). In addition to trigger-
ing the production of growth factors from infiltrating leukocytes
and neighboring vascular cells, EC death also increases smooth
muscle cell accumulation through the caspase-mediated genera-
tion of a bioactive fragment of the cell matrix protein perlecan,
which inhibits smooth muscle cell death (52, 92). The concept
that arteriosclerotic changes are driven by a reparative response in
the arterial wall was proposed to be generalizable to several forms
of vascular occlusive diseases, including TA (93).

Clinical and experimental findings show that immunologic
injury of endothelial and/or smooth muscle cells is a main trigger
for the development of TA. Detailed histopathological analysis of
clinical specimens of TA initially identified the presence of apop-
totic luminal ECs in these arteries and cytotoxic T cells expressing
perforin were present in the subendothelial space immediately
underlying dying ECs (94–96). Granzyme B and FasL were also
abundant in the intima of allograft arteries with TA and their
presence was correlated with increased vascular cell death (94, 97).

Examination of clinical specimens of TA provides valuable
insight into potential pathological mechanisms driving disease
development. Pairing such observations with experimental inves-
tigations is needed to establish causative processes. Consistent with
a role for EC death in the initiation of TA, early endothelial disrup-
tion characterized by missing cells, intracellular gaps, and exposed
extracellular matrix is observed in arteries from heterotopic rat
heart transplants very early after transplantation (98). Experi-
ments studying the transplantation of grafts across a complete
MHC barrier established a role for CD4 T cells and B cells in TA
but CD8 T cells do not appear to be needed in these models (82,

Table 1 | Immunological effects on vascular cells and their consequences to arterial structure and function inTA.

Vascular cell type Type of immune-mediated cell death or

phenotypic alteration

Consequence

Endothelial Cell Granzyme/perforin-induced death Reparative response leading to arteriosclerotic thickening

FasL-mediated death Reparative response leading to arteriosclerotic thickening?

Cell activation by inflammatory cytokines Vascular inflammation and leukocyte accumulation leading to

arteriosclerotic thickening

Complement-dependent antibody-mediated changes Augmentation of antigen presentation leading to arteriosclerotic

thickening

Complement-independent antibody-mediated changes Vascular inflammation, leukocyte accumulation, and cell

proliferation potentially leading to arteriosclerotic thickening

Alteration in NO production by inflammatory cytokines Vasoregulatory dysfunction or compensatory vasodilation

Vascular smooth muscle FasL-mediated cell death Medial damage potentially leading to arteriosclerotic thickening

and reduced vasoconstriction

ET-1-induced contraction Pathological vasoconstriction

iNOS-induced NO de-sensitization Reduced vasodilation
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83). However, it is clear in humans that many grafts reject through
antibody-independent mechanisms that are mediated by T cell
effector processes. The transplantation of grafts across minor his-
tocompatibility antigen mismatch barriers leads to immunological
rejection of grafts that depends on T cells but not antibodies (99).
In these models, the development of TA is triggered by EC death
induced by CD8 T cells, perforin, and granzyme B suggesting that
this type of cytotoxic T cell response is primarily responsible for
the induction of EC death in TA (Figure 1A) (37, 100–102).

Models of arteriosclerosis also suggest that medial smooth
muscle cell injury can trigger or promote the development of
intimal thickening (103–105). Medial smooth muscle cell death
is observed in some models of arterial vascular rejection and TA,
and depletion of CD8 T cells or blockade of the Fas/FasL pathway
prevents medial smooth muscle cell death and intimal thicken-
ing (106, 107). Inflammatory cytokines, such as IFNγ, sensitize
smooth muscle cells to FasL by relocating the Fas receptor to the
cell surface (108, 109). Finally, a mechanism by which vascular
smooth muscle cell death in allograft arteries triggers intimal

FIGURE 1 | Immune-mediated vascular changes that causeTA.
(A). Effector T cells target ECs in arteries of transplanted organs. Cytotoxic
T cells kill arterial ECs through granzyme/perforin- and FasL-mediated
pathways. This endothelial damage triggers a “response-to-injury” process
that involves leukocyte and smooth muscle cell migration into the arterial
intima that drives intimal thickening and occludes the arterial lumen. In
addition to cytotoxic T cell responses, T cell recognition of allogeneic ECs
results in the secretion of effector cytokines, such as IFNγ and TNF, which
“activates” the endothelium to up-regulate MHC class I and II, cell adhesion
molecules, and chemokines. These changes amplify the recruitment of
leukocytes into allograft arteries. Anti-MHC antibodies amplify immune
responses in allograft arteries by cross-linking MHC molecules, which
induces cell signaling pathways that up-regulate adhesion molecules and
von Willebrand factor. This enhances leukocyte transendothelial migration.
Anti-MHC antibodies also induce proliferation and migration of ECs, which
could trigger the remodeling of allograft arteries. (B) The secretion of IFNγ

from effector T cells stimulates the proliferation of vascular smooth muscle
cells in the intima of allograft arteries. This increases the accumulation of
vascular smooth muscle cells and intimal thickening.

thickening may be through the induction of stromal cell-derived
factor-1 (CXCL12) production by dying and neighboring cells,
which initiates the migration and proliferation of mesenchymal
stem cells into the intima (110).

In addition to triggering a pathological reparative response
that initiates intimal thickening, cell injury results in the release
of alarmins that stimulate inflammation and immune activa-
tion. This serves to initiate or propagate immunological responses
and, as such, could contribute to immunopathology. Alarmins are
intracellular molecules that bind pattern recognition receptors,
such as toll-like receptors (TLRs), to activate antigen-presenting
cells and vascular cells (111). They also stimulate the recruitment
of antigen-presenting cells to sites of injury or infection. Sev-
eral alarmins have been implicated in the regulation of allogeneic
responses and these include HMGB1, IL-1α, endogenous RNA and
DNA, and IL-33.

HMGB1 is a chromatin binding protein that is universally
expressed in cells. It is released into the extracellular space after
necrotic cell death but can also be secreted in a regulated manner by
macrophages. It binds to TLR4 and receptor of advanced glycation
end-products (RAGE) to activate the immune stimulating proper-
ties of antigen-presenting cells (112). HMGB1 is released by dying
ECs and this promotes allogeneic T cell responses by inducing
the release of IL-1β from monocytes and IL-1α from neighboring
ECs (113). Systemic blockade of extracellular HMGB1 prevents the
development of chronic heart transplant failure and TA in a mouse
model (114). IL-1α is also released from dying ECs in allograft
arteries in response to ischemic and immune-mediated damage
whereupon it promotes the development of intimal thickening
(22). Nuclei acids are another type of endogenous molecule that is
released after cellular damage and that act as alarmins. DNA and
RNA from pathogens can be recognized by various TLRs as well as
the STING pathway in the cytosol for DNA and the MDA5/RIG-
I cytosolic RNA receptors (115). Although TLR7/8/9 may also
be able to recognize self-RNA and -DNA Tellides and colleagues
(116) showed that self-RNA is detected by vascular smooth mus-
cle cells primarily through the MDA5/RIG-I pathway and that this
augments inflammation within human coronary arteries.

The above examples highlight the role of alarmins in the acti-
vation of allogeneic immune responses and development of TA.
Recent evidence has established a novel role for the alarmin IL-
33 in preventing allogeneic immune responses, cardiac transplant
failure, and TA. IL-33 is expressed in non-hematopoeitic cells
including ECs, is released after cellular damage, and has been estab-
lished to promote the activation of protective immune responses
following virus infection (117). In contrast to the role of IL-33 in
promoting immune activation in response to pathogen infection,
several groups have made the unexpected observation that it pre-
vents cardiac transplant rejection and TA (118–120). Although it
promotes the development of Th2 responses, the mechanism by
which IL-33 is protective in transplantation is likely through the
generation of suppressive myeloid cells and T regs (120, 121).

CYTOKINE-MEDIATED ALTERATION OF GRAFT VASCULAR CELL
PHENOTYPES
During immune responses, the endothelium is “activated” by
cytokines to express cell adhesion molecules and chemokines that
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facilitate the recruitment of leukocytes from the blood into tissues.
During this process, the endothelium also undergoes morphologi-
cal changes that increase vascular permeability to plasma proteins
(122). These vascular changes are essential for the development
and localization of immune responses. Organ grafts are charac-
terized by heightened inflammation and immunity resulting from
ischemic and surgical damage as well as from immunological tar-
geting of the graft. The resultant production of cytokines alters the
function and phenotype of vascular cells and, in this way, remodels
blood vessels (123).

Profiling of the immune response in clinical samples of TA
has revealed a predominance of Th1 cytokines and associated
chemokines (124). These findings suggest a pathological role of
Th1 cytokines, of which IFNγ is the prototypical member, in vas-
cular changes associated with TA. Indeed, experimental studies
confirm that IFNγ has an unequivocal role in the development
of TA (125, 126). IFNγ has broad-ranging effects on both ECs
and vascular smooth muscle cells (Figures 1A,B). Stimulation of
ECs with IFNγ up-regulates the cell surface expression of MHC
class I and II molecules. This enhances the activation of T cells
by graft ECs as well as the recognition and targeting of blood ves-
sels by effector T cells (12, 127). The induction of chemokines,
such as IP-10, by IFNγ supports the migration of T cells into
allograft arteries (128). IFNγ also increases EC susceptibility to
FasL-mediated cell death (39, 129, 130). IFNγ signaling in smooth
muscle cells is also important in the development of intimal thick-
ening, as supported by findings that IFNγ is sufficient to cause
intimal thickening by promoting vascular smooth muscle cell
mitogenesis in a humanized mouse model of arteriosclerosis (131).
Recent studies indicate that IFNγ-stimulated smooth muscle cell
proliferation is mediated by PI3K activation of mammalian target
of rapamcyin (mTOR) and attenuated by ASK1-interacting pro-
tein 1, which is a Ras GTPase-activating protein family member
that antagonizes JAK-STAT signaling (132, 133).

The inflammatory cytokines IL-1β, IL-1α, and TNF are also
abundant in TA lesions and all are induced early after trans-
plantation (134–136). These cytokines activate similar signaling
pathways, have overlapping effects on vascular cells (137, 138), and
contribute to the development of TA in animal models (22, 139).
Distinctions in the effects of these cytokines may arise from differ-
ences in their cell source within arteries. While IL-1β and TNF are
mainly expressed by infiltrating or tissue resident macrophages,
TNF is secreted by some T cells and IL-1α is released mainly from
injured parenchymal and vascular cells (140). Both TNF and IL-1
induce the rapid up-regulation of MHC molecules on ECs and
support the transmigration of leukocytes into allograft arteries
(137, 138). TNF can be cytotoxic to vascular cells in some situa-
tions (141). IL-17 is another inflammatory cytokine that has been
implicated in the development of TA (142, 143). Both TNF and
IL-17 activate similar cell signaling pathways. However, IL-17 by
itself has little effect on inflammatory “activation” of ECs but it
synergizes with TNF to up-regulate cell adhesion molecules and
facilitate leukocyte transendothelial migration (144). Graft infil-
trating Th17 cells have been associated with increased chronic allo-
graft failure and lymphoid neogenesis in kidney transplantation,
suggesting that Th17 responses that produce IL-17 could augment
alloimmune responses locally within the graft (145). Although TA

is a component of chronic kidney graft failure, other pathogenic
mechanisms are also involved so future studies need to be per-
formed to determine the potential effect of Th17 cells on lymphoid
neogenesis as it relates specifically to the development of TA.

ANTIBODY-MEDIATED ALTERATION OF GRAFT VASCULAR CELL
PHENOTYPES
Due to their polymorphic nature and cell surface abundance,
donor HLA molecules are a major class of antigens recognized
by antibodies in graft recipients (146, 147). The presence of HLA
reactive antibodies predicts the development of TA and studies in
mouse models show that anti-MHC class I antibodies are sufficient
to induce the development of this vascular condition (148–151).
These antibodies may drive the development of TA by triggering
phenotypic changes, such as increased proliferation and migra-
tion, in endothelial and smooth muscle cells (66, 152). These
phenotypic changes could lead to structural alterations in arteries
that remodel the vessel wall (153). In addition, anti-HLA anti-
bodies amplify the immunogenic properties of the endothelium
by up-regulating cell adhesion molecules and von Willebrand fac-
tor, which facilitates immune cell transmigration into the arterial
wall. Anti-HLA antibodies also amplify T cell responses toward
allograft arteries by increasing the antigen-presenting capabilities
of the endothelium through a complement-dependent mecha-
nism (Figure 1A) (62, 69, 154). NK cells have also been impli-
cated in the development of TA through an antibody-mediated
mechanism (151).

Some graft recipients also develop graft-reactive antibodies
toward non-HLA molecules. This likely arises from an aversion of
tolerance stemming from broad-scale inflammation that triggers
activation of autoreactive lymphocytes and/or that creates neo-
antigens through the proteolytic cleavage of self-proteins. Non-
HLA antibodies that target vascular cells bind to vimentin, a novel
fragment of perlecan termed LG3, and angiotensin II type 1 recep-
tor (51–53). Increased levels of antibodies reactive to all mentioned
antigens correlate with poor graft outcome in humans and these
antibodies induce or accelerate TA and/or vascular dysfunction in
animal models (52, 155–157).

VASOREGULATORY DYSFUNCTION IN ALLOGRAFT ARTERIES
Besides intimal thickening, another change in allograft arteries
that ultimately drives ischemic graft failure is vasomotor dysfunc-
tion. The vascular endothelium is essential for regulating arterial
vasomotor function, acting on vascular smooth muscle cells to
control the dilation and constriction of blood vessels (158–160).
The balance between vasodilatory and vasoconstrictive factors, as
well as the inherent myogenic properties of the smooth muscle,
determines blood flow through arteries. This balance is disturbed
in allograft arteries (Figure 2) (161–163).

Immunological effects on vasodilation
Nitric oxide is an important endothelial-derived factor that
induces arterial dilation (164). In blood vessels, this bioactive gas
is produced by endothelial nitric oxide synthase (eNOS) expressed
in the endothelium (165–168). Human Th1 effector CD4 T cells
inhibit nitric oxide (NO) production from ECs by attenuating
eNOS expression through the effects of both IFNγ and TNF
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FIGURE 2 |T cell-mediated effects on vasodilation and
vasoconstriction in allograft arteries. (A) TNF and IL-17 are
produced by T cells in allograft arteries. TNF acutely increases NO
production from the endothelium by increasing eNOS activity through
the up-regulation of tetrahydrobiopterin (BH4) synthesis. IL-17

increases NO production by increasing expression of eNOS. (B) IFNγ

and TNF contribute to the vasoconstriction of allograft arteries by
inhibiting the expression of eNOS, which reduces the levels of
bioactive NO, as well as by increasing the production of the
vasoconstrictive peptide ET-1.

(169, 170). This attenuation of eNOS expression by T cells com-
promises vasodilation, thereby providing an explanation for the
early endothelial dysfunction observed after transplantation (171).
Arterial dilation is also affected in allograft arteries by the produc-
tion of NO by T cells that express inducible NOS (iNOS). NO
production through this mechanism desensitizes smooth muscle
cells to NO-mediated relaxation (170, 172, 173).

Th17 cells have been implicated in vascular changes that occur
in TA (143), prompting us to investigate the effect of IL-17 on
eNOS expression in ECs. IL-17 increased eNOS expression and
NO production by human ECs through the coordinated activa-
tion of NF-κB, MEK1, and JNK signaling pathways. Further, eNOS
expression was significantly correlated with increased levels of IL-
17 in clinical specimens of TA and the abundance of this cytokine
correlated with increased lumen size, but not intimal thickening,
and increased eNOS expression (174). These data suggest that IL-
17 could support outward arterial expansion in TA although a
study examining the effects of IL-17 neutralization in a human-
ized model of allograft artery rejection did not observe any effects
on total vessel area diameter (22). Also, IL-17 has been reported
to reduce eNOS activity in mouse ECs and to contribute to hyper-
tension in mouse models (175, 176). Additional studies are needed
to determine the exact role of IL-17 in vascular changes and how
this relates to TA.

Endothelial regulation of vasodilation is dependent on NOS
co-factor availability. The “uncoupling” of eNOS that occurs when
co-factors are limiting results in reduced NO bioactivity and a con-
comitant increase in reactive oxygen species (177). Both effects
exacerbate pathological constriction of arteries in the presence
of immunological responses. Interestingly, stimulation of human

ECs with TNF, IL-1, or IFNγ augments eNOS activity by increasing
tetrahydrobiopterin (BH4) levels through the induction of GTP
cyclohydrolase I, the rate limiting enzyme in the BH4 synthesis
pathway (178, 179). T cells also express GTP cyclohydrolase I and
produce BH4 after activation through the T cell receptor (180,
181). It seems paradoxical that TNF and IFNγ both inhibit eNOS
expression and increase its enzymatic activity, but it is possible that
the induction of BH4 biosynthesis by these cytokines may sup-
port the recovery of endothelial-dependent vasodilation during
inflammation (182).

Immunologic effects on vasoconstriction
The production of endothelium-derived constrictor factors
(EDCFs) is also a key regulatory component of arterial vasomotor
function. A discussion of EDCFs tends to be focused on endothelin
(ET-1) since it is one of the most potent endogenous vasoconstric-
tors produced in humans and there are clear clinical indications for
pathophysiological roles of ET-1, including in TA (183–186). TNF,
IL-1, IFNγ, and IL-6 induce ET-1 production by ECs (187, 188).

Small arteries in humans and other mammals exist in a state
of partial constriction. This allows a basal level of endothelial-
independent arterial tone against vasodilators and vasoconstric-
tors that can act to influence arterial diameter and resultant
blood flow. Allogeneic immune responses induce smooth mus-
cle cell death in the media of allograft arteries and this likely
reduces the functional properties of arteries (107). In a rat
model of TA, myogenic constriction and dilation were both com-
promised at late time-points indicating that immune-mediated
medial damage and dysfunction are prevalent (189). The loss
of pressure-induced myogenic constriction in cardiac allografts
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could increase intravascular hydrostatic pressure and concomi-
tant fluid leakage into the interstitial space, leading to loss of
ventricular compliance and organ failure. Immunosuppression
with cyclosporine reduces medial smooth muscle cell death and
preserves myogenic activity (190).

CYTOPROTECTIVE AND IMMUNOREGULATORY FEATURES OF
THE GRAFT VASCULATURE
The expression of cytoprotective and immunoregulatory pro-
teins by tissue cells is essential for preventing pathological tissue
damage and resultant immunopathology that can occur during
immune responses toward pathogens. Similar processes may also
be operational in a transplant setting and, as such, are perti-
nent to any discussion of alloimmune-mediated vascular injury.
Profiling gene expression in non-rejecting or tolerized grafts has
identified the increased expression of “cytoprotective” genes A20,
hemeoxygenase-1 (HO-1), Bcl-xL, and Bcl-2 in non-rejecting
grafts, suggesting a role for them in accommodating graft survival
(191, 192).

A20 is a TNF-inducible zinc finger protein expressed by ECs and
vascular smooth muscle cells (193). It inhibits EC death induced
through both death receptor- and mitochondria-mediated mech-
anisms by preventing caspase activation and cytochrome c release
from the mitochondria (194). As such, A20 may be able to prevent
most forms of immune-mediated EC death that are operational in
allogeneic responses. In addition to being cytoprotective in ECs,
A20 is also able to reduce inflammatory responses by inhibiting
NF-κB activation (195). This prevents the up-regulation of cell
adhesion molecules and chemokines in ECs that facilitate leuko-
cyte transendothelial migration into allografts. In vascular smooth
muscle cells, A20 is anti-inflammatory through the inhibition of
NF-κB activation but it also promotes cell death of intimal vascu-
lar smooth muscle cells, which is in contrast to its cytoprotective
effects in ECs (196). All together, the overlapping but distinct func-
tions of A20 in ECs and vascular smooth muscle cells may inhibit
intimal thickening by preventing EC damage and ameliorating vas-
cular smooth muscle cell accumulation in the intima. Indeed, A20
expression in vessel wall cells correlates with protection against TA
and overexpression of A20 in donor artery segments in a mouse
model of TA reduces the development of this vascular occlusive
condition (197, 198).

HO-1 is an enzyme that catalyzes the conversion of heme to
free iron, biliverdin, and carbon monoxide (199). It is expressed
in several cells, including ECs, and has cytoprotective and
immune-inhibitory effects. In transplantation, some studies have
shown an association of HO-1 gene promoter polymorphisms
with better kidney graft function and survival, although oth-
ers have failed to observe this association (200–202). There is
no apparent association between HO-1 gene promoter poly-
morphisms and TA in cardiac transplants (203). In preclinical
studies, HO-1 in allografts has been shown to mediate graft
survival (204). Importantly, the expression of HO-1 in vascu-
lar cells prevents the development of TA (205, 206). Experi-
mental evidence further indicates that HO-1 prevents EC death,
inhibits inflammatory responses, and attenuates adaptive immune
responses (207). These effects are mediated through the actions
of CO and biliverdin, which can prevent NF-κB and NFAT

activation and may induce activation-induced cell death of T
cells (208, 209).

In addition to the cytoprotective genes described above, graft
vascular cells can also be induced to express immunoregula-
tory genes that are known to play a role in tolerance induc-
tion. These include IDO, programed cell death ligand-1 (PD-L1),
and immunoglobulin-like transcript-3 and -4 (ILT3/4). IDO is
an enzyme that degrades tryptophan, resulting in the release
of kynurenines. The depletion of local levels of tryptophan can
inhibit the proliferation of immune cells and kynurenines can
actively inhibit immune cell activation (210). The induction of
IDO by IFNγ in both ECs and vascular smooth muscle cells
inhibits the activation of allogeneic T cells (211). IDO expression
in ECs is also responsible for the development of cardiac allograft
tolerance induced by the deoxyspergualine analog LF15-0195 in
a rat model and its expression in vascular smooth muscle cells
prevents alloimmune-mediated medial damage (32, 212). PD-L1
is also induced by IFNγ in ECs and vascular smooth muscle cells,
and it inhibits the activation of effector T cell responses by bind-
ing to PD-1 on T cells (24, 213). The PD-L1/PD-1 system is an
essential component of peripheral tolerance as indicated by the
development or exacerbation of autoimmune-like manifestations
in mice that lack PD-1 (214). In allografts, the expression of PD-L1
on arterial ECs reduces the development of TA (26, 215). Finally,
Sucia-Foca and colleagues have identified the up-regulation of
ILT3 and ILT4 on human ECs by CD8 T suppressor cells and IL-
10, and established that these molecules inhibit allogeneic T cell
activation (28, 216). The mechanism by which ILT3/4 on ECs is
immunoregulatory remains to be fully elucidated but may involve
the inhibition of T cell co-stimulatory signals (29).

THERAPEUTIC OPPORTUNITIES IN TA
Therapeutic prevention of TA requires a combination of strategies
to specifically inhibit immune responses and to directly prevent
hyperplastic responses of vessel wall cells. Non-specific immuno-
supression with cyclosporine is a mainstay in heart transplanta-
tion but the eventual failure of most grafts and the association
of this drug with side effects necessitate the need for improved
approaches. The “holy grail” of transplantation therapy is the
induction of tolerance to specifically prevent immune activation
toward transplanted grafts while maintaining protective immu-
nity. Many preclinical studies demonstrate the induction of toler-
ance and prevention of TA using co-stimulatory blockade (217–
219). In clinical studies, co-stimulatory blockade with CTLA4-Ig is
effective for preventing kidney graft rejection although functional
tolerance does not appear to develop (220). Similar studies have
not been performed in heart transplant recipients to evaluate TA
specifically. Clinical trials also suggest that it may be possible to
induce tolerance toward kidney grafts by concurrently performing
bone marrow transplantation that induces transient chimerism,
although studies in non-human primates show that this approach
may not lead to tolerance of heart grafts (221–223). A promising
approach for the specific prevention of TA by immunomodula-
tion has been established in a humanized mouse model of arterial
rejection in which the delivery of ex vivo-expanded regulatory
T cells, which suppress effector T cell responses, can prevent
arterial remodeling reflective of TA (224, 225).
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In addition to preventing immune activation, anti-proliferative
drugs such as mTOR inhibitors inhibit smooth muscle prolifera-
tion and resultant intimal thickening in TA. These inhibitors first
found use in the prevention of intimal hyperplasia after restenosis
(226, 227). Studies in heart transplantation subsequently estab-
lished that mTOR inhibition with everolimus reduced immune
activation as well as intimal thickenining in TA through inhibiting
smooth muscle cell proliferation in allograft arteries (228). The
inclusion of everolimus in the immunosuppression regimen can
reduce the dose of cyclosporine needed and, as a consequence,
reduce cyclosporine-associated renal damage (229). Other studies
have examined the ex vivo modification of allograft artery cells
using viral transduction for the prevention of TA since it is likely
that inhibition of vascular cell death by forced expression of pro-
tective genes, such as A20, can reduce the development of TA in
preclinical models (198). Although such strategies seem ideal for
therapies involving the ex vivo modification of graft cells prior to
transplantation, such therapeutic approaches yet to be translated
into a clinical setting.

CONCLUSION
Blood vessels possess unique immunological features that define
the outcome of immune responses. Cytotoxic damage of vessel
wall cells and the alteration of vascular cell phenotypes by dif-
ferent components of the allogeneic immune response drives the
remodeling of arteries in transplanted organs and this culminates
in the development of TA. Further understanding these pathogenic
mechanisms will be essential for future advancements that are able
to specifically prevent immune activation toward allograft blood
vessels and the hyperplastic responses of vessel wall cells. Also,
similar immunopathological mechanisms that contribute to the
development of TA are also involved in other immune-mediated
arteriosclerotic conditions, such as giant cell arteritis and ather-
osclerosis, so insights obtained from studies on TA could also be
informative for these diseases (76, 230).
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