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Defensins represent an evolutionary ancient family of antimicrobial peptides that play
diverse roles in human health and disease. Defensins are cationic cysteine-containing mul-
tifunctional peptides predominantly expressed by epithelial cells or neutrophils. Defensins
play a key role in host innate immune responses to infection and, in addition to their
classically described role as antimicrobial peptides, have also been implicated in immune
modulation, fertility, development, and wound healing. Aberrant expression of defensins
is important in a number of inflammatory diseases as well as modulating host immune
responses to bacteria, unicellular pathogens, and viruses. In parallel with their role in immu-
nity, in other species, defensins have evolved alternative functions, including the control
of coat color in dogs. Defensin genes reside in complex genomic regions that are prone
to structural variations and some defensin family members exhibit copy number variation
(CNV). Structural variations have mediated, and continue to influence, the diversification
and expression of defensin family members.This review highlights the work currently being
done to better understand the genomic architecture of the β-defensin locus. It evaluates
current evidence linking defensin CNV to autoimmune disease (i.e., Crohn’s disease and
psoriasis) as well as the contribution CNV has in influencing immune responses to HIV
infection.
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INTRODUCTION
The defensins represent a class of cationic antimicrobial peptides
that play pivotal roles in innate and adaptive immunity as well as
roles in non-immunological processes. They constitute an ancient
and diverse gene family, present in most multicellular organ-
isms ranging, from plants, fungi, insects, mollusks, and arachnids
to mammals, including humans. During their evolutionary his-
tory, defensins have become highly diversified and have acquired
novel functions in different species. Defensins have evolved to be
highly efficient in their antimicrobial responses to a vast array of
pathogens.

The term “Defensins” was coined in 1985 after granule rich
sediments were purified from human and rabbit neutrophils. This
resulted in the characterization of the primary structure of the
first six neutrophils defensins (later known as α-defensins) (1–
3). These early studies highlighted the structural hallmarks of
defensins: that is, despite poor sequence identity across family
members, all defensins possesses a highly conserved motif of six
cysteine residues that is key to their antimicrobial function. Sub-
sequently, peptides with similar structure were discovered in the
early 1990s in bovine (4) and mouse airway first (5) and sub-
sequently in the human intestinal epithelium (6), and became
known as β-defensins. The recent ability to interrogate genomic
and proteomic data from a diverse array of species allowed the
discovery and characterization of further members of the defensin

gene family, intensifying interest in unveiling the roles of defensins
in physiological and pathological processes.

This review will primarily focus on the role of β-defensins
in innate and adaptive immunity. We will highlight the meth-
ods currently employed to study the genomic architecture of this
multifunctional gene family and how complex genetic variation
has an impact on defensin host inflammatory responses.

STRUCTURE OF β-DEFENSINS
The β-defensin family members have poor sequence similarity,
suggesting their antimicrobial activity is independent of their pri-
mary structure. Nuclear magnetic resonance (NMR) data have
been used to evaluate the 3D structure of hBD1, hBD2, and hBD3
(7, 8). These data confirm a high degree of similarity in their
tertiary structures, despite their diverged amino acid sequences.
The major element of the mature peptides secondary structure is
represented by three β-strands arranged in an antiparallel sheet.
The strands are held together by the three intramolecular disulfide
bonds, formed between the six cysteines. The order of the disulfide
bridges can vary, characterizing each family member. The amino-
terminal region contains a short α-helical loop (which is absent in
α-defensins). α-helical structures are common for protein regions
that are incorporated into cell membranes and it has been pro-
posed that this region of the β-defensin protein may anchor to
bacteria cell walls (9). This is supported by the presence of two
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sites under positive selection located in the N-terminal region that
may contribute to β-defensin functional diversity (10).

Defensins do not appear to present a distinct hydrophobic core
or a common pattern of charged or hydrophobic residues on the
protein surface. This suggests peptide folding is driven and stabi-
lized by disulfide bond formation alone. Moreover, the character-
istic β-defensin 3D structure can be preserved and accommodates
residues with different properties at most other positions. The first
five amino acids of the mature peptide sequence are vital for cor-
rect protein folding under oxidative conditions. This favors the
formation of the correct disulfide bonded pattern through the
creation of a key intermediate (11).

THE EVOLUTION AND DIVERGENT ROLES OF β-DEFENSINS
The evolutionary relationship between vertebrate and non-
vertebrate defensins is still unclear; however, phylogeny indi-
cates that a primordial β-defensin is the common ancestor of
all vertebrate defensins and this gene family expanded through-
out vertebrate evolution (12). This hypothesis is supported by
the discovery of β-defensin-like genes in phylogenetically distant
vertebrates, including reptiles (13), birds (14), and teleost fishes
(15). α-defensins are mammalian specific genes, and in humans
α-defensin genes and different β-defensin genes are present on
adjacent loci on chromosome 8p22–p23. The organization of this
cluster is consistent with a model of multiple rounds of duplication
and divergence under positive selection from a common ances-
tral gene that produced a cluster of diversified paralogous (16,
17). This expansion occurred before the divergence of baboons
and humans ~23–63 million years ago (18, 19). The present-
day β-defensins probably evolved before mammals diverged from
birds generating α-defensins in rodents, lagomorphs, and pri-
mates after their divergence from other mammals (20). Recent
evidence suggests convergent evolution of β-defensin copy num-
ber (CN) in primates, where independent origins have been
sponsored by non-allelic homologous recombination between
repeat units. For rhesus macaques this resulted in only a 20 kb
copy number variation (CNV) region containing the human
ortholog of human β-defensin 2 gene. In humans, recent work
suggests a repeat unit of 322 kb containing a number of β-defensin
genes (21).

Defensin family members possess a plethora of non-immune
activities and it is instructive to provide some examples of the
diverged nature of defensins function. Some members of the
β-defensin family have an important role in mammalian repro-
duction [reviewed in Ref. (22)]. For example, there are five human
defensin genes (DEFB125–DEFB129) clustered on chromosome
20, which are highly expressed in the epithelial cell layer of the
epididymal duct, which secretes factors responsible for sperm mat-
uration (23). Moreover, human DEFB118 was shown to be a potent
antimicrobial peptide able to bind to sperm, probably providing
protection from microorganisms present in the sperm ducts (24).
It is noticeable how in long tailed macaque (Macaca fascicularis)
and in rhesus macaque (Macaca mulatta), there is a similar β-
defensin, called DEFB126, which is the principal protein that coats
sperm (25); this coating is lost in the oviduct allowing fertilization
to occur. In support of this, the deletion of a cluster of nine beta
defensin genes in a mouse model, resulted in male sterility (26). In

human studies, a common mutation in DEFB126 has been shown
to impair sperm function and fertility (27).

In a second example, recent studies have suggested that some
β-defensin gene products including hBD1 and hBD3, can inter-
act with a family of melanocortin receptors, modulating pigment
expression in dogs and possibly in humans (28). Typically, there
are two genes that control the switching of pigment types: the
melanocortin receptor 1 (Mc1r) and Agouti, encoding a ligand for
the Mc1r, which inhibits Mc1r signaling. Mc1r activation deter-
mines production of the dark pigment eumelanin exclusively,
whereas Mc1r inhibition causes production of the lighter pig-
ment pheomelanin. In dogs, it was discovered that a mutation
in the canine DEFB103 is responsible for the dominant inheri-
tance of black coat color, which does not signal directly through
Mc1r; this insight revealed a previously uncharacterized role of β-
defensins in controlling skin pigmentation. Further studies have
been conducted on human melanocytes,discovering a novel role of
hBD3 as an antagonist of the α-melanocyte-stimulating hormone
(α-MSH, a known agonist of Mc1r, which stimulates cAMP sig-
naling to induce eumelanin production). As hBD3 is produced by
keratinocytes, it can act as a paracrine factor on melanocytes mod-
ulating α-MSH effects on human pigmentation and consequently
responses to UV (29). Moreover, it is known that melanocortin
receptors are also involved in inflammatory and immune response
modulation (30).

EXPRESSION OF β-DEFENSINS
Different β-defensins are present in different epithelial and
mucosal tissues and can be constitutively expressed or induced
in response to various stimuli (31–52) (Table S1 in Supplemen-
tary Material). Their anatomical distribution clearly reflects their
ability to neutralize different pathogens and they are more abun-
dant at sites prone to the microbial infections they are specific for.
For example, hBD2 is strongly expressed in lung (53); hBD4 is
highly expressed in the stomach and testes (54), and hBD3 in the
skin and tonsillar tissue (55). hBD1–hBD4 are expressed in the
respiratory tract, with constitutive expression of hBD1 (56) and
inducible expression of hBD2–hBD4 in response to inflammation
or infection (57). In keratinocytes, there is constitutive mRNA
expression of hBD1; conversely hBD2 expression is induced by
lipopolysaccharides (LPS) or other bacterial epitopes in combina-
tion with interleukin-1β, released by resident monocyte-derived
cells. hBD3 and hBD4 are inducible by stimulation with tumor
necrosis factor (TNF), toll-like receptor ligands, interferon (IFN)-
γ, or phorbolmyristate acetates (58). hBD3 is also induced in
response to local release of surface-bound epidermal growth fac-
tor receptor (EGFR) ligands via activation of metalloproteinases
(59, 60).

ANTIMICROBIAL ACTIVITY OF β-DEFENSINS
The most studied function for β-defensins is their direct antimi-
crobial activity, through permeabilization of the pathogen mem-
brane. Their exact mechanism of action is incompletely under-
stood and two different models have been proposed. The first
is a carpet model, where several antimicrobial peptides opsonize
the pathogen surface bringing about necrosis, possibly disrupting
the electrostatic charge across the membrane (61). The latter is
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a pore model, with several peptides oligomerizing and forming
pore-like membrane defects that allow efflux of essential ions and
nutrients (55).

Defensins in vitro are active against gram negative and positive
bacteria, unicellular parasites, viruses, and yeast. Cationic pep-
tides including β-defensins are attracted to the overall net negative
charge generated by the outer envelope of Gram negative bacteria
by phospholipids and phosphate groups on LPS and to the teichoic
acid present on the surface of Gram positive bacteria.

β-defensins also possess anti-viral activity, interacting directly
with the virus and indirectly with its target cells. Noticeably, in
mammals, β-defensins are also produced by the oral mucosa and
they are active against HIV-1 virus: in particular, hBD1 is consti-
tutively expressed whereas the presence of a low HIV-1 viral load
can stimulate the expression of hBD2 and hBD3 gene products
through direct interaction with the virus. More specifically, hBD2
has been shown to down-regulate the HIV transcription of early
reverse-transcribed DNA products (62) and hBD2 and hBD3 can
mediate CXCR4 down-regulation (but not CCR5) and internaliza-
tion in immuno-stimulated peripheral blood mononuclear cells
(63). This mechanism diminishes the chances of infection (64)
and with other salivary gland components, could help to explain
the oral mucosal natural resistance to HIV infection. hBD3 also
possesses an inhibitory effect on the influenza virus blocking the
fusion of the viral membrane with the endosome of the host cell,
through cross linking of the viral glycoproteins (65).

Defensins have evolved to maximize their protective role, show-
ing an extraordinary adaptation to different environmental chal-
lenges: for instance, plant defensins are particularly active against
fungal infections [reviewed in Ref. (66)], slowing down hyphal
elongation, and some of them also evolved to gain an α-amylase
inhibitory activity that can confer protection against herbivores
(67, 68).

IMMUNE MODULATORY ACTIVITY OF β-DEFENSINS
A role for defensins in pro-inflammatory responses and more
recently immunosuppression [reviewed in Ref. (69)] has been
delineated over the last two decades. An initial important observa-
tion was that β-defensins can recruit immature dendritic cells and
memory T cells to sites of infection and/or inflammation provid-
ing a link between the innate and adaptive arms of the immune
system. A mechanism for this was provided by Oppenheim’s group
where they demonstrated that natural and recombinant hBD2
could chemoattract human immature dendritic cells and mem-
ory T cells in vitro in a dose-dependent manner. This response
was inhibited with the Gαi inhibitor pertussis toxin and suggested
the possible involvement of a chemokine receptor(s), which was
confirmed using anti-CCR6 blocking antibodies.

TH17 cells express CCR6 and respond to β-defensins chemoat-
tractant action. Furthermore, TH17 cytokines (i.e., IL-17 and
IL-22) induce expression of defensins from relevant cell types
including primary keratinocytes potentially resulting in an ampli-
fication of TH17 responses (70). Increased TH17 levels have been
reported in different autoimmune diseases, such as multiple scle-
rosis (71), rheumatoid arthritis (72), and psoriasis (73), impli-
cating β-defensin expression in autoimmunity. Given the role of
defensins in chemoattracting monocytes and macrophages and the

lack of CCR6 on these cell types other receptors were investigated
that might mediate this chemoattractant activity. This resulted in
the identification of CCR2 as a receptor for hBD2, hBD3, and their
mouse orthologs (mBD4 and mBD14) (74).

In addition to signaling through chemokine receptors,
defensins have been shown to function through toll-like receptors
(75, 76). hBD2 has been shown to be a natural ligand for the toll-
like-receptor-4 (TLR-4), present on immature DCs, up-regulating
co-stimulatory molecules and leading to DC maturation, and on
CD4+ T cells, possibly stimulating their proliferation and survival
(77). On bone marrow-derived macrophages pre-treated with a
recently identified mBD14 (78), TLR restimulation of these cells
resulted in enhanced expression of pro-inflammatory mediators
that was Gi protein dependent but independent of CCR2 or CCR6
signaling pathways (79).

β-DEFENSIN COPY NUMBER VARIATION AND DISEASE
ASSOCIATION STUDIES
In humans, β-defensins genes are organized into three main clus-
ters at 8p23.1, 20p13, and 20q11.1, with another likely small cluster
on chromosome 6p12 (80). At 8p23.1, a number of β-defensins are
found on a repeat unit that is typically present at 2–8 copies in the
population, with a modal CN of 4. Each chromosome 8 copy can
contain 1–8 copies of the repeat unit. The mutation rate at this
locus is extremely fast (~0.7% per gamete) (81), indicative of the
high level of plasticity in this genomic region. One-copy individ-
uals are extremely rare (82, 83), and suggest that the presence of a
null allele might be deleterious and selected against. At the other
end of the DEFB, CN spectrum lies a proportion of high-copies
individuals (9–12 copies) with a cytogenetically visible CN ampli-
fication at 8p23.1 that has no phenotypic effect (84). These first
experimental observations ignited further interest into the chro-
mosome 8 DEFB cluster. Within the repeat unit there is DEFB4,
DEFB103, DEFB104, DEFB105, DEFB106, DEFB107, SPAG11, and
PRR23D1 (21, 85) (Figure 1). The variation in the number of
repeat units between individuals in the population and likely
sequence variation between copies suggests that CNV of defensins
may play a role in modulating defensin expression (86, 87) and
function. The consequences of CNV have been explored for a
number of years and may include increased gene product, the pro-
duction of fusion genes, the formation of extra coding domains,
or a position effect that alters expression of the gene product (88).
This extensive structural genome variation in humans is partic-
ularly pertinent to diseases where defensins may be implicated
in their pathology. This includes a number of autoimmune and
infectious diseases (Table 1).

Mapping of the β-defensin CNV region has been challenging
but recent data fixes the minimal length of the CNV at 157 kb (103)
and a recent study using high density array comparative genomic
hybridization combined with paralog ratio test (PRT) assays sug-
gests it may be as large as 322 kb (21). Because of the extensive CNV
of defensins, robust methods are required to accurately interrogate
CN states in disease cohorts. Various locus specific techniques for
CN determination have been utilized including multiplex ampli-
fiable probe hybridization (MAPH) (104), multiple ligation probe
amplification (MLPA) (105), and PRT (95). The advantage of such
techniques is the ability to obtain data that clusters around integer

www.frontiersin.org March 2015 | Volume 6 | Article 115 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Machado and Ottolini Copy number variation of β-defensins

FIGURE 1 | Genome assembly of β-defensin repeat unit at 8p23.1.

CNs providing a high degree of concordance between the methods
and confidence in the CN obtained. Association studies investi-
gating some CNVs (i.e., CCL3L1/CCL4L2 in HIV) have provided
conflicting results as the methods used did not generate data that
clustered around integer CN values (106, 107). In some cases, ini-
tial findings have been replicated in subsequent studies that have
utilized more robust methods (108).

In early association studies of multi-allelic CNV and disease,
CNV of defensins was implicated in psoriasis. Individuals with
more than five β-defensin copies presented a fivefold increased risk
of developing psoriasis when compared to two copy individuals.
In addition, there was a direct correlation between the number of
copies and relative risk (odds ratio of 1.32) (94). This association
was replicated (although with reduced odds ratio) in a subsequent
study (109). In the case of an autoimmune condition, such as pso-
riasis, high CN may contribute to the strong induction of hBD2
and hBD3, conferring protection from bacterial infections of the
psoriatic lesions (110).

Another disease strongly linked with defensin expression is
Crohn’s disease (CD) where it has been demonstrated that reduced
Paneth cell expression of defensins in the ileum results in ileal CD.
Therefore, defensin expression at this site may be important in
maintaining the mucosal microbiota. NOD2 has been strongly
implicated in the pathogenesis of CD from GWAS (111) giving
a 17.1-fold increased risk for CD in homozygous or compound
heterozygous individuals. NOD2 is a nod like family receptor
(NLR) member that controls expression of defensins in CD. Poly-
morphisms in NOD2 result in reduced α-defensin expression
and exacerbated disease. Polymorphism of the DEFB1 (non-CNV
gene) promoter has been associated with CD (112). So is there a
role for CNV in CD? Previous studies indicated that α-defensin
CN may be important (113). However, recent work that accu-
rately measured CN using PRTs to determine CN of DEFA1A3

determined that a SNP (rs4300027) is associated with DEFA1A3
CN in Europeans (114). This SNP was then used to indirectly
interrogate GWAS data and suggested that α-defensins CNV may
not be important in CD. A similar outcome was obtained with
β-defensin CN whereupon accurate measurement, there was no
association with the CD (82) in contrast to previous reports (93,
97). These results, however, do not exclude the role of α and β-
defensin expression in the pathogenesis of CD but suggest that the
individuals CN state may not be important in this context.

Given the suspected anti-viral role of defensins, it was sug-
gested that defensin CNV may be important in host responses
to HIV infection. There are a number of conflicting reports of
the association between defensin CN and HIV infection (114–
116). A surprising finding from a cohort study that evaluated
two sub-Saharan populations with HIV-1 or HIV-1/tuberculosis
coinfection was that high CN of β-defensins did not result in the
predicted low viral load and did not improve immune reconstitu-
tion in patients (98). The converse was found suggesting that the
immune modulatory properties of defensins may be subverted
during HIV-1 infection. A model suggested to explain this appar-
ently paradoxical result was that high CN may promote increased
recruitment of CCR6 expressing cell types that are highly per-
missive for HIV-1 infection thus amplifying the foci of HIV-1
infection.

CONCLUSION
Defensins play a key role in pathogen host interactions and are
at the interface of innate and adaptive immunity. The com-
plex genetic variation that underlies the evolutionary history of
defensins and their biology is gradually being elucidated, suggest-
ing defensin CNV is an important contributor to maximizing the
host innate and adaptive response. The history of the defensin gene
family is particularly paradigmatic given that many CNV loci in
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Table 1 | Summary of β-defensin CNV studies.

DEFB cluster

CN calls

per diploid

genome

Sample size Methods used for

CN calling

Association study? Findings Reference

2–12 90 Controls MAPH No Average CN distribution of 2–7 for controls (89)

12 Related individuals from

3 families with chr8p23

euchromatic variant (EV)

SQ-FISH Average CN distribution of 2–7 for EV

carriers

2–8 27 Unrelated samples qPCR No Concordant CN for DEFB4 and DEFB103 (90)

2–10 355 Patients with cystic

fibrosis

MAPH Cystic fibrosis DEFB CN is not associated with cystic

fibrosis

(91)

167 UK controls

2–7 for DEFB4 44 Samples qPCR No Discordant CN for DEFB4, DEFB103 and

DEFB104

(92)

2–10 250 CD patients Array-CGH Crohn’s disease <3 copies associated with CD (OR = 3.06) (93)

252 Controls qPCR

2–12 498 Cases MAPH Psoriasis Higher CN associated with psoriasis (94)

305 Controls PRT RR = 1.69 >6 copies

2–8 >800 Samples MAPH/REDVR, MLPA

and array-CGH. All

validated through PRT

No PRT is a reliable method for CNV analysis (95)

2–9 42 Samples MLPA No Strict copy number concordance for all

genes in the chr8p23.1 DEFB cluster

(96)

1–12 208 Offspring from 26

CEPH families

PRT

Microsatellite analysis

No Fast germline copy number recombination

of DEFB cluster (~0.7% per gamete)

(81)

1–12 in CD

patients

466 CD patients

329 Controls

qPCR Crohn’s disease >4 copies associated with CD (OR = 1.54) (97)

2–9 in controls

1–10 1000 Crohn’s disease (CD)

patients

PRT on all samples Crohn’s disease DEFB copy number is not associated with

CD (higher accuracy in CN calling and a

larger cohort compared with previous

studies on CD)

(82)

500 Controls qPCR on 625 samples

1–9 1056 Individuals from the

HGDP–CEPH panel

PRT No Recent selection of high-expressing

DEFB103 gene copy in East Asia

(83)

1–9 1002 Ethiopian and

Tanzanian HIV and HIV/TB

patients

PRT HIV viral load in

HIV-only and HIV/TB

patients

Increased HIV load prior to HAART

(P = 0.005) and poor immune

reconstitution following initiation of

HAART (P = 0.003)

(98)

2–7 543 SLE patients PRT Systemic lupus

erythematosus

Higher CN associated with SLE and AASV

(SLE OR = 1.2; AASV OR = 1.5)

(99)

112 AASV patients 515 samples validated

with REDVR

ANCA associated

small vasculitis (AASV)523 Controls

2–8 70 PDAC patients MLPA Pancreatic ductal

adenocarcinoma

(PDAC)

Protective effect of high DEFB CN against

PDAC (Fisher’s exact test P = 0.027)

(100)

60 CP patients Chronic pancreatitis

(CP)392 Controls

(Continued)
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Table 1 | Continued

DEFB cluster

CN calls

per diploid

genome

Sample size Methods used for

CN calling

Association study? Findings Reference

1–9 2343 Samples (689

children and 1149 adults)

PRT Asthma DEFB CN is not associated with lung

function in the general population

(OR = 0.89)

(101)

Chronic obstructive

pulmonary disease

(COPD)

2–9 113 Otitis media prone

children

259 Controls

PRT Susceptibility to otitis

media

DEFB CN associated with nasopharyngeal

microbiota composition (with respect to

the three predominant pathogens for

otitis media: S. pneumoniae, M.

catarrhalis, and H. influenzae

(102)

AASV, ANCA associated small vasculitis; array-CGH, array comparative genomic hybridization; CD, Crohn’s disease; CEPH, Centre d’Etude du polymorphisme humain

DNA panel; COPD, chronic obstructive pulmonary disease. CP, chronic pancreatitis; HAART, highly active anti-retroviral therapy; HGDP, human genome diversity cell

line panel; MAPH, multiplex amplifiable probe hybridization; MLPA, multiplex ligation-dependent probe amplification; PDAC, pancreatic ductal adenocarcinoma; PRT,

paralog ratio test; REDVR, restriction enzyme digest variant ratio; SLE, systemic lupus erythematosus; SQ-FISH, semi-quantitative fluorescence in situ hybridization;

TB, tuberculosis.

the human genome host immunity genes. Further studies should
be conducted to better understand the genomic architecture of
multi-allelic CNVs. This will aid the development of robust assays
that evaluate the overall impact that CNV has on and both
physiological and pathological mechanisms of immunity.
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