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Dendritic cells (DC), master antigen-presenting cells that orchestrate interactions between
the adaptive and innate immune arms, are increasingly utilized in cancer immunotherapy.
Despite remarkable progress in our understanding of DC immunobiology, as well as
several encouraging clinical applications – such as DC-based sipuleucel-T for metastatic
castration-resistant prostate cancer – clinically effective DC-based immunotherapy as
monotherapy for a majority of tumors remains a distant goal. The complex interplay
between diverse molecular and immune processes that govern resistance to DC-based
vaccination compels a multimodality approach, encompassing a growing arsenal of
antitumor agents which target these distinct processes and synergistically enhance DC
function. These include antibody-based targeted molecular therapies, immune check-
point inhibitors, therapies that inhibit immunosuppressive cellular elements, conventional
cytotoxic modalities, and immune potentiating adjuvants. It is likely that in the emerging
era of “precision” cancer therapeutics, tangible clinical benefits will only be realized with
a multifaceted – and personalized – approach combining DC-based vaccination with
adjunctive strategies.

Keywords: dendritic cell, immunotherapy, multimodality, adoptive cell therapy, targeted therapy, checkpoint
inhibitor, chemotherapy, radiotherapy

Introduction

Dendritic cells (DCs) function at the interface of the innate and adaptive immune systems, making
them uniquely suited for cancer immunotherapy. As sentinel members of the innate immune arm,
DCs elaborate protective cytokines (i.e., IL-6, IL-12) in response to “danger” signals (1). As master
antigen-presenting cells (APC), DCs capture, process, and present antigens in the context of major
histocompatibility (MHC) molecules to naïve T-cells at lymphoid organs, thereby inducing adaptive
CD4+ and CD8+ T-cell-mediated immune responses (2, 3); indeed, DCs’ potency for inducing
T-cell proliferation is 10–100 times that of B-cells or monocytes (4).

Abbreviations: 1-MT, 1-methyl--tryptophan; CTL, cytotoxic T-lymphocyte; CYC, cyclophosphamide; DC, dendritic cell; ID,
intradermal; IDO, indoleamine-2,3-dioxygenase; IN, intranodal; GrB, granzyme-B; HER2, human epidermal growth factor
receptor-2 (representative of receptor tyrosine kinase family); mAb, monoclonal antibody; MDSC, myeloid-derived suppressor
cells; MHC/Ag, antigen presented in the context of MHC molecules; moDC, monocyte-derived DC; NK, natural killer cell;
NKT, natural killer T-cell; PDGFR, platelet derived growth factor receptor; SC, subcutaneous; TCR, T-cell receptor; Treg,
regulatory T-cell; VEGFR, vascular endothelial growth factor receptor.
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Unique properties makeDCs particularly attractive vehicles for
immunotherapy. These include their ability to cross-present (i.e.,
re-route exogenous antigens typically presented on MHC class II
molecules into pathways for class I presentation) (5), induce nat-
ural killer (NK) or NK T-cell responses (6, 7), and potentiate anti-
tumor humoral responses (8). More importantly, plasticity of DC
lineage and the ability to direct DC activationwith external signals
[e.g., Toll-like receptor (TLR) agonists], which polarize ensuing
T-cell responses, can be harnessed for therapeutic application in
DC-based approaches (9).

Following the initial promise of DC-based vaccination attempts
in lymphoma and melanoma patients (10, 11), autologous DCs
have been employed in immunotherapy for several tumor types,
includingmelanoma, prostate cancer, renal cell carcinoma (RCC),
and glioblastoma with varying success. A majority of these tri-
als indicate that DC-based immunotherapy, while tolerable and
strongly immunogenic, fails to achieve meaningful objective
response rates (12). These data, along with the remarkable diver-
sity of cytokine activation regimens, DC maturation states, and
antigen loading strategies employed in DC vaccine design (9),
reflect an evolving – but incomplete – understanding of optimal
DC immunobiology. As such, despite recent FDA approval of
sipuleucel-T – blood DCs pulsed with prostatic acid phosphatase-
GM-CSF fusion protein – for metastatic castration-resistant
prostate cancer (13), clinically effective DC immunotherapy as
monotherapy for a majority of solid tumors remains a distant goal.

There is emerging evidence that the maximal benefit of DC-
based immunotherapy may be achieved in combination with
other antitumor therapies that augment DC function (Table 1;
Figure 1). In this review, we explore the biologic rationale for
such multimodality approaches to optimize the impact of current
DC-based cancer immunotherapy.

Improving Efficacy of Existing DC-Based
Vaccines

Traditionally, two DC-based vaccination approaches have
been widely used: direct targeting of antigens to DC receptors
in vivo, and ex vivo-generated antigen-loaded DCs. Beyond these
approaches – reviewed extensively elsewhere (14) – our growing
understanding of DC biology highlights potential strategies to
improve DC-based vaccine efficacy: (a) exploiting diversity of
DC lineage [i.e., plasmacytoid DCs (15), CD141+ DCs (16)]
to improve antigen cross-presentation and potency of cytotoxic
CD8+ T-lymphocyte (CTL) responses; (b) silencing of antigen
presentation “attenuators” [e.g., inhibition of SOCS1 (17)] to
enhance DC function by controlling the tolerogenic state of DCs
and magnitude of antigen presentation; (c) synergizing with
adoptive cell therapy [e.g., DC vaccine-primed peripheral blood
T-cells expanded ex vivo with CD3/CD28 co-stimulation (18)];
(d) manipulating ex vivo DC maturation conditions to enhance
immunogenicity [e.g., utilizing IL-15 to generate Langerhans-type
DCs (19), or IFN-γ and lipopolysaccharide (LPS, a TLR4 agonist)
to yield type 1-polarized DCs (DC1) (20)]; and (e) modification
of co-stimulatory molecule expression to improve DC potency
[e.g., mRNA-electroporated DCs encoding CD40L, CD70, and
TLR4 (21)].

Three such strategies merit discussion. Adoptive cell therapy
(ACT) encompasses infusion of in vitro-expanded tumor-
infiltrating lymphocytes (TILs) (22–24) orT-cells genetically engi-
neered to harbor T-cell receptors (TCR) – and more recently
chimeric antigen receptors (CAR) – specific for tumor-associated
antigens (25, 26). While promising, ACT is rarely effective as
monotherapy for amajority of tumors;moreover, immune “condi-
tioning” with lymphodepleting chemotherapy (see Section “Cyto-
toxic Chemotherapy”), total body irradiation, or in vivo IL-2
support is needed in order to optimize antitumor efficacy (27). An
alternative to these toxic conditioning regimens may be provision
of antigen in the form of peripheral DC vaccination, a premise
that is supported by several preclinical models (28–31) and early
in-human trials (27, 32). Antigen-pulsed DC vaccination may
potentiate the proliferation, persistence, and selective migration
of transferred T-cells to tumor sites (28).Moreover, themagnitude
of the polarized ACT T-cell response may be augmented by DC
vaccination via provision of co-stimulatory signals (18). Several
trials investigating such combinations are currently underway
(Table 1).

While the optimal DC phenotype for cancer immunotherapy
remains controversial, it is increasingly recognized that incorpo-
ration of IL-12p70-producing DC1 – which subsequently polar-
ize naïve CD4+ T-cells toward a IFN-γ and TNF-α-secreting
T-helper type 1 (Th1) phenotype (20) – appears advantageous.
Our group (33), as well as others (34), employs a stream-
lined recipe of IFN-γ and LPS to generate high IL-12p70-
producing DC1. IL-12p70 – predictive of favorable outcomes
in melanoma (35) and glioblastoma (36) patients – promotes
NK cell activation (37) and possesses anti-angiogenic prop-
erties (38). In our studies, CD8+ T-cells could only recog-
nize HLA-A2pos cancer cells if sensitizing DCs secreted IL-
12p70 (39). Furthermore, Th1-derived IFN-γ/TNF-α are criti-
cally important for tumor rejection in preclinical models (40)
and synergistically induce apoptosis of tumor cells in vitro (41).
Generation of Th1 subsets offers other advantages: Th1-driven
CTLs detect class I-tumor antigen complexes with higher affin-
ity than Th2-driven counterparts (42), and are instrumental in
B-cell responses by inducing antibody class-switching and IgG
production (4).

A potential drawback of DC maturation with IFN-γ/LPS
regimens is the narrow temporal window for IL-12p70 secretion –
secretion commences around 6 h after IFN-γ/LPS activation; pro-
duction is maximized – so-called “burst” – around 8–10 h but
is virtually exhausted 16–24 h later (20). Vaccination with such
exhausted DCs would likely polarize tolerogenic (e.g., Th2) T-
cell responses (43), resulting in suboptimal clinical outcomes.
Moreover, IFN-γ/LPS activation generates DCs which lack CCR-
7 and CXCR-4 chemokine expression, limiting their “trafficking”
ability to lymphoid organs (44). To overcome these limitations,
our group employs a protocol whereby DCs are: (a) harvested
6 h after LPS activation, prior to IL-12p70 secretory “burst;” and
(b) injected intranodally via ultrasound guidance in order to co-
localize IL-12p70 “burst” with the anatomic site of T-cell sensiti-
zation (20, 45, 46). In general, vaccine design must exploit such
pre-programed cytokine secretion schedules in order to optimize
in vivo DC efficacy.

Frontiers in Immunology | www.frontiersin.org June 2015 | Volume 6 | Article 2712

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Datta et al. Multimodality optimization of DC-based immunotherapy

TABLE 1 | Multimodality strategy to enhance the efficacy of dendritic cell-based vaccination.

Strategy Agent/technique
utilized

Proposed advantage(s) Clinical trial(s) completed/underway, if applicable

Adoptive cell
therapy (ACT)

Autologous T-cells/TIL Fewer adverse effects,
circumvent need for
pre-conditioning with
chemotherapy, IL-2, etc.

Melanoma (NCT01946373, NCT00338377, NCT00910650, NCT00313508,
NCT00961844, NCT01339663); Brain (NCT00693095, NCT01759810);
Breast (NCT01782274); Lung (NCT01782287, NCT00776295)

Genetically engineered
TCR or CAR T-cells

Synergistically enhance antigen
targeting and DC function

Melanoma (NCT00910650); Solid (NCT00704938, NCT01697527)

Targeted
therapies

Sunitinib
}

Inhibits MDSC, depletes
CTLA-4/PD-1

Renal (NCT01582672, NCT00678119)
Dasatinib Melanoma (NCT01876212)
Trastuzumab Potentiate CTLs, enhance

ADCC
Breast (NCT00088985, NCT00266110, NCT02336984)

Vemurafenib Potentiate DC function –

Targeting immune
checkpoint
pathways

Anti-CTLA4 Inhibit CTLA-4:B7 Melanoma (NCT00090896)

Anti-PD-1 Impair PD-1:CTL interaction Renal (NCT01441765); Prostate (NCT01420965); Hematological
(NCT01096602, NCT01067287)

Muting immuno-
suppressive
cellular elements

Anti-CD25 (basiliximab,
daclizumab) mAb

Deplete Treg Brain (NCT00626483); Melanoma (NCT00847106); Ovarian
(NCT01132014)

Denileukin diftitox Target CD25, deplete Treg Melanoma (NCT00056134); Ovarian (NCT00703105); Solid (NCT00128622)
1-methyl-d-tryptophan Inhibits

indoleamine-2,3-dioxygenase
Breast (NCT01042535)

All-trans retinoic acid MDSC differentiation into
non-suppressive cells

Lung (NCT00617409)

COX-2 inhibitors
(celecoxib, meloxicam)

Inhibit CCL2, upregulate
CXCL10

Melanoma (NCT00197912); Head and Neck (NCT00589186); Brain
(NCT01759810); Lung (NCT00442754, NCT01782287); Breast
(NCT01782274)

Anti-VEGF Inhibit MDSC Renal (NCT00913913); Prostate (NCT00027599); Ovarian (NCT00683241
NCT01132014)

Chemotherapy Cyclophosphamide±
fludarabine

Lymphodepleting, reboots
immune system

Solid (NCT01697527); Brain (NCT00323115, NCT02010606); Melanoma
(NCT00338377, NCT00910650, NCT01946373, NCT00313508,
NCT00704938); Renal (NCT00704938, NCT00093522)

Metronomically dosed
cyclophosphamide

Depletes Treg/MDSC,
potentiates Th1

Head and Neck (NCT01149902); Lung (NCT01159288); Melanoma
(NCT00197912, NCT00683670, NCT00722098, NCT00978913,
NCT00313235, NCT01339663; NCT00610389), Mesothelioma
(NCT01241682); Ovarian (NCT00683241, NCT00478452); Prostate
(NCT01339663); Renal (NCT00610389)

Gemcitabine Improves cross-presentation,
Teff infiltration

Pancreatic (NCT00547144); Sarcoma (NCT01803152)

Temozolomide Immune recovery cytokine
environment

Brain (NCT00323115, NCT01213407, NCT01567202, NCT00639639);
Melanoma (NCT00961844)

Radiotherapy Radiotherapy Enhances tumor
immunogenicity, releases TLR
agonists, targets stroma,
abscopal effect

Brain (NCT00323115, NCT01213407, NCT01567202); Breast
(NCT00082641); Esophageal (NCT01691625); Melanoma (NCT00278018);
Pancreatic (NCT00547144, NCT00843830); Sarcoma (NCT00365872,
NCT01347034)

Cytokines and
TLR agonists

IL-2 Protect CTL effectors from
tumor-mediated dysfunction

Brain (NCT01235845); Breast (NCT00197925); Colorectal (NCT00176761,
NCT0001959); Lung (NCT00442754); Melanoma (NCT00197912,
NCT00338377, NCT00910650, NCT00279058, NCT00006113,
NCT00004025, NCT01339663, NCT00003229, NCT00019214,
NCT00704938); Renal (NCT00197860, NCT00913913, NCT00085436,
NCT00704938); Sarcoma (NCT00001566); Lymphoma (NCT00006434)

Poly-I:C or derivatives
(TLR3)

DC activation, Teff infiltration Melanoma (NCT00278018, NCT00610389); Renal (NCT00913913,
NCT00085436, NCT00610389)

IFN-α Induce apoptosis of tumor Myeloma (NCT00616720)
IFN-γ Cytotoxic, polarize Th1 Pediatric Solid Tumors (NCT00923351)
IL-7 Maintenance of DCs Breast (NCT00622401)
IL-12 Polarize Th1, anti-angiogenic Brain (NCT01808820, NCT01792505, NCT01171469); Lung

(NCT00442754); Ovarian (NCT00799110); Sarcoma (NCT01803152,
NCT01241162, NCT00944580)

Imiquimod (TLR7) Induced type 1-IFN by
plasmacytoid DCs

Brain (NCT01204684, NCT00766753); Melanoma (NCT01783431);
Pancreatic (NCT01677962, NCT01410968); Solid (NCT01734564,
NCT02151448)

Resiquimod (TLR7/8) Teff infiltration, inhibit Treg Brain (NCT01204684)
Thymosin-α-1 (TLR9) Potentiate CTL responses Renal (NCT00197860)

Clinical trials utilizing the respective approach are listed, if applicable.
TIL, tumor-infiltrating lymphocyte; TCR, T-cell receptor; CAR, chimeric antigen receptor; ADCC, antibody-dependent cellular cytotoxicity; Teff, effector T-cells.
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FIGURE 1 | Multimodality approach to optimize DC-based
immunotherapy. Antigen-specific T-cell responses can be induced by
traditional ex vivo-manipulated DCs or DC receptor targeting in vivo (not
shown in this schematic). In ex vivo manipulation, monocyte precursors are
sequentially matured with proinflammatory cytokines, loaded with antigen,
and injected either IN or ID/SC. Lymph nodes serve as sites of T-cell
co-stimulation, whereby DCs present antigen to T-cells in the context of
MHC Class I/II molecules, triggering antigen-specific CD4+ Th1 cells or
CD8+ CTLs. DCs also have the unique ability to induce other immune
effectors, such as NK and NK T-cells. These effector and helper populations
migrate to the tumor bed, where they directly attack tumor cells via
GrB/perforin (CTL or NK/NKT cells), or elaborate cytokines (e.g., Th1
cytokines IFN-γ and TNF-α) to mediate apoptosis. Multimodality
enhancement of DC-based immunotherapy may be achieved by one or
more of the following mechanisms: (a) conventional cytotoxic modalities:
lymphodepleting chemotherapy regimens generate an immune recovery
cytokine environment via elaboration of IL-7, IL-15, etc.; irradiation (XRT) of

tumor cells induces release of tumor-associated antigens, pro-inflammatory
cytokines (IL-1β, TNF-α), or endogenous TLR agonists (HMGB-1), activating
DCs to prime antigen-specific CTL responses; antigens may also be
presented by stromal cells for destruction by CTLs; (b) mAb-based targeted
molecular therapies – targets of translatable promise are shown, including
HER2 (trastuzumab), VEGFR/PDGFR (sunitinib), BRAF (vemurafenib),
MEK/ERK (trametinib), and Src (dasatinib); such blockade abrogates
downstream nuclear signaling and inhibits proliferation; (c) preventing
activated CTL “exhaustion” with checkpoint inhibitors targeting CTLA-4 and
PD-1 – immunostimulatory therapies aimed at recovering T-cell cytotoxicity;
(d) muting tumor-elaborated Treg and MDSCs. A variety of agents, including
IL-2, targeted mAbs, chemotherapy regimens, and radiotherapy can dually
inhibit Treg and MDSC function. COX-2 inhibitors, PDE-5 inhibitors, and
triterpenoids can selectively target MDSCs, while JAK2/STAT3 inhibitors and
zolendronic acid prevent myeloid differentiation to a suppressor phenotype.
Anti-CD25 mAbs and denileukin diftitox (CD25) or anti-GITR mAb (GITR)
target receptors specific to Treg, whereas 1-MT inhibits Treg-elaborated IDO.

IFN-γ/LPS-activatedDCs are also capable of a second IL-12p70
burst in vivo following restimulation in lymph nodes by acti-
vated CD4+ T-helper (Th) cells via CD40-CD40L interactions
(20, 46). Beyond perpetuation of IL-12p70 secretion, CD40 trig-
gering is critical in upregulating co-stimulatory molecule expres-
sion (i.e., CD80, CD86) on DCs, promoting cross-priming to
exogenous antigens, augmenting CD4+ and CD8+ T-cell expan-
sion, rescuing CD8+ T-cell exhaustion, and mediating resis-
tance of mature DCs to suppression by regulatory T-cells (Treg)

(47–53). Notably, CD40–CD40L interaction – but not TLR4
signaling via LPS – can restore the capacity for IL-12p70 secre-
tion in IFN-γ/LPS-activated DCs which have exhausted their
potential for cytokine secretion (54, 55). Consequently, incor-
poration of CD40 ligation has emerged as an attractive strategy
to enhance DC potency. For instance, autologous DCs electro-
porated with mRNA encoding CD40L (plus CD70 and TLR4)
and fusion protein of an HLA class II-targeting signal (DC-
LAMP) and melanoma-associated antigens (TriMixDC-MEL)
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were immunogenic and generated tumor responses in chemore-
fractory melanoma (21, 56).

Targeted Molecular Therapies

The advent of molecular therapies targeting tumor oncogene
drivers represents one of the most significant advances in con-
temporary cancer therapy. Despite encouraging success in many
tumors types, however, disease relapse is observed in a size-
able proportion of patients treated with these agents. Novel
combinations of targeted therapies with immune interventions,
therefore, are conceptually appealing and are being increasingly
explored in order to reduce treatment failures (57). A particu-
larly promising candidate is sunitinib, a receptor tyrosine kinase
(RTK) inhibitor targeting VEGFR, PDGFR, c-KIT, and Flt-3;
in preclinical models, sunitinib decreased tumor microenviron-
ment (TME) accumulation of myeloid-derived suppressor cells
(MDSCs), restored Th1/CTL functionality, muted PD-L1 expres-
sion on tumor-resident DCs, depleted CTLA-4/PD-1 expression
on activated CTLs, and inhibited production of inhibitory IL-10,
TGF-β, and FoxP3 from TILs (58, 59). In a phase II clinical
trial, administration of sunitinib with DCs co-electroporated with
amplified tumor and synthetic CD40L mRNA yielded supportive
immune responses and extension of long-term survival in 21
patients with advanced RCC (60).

In preclinical murine models of mutant-BRAF (BRAFV600E)
melanoma,BRAFV600E inhibitor vemurafenib synergizedwithTh1
cytokines IFN-γ/TNF-α to induce growth arrest (61). In a separate
study, vemurafenib reversed BRAFV600E melanoma-induced DC
dysfunctionwithout deleterious effects onDC viability or capacity
to prime T-cell responses in vitro (62), strengthening its candidacy
for combination DC-based immunotherapy.

In a murine B16-OVA melanoma model, combination therapy
with dasatinib – a RTK inhibitor targeting BCR-ABL, SRC, c-KIT,
and PDGFR – and OVA-pulsed DC1 vaccines decreased TME
levels ofMDSCs andTreg, enhancedTME recruitment of IL12p70-
producing DC1, and promoted a profound spreading in the reper-
toire of tumor-associated antigens recognized by CD8+ TILs (63).

Wehave recently demonstrated that cooperation betweenDC1-
driven Th1 cytokines IFN-γ/TNF-α andHER2/neu-targeted anti-
body trastuzumab is necessary for restoration of MHC class I
expression in HER2-overexpressing, but not HER2-low, cancer
cells in vitro, thereby facilitating recognition and lysis of these
cells by DC1-sensitized HER2-specific CD8+ T-cells. Activa-
tion of EGFR and HER3 signaling abrogated IFN-γ/TNF-α and
trastuzumab-induced class I restoration; however, concomitant
EGFR/HER3 receptor blockade rescued class I expression and
ensuing CD8+ T-cell cytotoxicity of HER2/neu-expressing cells
(64). Therefore, combinations of DC1-directed Th1 immune
interventions and multivalent molecular targeting of HER fam-
ily members may be essential for optimal HER2/neu-directed
immunotherapy.

Collectively, these data provide strong rationale for DC-
based combination immunotherapy with oncogene inhibitors in
patients with targetable tumors. Indeed, in-human clinical trials
investigating such combinations are underway in RCC, breast
cancer, and melanoma (Table 1).

Immune Checkpoint Pathway Inhibitors

Immune checkpoint pathways – which under physiologic condi-
tions prevent aberrantly activated T-cells from mediating autoim-
munity – negatively regulate antitumor CTL function, rendering
an “exhausted” T-cell phenotype. The CTLA-4/B7 and PD-1/PD-
L1 pathways are areas of intense investigation. CTLA-4, a CD28
homolog, is upregulated upon T-cell activation and competes
with CD28 for binding to APC ligands CD80 (B7.1) and CD86
(B7.2). Inhibitory CTLA-4-driven signaling in T-cells has his-
torically been favored as the leading explanation for the thera-
peutic benefit of CTLA-4 blockade, reputedly resulting in TCR
interference, attenuated IL-2 production, and cell cycle arrest (65,
66). Recent evidence, however, suggests a movement away from
these signaling concepts toward a quantitative model of ligand
competition, wherein the dominant function of CTLA-4 is control
of CD28 access to shared ligands CD80/CD86 on APC/DCs (67).
Intriguingly, the inhibitory function of CTLA-4 may be “domain-
specific” – the extracellular, not cytoplasmic domain is sufficient
to confer suppressive capacity (68), attenuating stimulatory CD28
signals via direct competition for APC ligands (67). Moreover,
CTLA-4 inhibits CD28 co-stimulation by cell-extrinsic depletion
of CD80 and CD86 on DCs via trans-endocytosis (69, 70); this
downregulation can be abrogated either by CTLA-4 deficiency or
blockade (71).

PD-1, a CD28/CTLA-4 homolog, is expressed on T-cells sub-
jected to chronic antigen exposure (e.g., cancer, chronic infec-
tion, etc.). Analogous to exhausted T-cell phenotypes observed
in murine models of chronic viral infection – which are par-
tially reversed by PD-1 blockade (72) – TILs overexpressing
PD-1 are thought to be functionally “exhausted” (73). Conven-
tional wisdom holds that PD-1 binding to its ligands PD-L1/PD-
L2 – expressed on myeloid cells, DCs, stromal cells, and tumor
cells – provides inhibitory signals to T-cells (74). A more nuanced
appreciation of PD-1 function, which better informs the thera-
peutic basis for PD-1 blockade in human cancer, has emerged
recently. PD-1:PD-L1 engagement inhibits the TCR-induced
“stop signal,” resulting in reduced T-cell:DC or T-cell:tumor con-
tact; PD-1 blockade may reverse these effects, abrogate tolerance,
and improve tumor targeting (75, 76). Moreover, PD-L1 induc-
tion on myeloid cells (including DC/APCs) in response to an
inflammatory cytokine (e.g., IFN-γ) milieu can impair activation
of tumor-specific T-cells (73, 77). Blockade of the PD-1:PD-L1
axis may counteract this adaptive resistance, restoring APC func-
tion, and enhancing T-cell-targeting of tumors; indeed, PD-L1
expression by infiltrating myeloid, rather than tumor cells was
predictive of clinical response to PD-1 pathway blockade in a
recently reported phase I study (78). Drawing on provocative
evidence from chronic viral infection models, it now appears
that PD-1 upregulation may not confer a terminally differentiated
“exhausted” state, but rather perpetuates a functionally adapted
and stable effector population capable of some degree of tumor
control (79, 80). Collectively, these data may better explain rescue
of T-cell function with PD-1 antagonism.

Monoclonal antibodies (mAb) targeting CTLA-4 and PD-1,
therefore, have emerged as an attractive immunostimulatory strat-
egy aimed at recovering T-cell function. In a seminal study,
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administration of anti-CTLA-4 mAb resulted in the rejection of
pre-established tumors, as well as subsequent immunity to tumor
rechallenge, in amurinemodel (81). The success of this, and other
preclinical studies, precipitated the development, clinical testing,
and subsequent FDA approval of anti-CTLA-4 mAb ipilimumab
(82). More recently, preliminary evidence indicates that combi-
nation DC-based immunotherapy and CTLA-4 blockade may be
synergistic in their benefit. Inmurinemodels of osteosarcoma and
colorectal cancer, co-administration of anti-CTLA-4 mAb with
either tumor lysate-loaded or immature DCs resulted in tumor
growth inhibition, reducedmetastasis, and enhanced survival (83,
84). In a phase I study in 16 advanced melanoma patients, co-
administration of MART-1-pulsed DCs and anti-CTLA-4 mAb
tremelimumab yielded more durable antitumor responses than
with either agent alone (85).

The tumor non-specific mechanism of CTLA-4 blockade, how-
ever, manifests as dose-limiting toxicity in many patients (86).
PD-1 blockade, conversely, is more tumor-specific and generates
fewer adverse immune-related effects. Two FDA-approved anti-
PD-1 mAb nivolumab and pembrolizumab have demonstrated
tolerability and encouraging clinical responses in solid tumors
(e.g., melanoma, non-small cell lung cancer, colorectal cancer,
etc.) (87, 88) and hematologic malignancies (89). Approaches
combiningDCvaccines andPD-1 blockade are on the horizon– in
a proof-of-principle study, anti-PD-1 mAb pidilizumab enhanced
CD4+ and CD8+ T-cell responses following ex vivo stimulation
with autologous myeloma-DC fusion vaccines (90). Trials testing
pidilizumab in conjunction with DC vaccines in prostate cancer,
RCC, and myeloma are underway (Table 1).

A related, but unintended, consequence of DC vaccination-
induced Th1 immunity may be induction of PD-L1 expres-
sion on tumors. In our recent study, synergism between Th1
cytokines IFN-γ/TNF-α and trastuzumab strongly induced PD-
L1 expression, in addition to class I upregulation, on HER2-
overexpressing cells in vitro.While this phenomenonhadminimal
impact on DC1-sensitized HER2-specific CD8+ T-cell-mediated
cytotoxicity of cancer cells – likely attributable to minimal PD-1
expression on activated CD8+ T-cells after limited in vitro DC1
sensitization (64) – these data justify exploration of a multidi-
mensional therapeutic approach using DC vaccination, targeted
therapies, and PD-1/PD-L1 blockade in patients with oncogene-
driven tumors.

Muting Immunosuppressive Phenotypes

In addition to co-inhibitory molecules, tumor-induced suppres-
sive cellular networks (i.e., Treg and MDSCs) also inhibit CTL
function and mediate escape from immune surveillance. Three
broad strategies to counteract Treg andMDSCs are plausible. First,
inhibiting Treg (CD4+CD25+Foxp3+ T-cell) may augment DC
efficacy. Antibodies targeting the IL-2 receptor α-chain CD25
(e.g., daclizumab, basiliximab) deplete Treg and mediate tumor
rejection in murine models. However, not only is this Treg deple-
tion effect transient but it also appears that these agents may para-
doxically impair tumoricidal effector populations. In a phase I/II
trial in 30 metastatic melanoma patients, addition of daclizumab
to tumor antigen/KLH-pulsed DCs reduced circulating Treg,

but undesirably suppressed tumor-specific CD25+ effectors.
Progression-free survival was similar between daclizumab-treated
vs. untreated patients (91). Denileukin diftitox – another CD25-
targeting strategy – is a recombinant IL-2-diphtheria toxin
conjugate demonstrating Treg inhibition in RCC (92) and
CEA-overexpressing malignancies (93). Paradoxically, however,
denileukin induces a tolerogenic DC phenotype, promotes non-
activated Treg survival (94), and inhibits NK cells (95). A non-
CD25-based alternative, 1-methyl--tryptophan – which inhibits
indoleamine-2,3-dioxygenase (IDO) – may overcome these limi-
tations, and is currently being investigated in combination DC-
based immunotherapy trials (NCT01042535). In an alternative
strategy, mAb targeting the anti-glucocorticoid-induced TNFR
family-related receptor (GITR) – expressed highly in Treg but not
conventional T-cells – in conjunction with HER2/neu-expressing
DC vaccines displayed potent antitumor immunity in a tolero-
genic murine model (96). While promising, these Treg-targeting
approaches must consider the risk of depleting Treg systemically,
which may generate irreversible autoimmunity.

Second, in light of evidence suggesting that MDSCs impair
DC vaccine quality (97), concomitant targeting of these ele-
ments can be achieved by: (a) promoting MDSC differentia-
tion into non-suppressive cells (e.g., all trans-retinoic acid, vita-
min D3); (b) inhibiting myeloid cell development into MDSC
(e.g., JAK2/STAT3 inhibitors, zolendronic acid); (c) depleting
MDSC levels (e.g., sunitinib, gemcitabine, 5-FU); and (d) dis-
abling MDSC function (e.g., cyclooxygenase-2 inhibitors, PDE-
5 inhibitors, synthetic triterpenoids) (98, 99). Synthetic triter-
penoids – such as bardoxolone methyl (CDDO-Me) – can inhibit
JAK1/STAT3 signaling and reduce expansion of MDSCs (100).
Dual treatment with a survivin-pulsed DC vaccine and CDDO-
Me, compared with vaccination alone, delayed tumor progression
and generated synergistic antigen-specific T-cell responses in EL-
4 tumor-bearing mice (101).

Finally,DCvaccines can be designed to directly target immuno-
suppressive elements. Our group has demonstrated that LPS and
IFN-γ-activated DC1 not only negate Treg effects but also pro-
mote differentiation of these regulators into IFN-γ-secreting Th1
effectors (102). FoxP3 mRNA-transfected DC vaccines reduced
intratumoral, but not systemic, FoxP3+ Treg and bolstered TRP2-
specific CTL responses following co-vaccination with TRP2-
pulsed DCs in a murine melanoma model (103).

Cytotoxic Chemotherapy

Increasing recognition of chemotherapy-induced immune effects
have fueled the development of “chemoimmunotherapy” regi-
mens that could be explored in conjunction with DC-based vac-
cination: (a) temozolomide or cyclophosphamide± fludarabine
reboots the immune system by eliminating immunosuppres-
sive cells and creating an “immune recovery” cytokine (e.g.,
IL-7, IL-15) environment (44, 104); (b) Metronomically dosed
cyclophosphamide depletes Treg/MDSCs, increases tumor cell
permeability to CTL-derived cytolytic factors, and potentiates
Th1 responses (44); (c) gemcitabine enhances tumor-associated
antigen cross-presentation, while selectively mediating MDSC
apoptosis (98, 105).
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While the immune impact of such regimens is recog-
nized, optimal sequencing of chemoimmunotherapy is yet to
be definitively established. The potent immunogenicity of DC
vaccines makes it an attractive strategy to boost antigen-
specific immune responses in heavily pretreated patients – an
interim analysis from our ongoing phase I trial investigat-
ing HER2-pulsed DC1 vaccination in HER2pos breast cancer
patients with residual disease following neoadjuvant chemother-
apy/trastuzumab demonstrated robust anti-HER2 Th1 immunity
6months post-vaccination (106). Intriguingly, administration of
chemotherapy prior to immunization may even bolster antitu-
mor immunity. In 35 non-Hodgkin’s lymphoma patients, pre-
treatment with cyclophosphamide-containing regimens before
tumor-derived idiotype-pulsed DC vaccination induced T-cell
and humoral responses as well as generated durable tumor regres-
sion (107). Alternatively, DC pre-immunization may sensitize
tumors to ensuing cytotoxic effects of chemotherapy. Follow-
ing initial vaccination with tumor lysate/peptide-pulsed DCs,
temozolomide-containing chemotherapy resulted in improved
clinical responsivity and survival in glioblastoma patients (108).
To confound matters, concomitant chemotherapy and DC vacci-
nation may also be a feasible approach in particular tumor types –
colon cancer patients concurrently receiving adjuvant oxali-
platin/capecitabine and KLH/CEA-pulsed DCs demonstrated
CEA-specific T-cell responses (109). Trials attempting to eluci-
date the optimal dosing and timing of chemoimmunotherapy are
underway (9).

Radiotherapy

The traditional paradigm of viewing radiotherapy as merely
cytoreductive has recently shifted to a more nuanced appreciation
of its varied immunomodulatory effects (110). Such effects are
exemplified in a recent study in which radiotherapy and dual
checkpoint blockade (anti-PD1 plus anti-CTLA-4) demonstrated
major tumor regression in metastatic melanoma patients via non-
redundant immune mechanisms (111). The mechanistic rationale
for addition of radiotherapy to DC-based interventions warrants
discussion. Ionizing radiation (a) induces tumor cell apoptosis
and necrosis secondary to vascular injury; phagocytosis and cross-
presentation of apoptotic bodies by DCs primes tumor-specific
T-cell responses if appropriate DC maturation signals are present
(112); (b) upregulates expression of class Imolecules (113), tumor-
associated antigens (114, 115), death receptors, and NKG2D lig-
ands on tumors, thereby enabling recognition and elimination
of damaged cancer cells that have survived the cytocidal effects
of radiotherapy (116); (c) induces generation of proinflamma-
tory cytokines (TNF-α, IL-1β) or endogenous TLR agonists
[HMGB1 (TLR4)], which activate DCs and potentiate antitumor
inflammatory responses (117); (d) selectively inhibit immunosup-
pressive cellular (Treg) or soluble (TGF-β, VEGF) factors (118,
119), thereby enhancing DC functionality; (e) induce immune-
mediated targeting of tumor stroma (120, 121), whereby antigen
released after tumor irradiation may be presented by stromal
cells for destruction by CTLs; and (f) inhibits distant untreated
tumors – the so-called abscopal effect – via immune-mediated
mechanisms (122).

This dynamic interplay between irradiated tumor, stromal
cells, DCs/APCs, and effector/suppressive immune subsets has
set the stage for clinical protocols combining radiotherapy with
DC-based immunotherapy. Conformal radiotherapy followed by
intratumoral injection of autologous immature DCs in refractory
hepatocellular carcinoma patients generated partial responses
and improvements in α-fetoprotein-specific immune responses
in most patients (123). Autologous tumor lysate- or peptide-
pulsed DCs were combined with intensity-modulated radiother-
apy in 40 patients with advanced tumors; nearly two-thirds of
patients receiving full-dose radiotherapy demonstrated objective
responses (124). Trials investigating DC/radiotherapy protocols
are ongoing in brain, breast, pancreatic, and esophageal cancer,
as well as melanoma and sarcoma (125).

TLR Agonists and/or Cytokines

Toll-like receptor agonists and cytokines – by virtue of their
ability to regulate lymphocyte homeostasis and potentiate CTL
function – are attractive adjuncts to DC-based vaccines. In pre-
clinical studies, administration of TLR3 agonist poly(I:C) and
peripheral vaccines resulted in robust Th1-polarized immunity
and enhanced CTL activity. In a phase I/II clinical trial, co-
administration of poly(I:C) with DC1 vaccines loaded with syn-
thetic glioma-associated antigen epitopes demonstrated immuno-
genicity and improved progression-free survival in patients with
CNS tumors (36). A phase I/II trial evaluating DC1 vaccines with
tumor-selective chemokinemodulation using poly(I:C) derivative
rintatolimod, IFN-α, and COX-2 inhibitor celecoxib following
resection of peritoneal surfacemalignancies is currently recruiting
patients (NCT02151448). Other promising agents include TLR7/8
agonists (e.g., imiquimod, resiquimod), which stimulate TNF-
α/IFN-α production by tumor-resident plasmacytoid DCs (126),
and TLR9 agonists (e.g., CpG-containing oligodeoxynucleotides),
which augment DC activation, enhance TME infiltration by effec-
tor T-cells, and inhibit Treg/MDSCs in preclinical models (127).

IL-2 is the most extensively studied systemic cytokine adjunct,
with encouraging results in combinatorial approaches with DC-
based vaccines in preclinical studies (128). Outcomes in the clini-
cal setting are more equivocal – in a phase IB trial in 24 metastatic
melanoma patients, treatment with autologous tumor lysate-
pulsed DC vaccines and IL-2, albeit well tolerated and variably
immunogenic, failed to induce meaningful objective responses
(129). Other cytokine adjuncts hold promise – in the presence of
IL-15, DCs are not only potent APCs but also express CD56 – an
NK cell marker – which allow direct tumor cytotoxicity via elabo-
ration of granzyme-B (130). Likewise, IL-7 potentiates DC activa-
tion in lymphoid tissue, and enhances TME infiltration of effec-
tor T-cells (131). Several combination DC-based immunotherapy
trials utilizing these and other (e.g., IL-12, GM-CSF, IFN-γ, and
pegylated-IFN-α) cytokines are currently underway (Table 1).

Conclusion

Cancer immunotherapy – in particular, checkpoint inhibitors
and genetically engineered T-cell receptor- or chimeric antigen
receptor-directed T-cells – has emerged as a central approach
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in the “precision medicine” era. For DC-based immunother-
apy to remain relevant in this rapidly changing clinical land-
scape, the paradigm must shift away from application of DC
vaccines as monotherapy for solid tumors. Instead, a multi-
faceted approach incorporating versatile DC vaccine design and
delivery, functionally synergistic targeted molecular and immune
adjuncts/therapies, and rationally selected cytotoxic modalities
(i.e., chemotherapy, radiotherapy) will yield the clinical outcomes
that have remained elusive to date.
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