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Dendritic cells (DCs), monocytes, and macrophages are a heterogeneous population of 
mononuclear phagocytes that are involved in antigen processing and presentation to 
initiate and regulate immune responses to pathogens, vaccines, tumor, and tolerance to 
self. In addition to their afferent sentinel function, DCs and macrophages are also critical 
as effectors and coordinators of inflammation and homeostasis in peripheral tissues. 
Harnessing DCs and macrophages for therapeutic purposes has major implications for 
infectious disease, vaccination, transplantation, tolerance induction, inflammation, and 
cancer immunotherapy. There has been a paradigm shift in our understanding of the 
developmental origin and function of the cellular constituents of the mononuclear phago-
cyte system. Significant progress has been made in tandem in both human and mouse 
mononuclear phagocyte biology. This progress has been accelerated by comparative 
biology analysis between mouse and human, which has proved to be an exceptionally 
fruitful strategy to harmonize findings across species. Such analyses have provided 
unexpected insights and facilitated productive reciprocal and iterative processes to inform 
our understanding of human and mouse mononuclear phagocytes. In this review, we 
discuss the strategies, power, and utility of comparative biology approaches to integrate 
recent advances in human and mouse mononuclear phagocyte biology and its potential to 
drive forward clinical translation of this knowledge. We also present a functional framework 
on the parallel organization of human and mouse mononuclear phagocyte networks.
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introduction

The mononuclear phagocyte system (MPS) is a branch of the immune system comprising dendritic 
cells (DCs), macrophages, and monocytes (1–3). The many functions of the MPS include tissue 
maintenance and healing, innate immunity and pathogen clearance, and the induction of adaptive 
immune responses (1–3). Manipulating these functions could lead to clinical benefit, such as modulat-
ing DCs to develop antigen-specific anti-tumor immunity or suppressing peripheral autoreactive T cell 
responses in autoimmunity (4, 5). Several factors need to be considered in designing immunotherapy 
targeting the MPS, including cellular or pathway target choice and the relevant disease and tissue 
context. Diversity and plasticity of the MPS, two core features that are paramount for directing the 
quantity and quality of specific immune responses, have frustrated attempts to develop successful 
focused therapies. The additional variable of local tissue environment, which also heavily influences the 
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composition and function of resident and infiltrating mononuclear 
phagocytes (MPs), also requires careful consideration (1–3).

The MPS was conceived in the 1960s by van Furth to encom-
pass a family of phagocytic mononuclear leukocytes regarded as 
functional variations of monocytes (6). DCs were embraced as 
members of the MPS several years later (7). The revolutionary 
discovery that human monocytes and CD34+ hematopoietic 
stem cells (HSCs) could be differentiated into DC (mo-DC) and 
macrophage-like (mo-Mac) cells provided a convenient in vitro 
model to study human MP biology (8–10). However, murine 
studies have demonstrated the independence of many DCs, 
macrophages, and Langerhans cells (LCs) from blood monocytes 
questioning the accuracy of human in  vitro monocyte-derived 
cells in recapitulating in vivo populations (11–16). Conventional 
DCs arise from HSCs along a lineage that does not go through a 
monocyte stage and are dependent on the growth factor receptor 
FLT3 (11). In contrast, the majority of tissue macrophages arise 
from prenatally seeded precursors that can survive into adulthood 
and are dependent on CSF1-R (12–16).

The constituents of MPS share overlapping surface markers, 
which poses a challenge in parsing functionally distinct popula-
tions. A rewarding approach to unravel this complexity has been 
comparative biology analysis (17–28). In essence, comparative 
biology relies on the concept that core developmental programs 
and functions such as differential CD4 and CD8 T cell prim-
ing, cross-presentation, migration, and cytokine production 
are likely to be non-redundant and conserved between species. 
In support of this, around 99% of murine genes have human 
analogs and around 96% are syntenic, despite the two species 
having 80 million years of divergent evolution (29). Comparative 
transcriptomic mapping has revealed conserved gene expres-
sion profiles in the two species allowing parallels to be drawn 
between DC and macrophage subsets (17–28). This approach 
places comparative analysis as the central fulcrum facilitating 
the integration of fundamental immunology to fertilize clinical 
translational strands (Figure 1). Integrating this workflow with 

FiGURe 1 | Comparative biology is a validation and discovery tool to 
pull-through fundamental knowledge in MPS biology to clinical 
translation. Incorporation of new genomics and proteomics methodologies 
will accelerate discovery.

cutting-edge technologies including single-cell genomics and 
proteomics approaches has the potential to accelerate discovery 
in basic MP biology and its clinical applicability (Figure  1). 
Comparative biology has revealed further insights into the ori-
gin and function of human and mouse mononuclear phagocyte 
populations (17–28) and generated new hypotheses to be tested 
in both species.

The concept of functional specialization as an inherent 
property imprinted by MP ontogeny and tissue anatomy has 
been well demonstrated in many murine studies [reviewed in 
Ref. (1, 3, 30)]. However, the MPS possesses an additional layer 
of complexity in the form of dynamic mobility, plasticity, and 
adaptability to tissue/local microenvironment both in steady state 
and in inflammation (1, 3, 31). These issues have been particularly 
difficult to dissect in human, where the temporal resolution to 
observe these kinetics is constrained by snapshot analysis during 
inflammation and disease without adequate recourse to their 
onset and evolution (Figure 2). Snapshot observations during 
inflammation may be confounded by temporal variations in MPS 
composition and function resulting in highly variable biological 
data. This variability may account for the biological noise inher-
ently observed with outbred humans in contrast to inbred mice 
in specific pathogen free (SPF) facilities.

Mononuclear phagocytes and their progenitors are in dynamic 
equilibrium between peripheral tissue, blood, and bone marrow 
(1, 3, 31, 32). The distinction between MPs within peripheral 
interstitial tissue and blood can be difficult to establish in highly 
vascularized organs such as liver and spleen, where large sinusoids 
are present adjacent to discontinuous endothelial lining that 
enables greater mobility of leukocytes within these organs. In addi-
tion, inflammatory perturbations affect the dynamic equilibrium 
between tissue, blood, and bone marrow compartments favoring 
the relative expansion and egress of specific lineages in response 
to distinct stimuli (33–35). Expansion of monocyte-derived cells 
dominates the response to inflammatory stimuli in tissue but little 
is known regarding their fate upon resolution of inflammation 
(35). Peripheral tissue DCs migrate to the lymph node where 
they mediate their potent functions upon inflammatory stimuli. 
Whether they play a prominent role in local tissue immune regula-
tion and how migratory DCs are repopulated during inflammation 
and its resolution has been poorly characterized.
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Comparative Biology to interrogate 
Human and Mouse MP Networks

Identifying homology between mice and humans in other hemat-
opoietic cells such as T and B cells has been relatively simple at 
phenotype and practical levels because of shared lymphocyte 
surface markers (CD3/CD4/CD8 and CD19, respectively) as well 
as the relative ease of isolating lymphocytes, which form 90% of 
human peripheral blood mononuclear cells (c.f. <1% being DCs). 
Nevertheless, there are functional differences in lymphocytes 
between the two species, such as differentiation requirements 
for IL-17 (36) and GM-CSF (37, 38) secreting CD4+ T cells, the 
specificity of granzyme and FOXP3 expression to define natural 
Tregs (39), the distinct classes of immunoglobulin (40) and human 
CD1a, 1b, and 1c-restricted responses to lipid molecules (41). 
Unfortunately, components of the human and mouse MPS lack 
overlapping phenotypic markers, hampering initial progress in 
identifying homologous populations between species.

A range of –omics technologies such as transcriptomics, 
metabolomics, proteomics, and epigenomics could potentially be 
employed to assess proximity between species. Of these approaches, 
transcriptomics is technically most tractable and generates enough 
complexity to achieve good definition between populations 
(n-dimensions where n is the number of genes analyzed) (42, 
43). Transcriptome-based comparison of various hematopoietic 
lineages between human and mouse shows broad conservation but 
also highlighted specific differences and transcriptional divergence 
due to gene duplication (43).

Transcriptomics
The hypothesis underlying comparative transcriptomics is that 
the identified MP populations were present in a shared ances-
tor and that these same subsets are present in modern animals. 
Furthermore, despite divergent evolution over time, cells from 
each subset will have a conserved transcriptomic signature similar 
to that of its equivalent in the other species. Two approaches are 
generally used to measuring this similarity: (1) unsupervised hier-
archical clustering and principal component analysis (PCA), which 
assigns samples a point in n-dimensional space (n corresponding 
to the number of genes analyzed) and applying a distance metric 
with greater proximity suggesting a developmental relationship, 
or (2) supervised assessment of defined transcriptome signature 
enrichment between populations of interest exemplified by gene 
set enrichment analysis (GSEA) (44) and its later variations (45).

In hierarchical clustering, the Euclidean distance is calculated 
between samples. In PCA, the same Euclidean metric is used 
after the n-dimensional data are projected on to the two or three 
dimensions over which the most variation occurs. This approach 
has the disadvantages inherent in using large sets of gene data, 
large number of variables/genes, and high inter-sample vari-
ability when testing a limited number of samples. The consistent 
finding that tissue-specific genes predominate in DC microarray 
transcriptomes highlights the first point. As a result, microarray 
data of DC subsets from the same tissue tend to cluster together 
rather than with their equivalent in blood or another tissue (46). 
This can be corrected for by techniques such as excluding genes 
that are differentially expressed between pooled cells from each 

tissue (and classifying these “tissue-specific”) (23, 26) or through 
using an abbreviated gene panel that is enriched for genes that 
are known to give good definition between DC subsets (17). An 
important corollary of this finding is that, while the relative con-
tribution of ontogeny and environment to DC function remains 
to be determined, the list of genes that define ontogeny is a small 
fraction of the genes that are modulated by the environment and 
highlights a potential drawback of using blood DCs as a proxy 
for tissue DCs.

The use of GSEA derives from large-scale microarray data in 
which it was recognized that groups of co-regulated functionally 
linked genes may be more relevant than the few genes that are most 
significantly differentially regulated but functionally unrelated. 
This approach is dependent upon an a priori understanding of 
gene function and this can introduce bias. When GSEA has been 
used in aligning DC subsets between species, a “query signature” 
is produced that defines the subset of interest. Samples in the test 
population can then be interrogated for whether they are enriched 
for this query signature. The underlying analysis is based on the 
non-parametric goodness-of-fit Kolmogorov–Smirnov test statis-
tic with the reference probability distribution that of the query 
signature. GSEA and its later variant connectivity map analysis 
(CMAP) have been successfully used to identify homologous 
MP populations between species and the developmental origin 
of human inflammatory DCs (17, 23, 25, 26, 47). Steady state 
homologous MP populations in human and mouse blood, lymph 
node, and peripheral tissues are illustrated in Figure 3.

Most transcriptomics studies thus far on MPs have involved 
ensemble or bulk-population analysis. This introduces an inherent 
bias, as cell populations have to be defined a priori based on expres-
sion of specific markers. More recently, the application of single-cell 
RNA-sequencing (sc-RNA-Seq) with unbiased analysis potential 
has been successfully used to interrogate cellular heterogeneity to 
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uncover new cell populations, functional immune states, and to 
establish cellular lineage hierarchies and lymphocyte differentia-
tion programs (48–53). These technical advances combined with 
novel computational approaches have the potential to revolution-
ize our understanding of MPS biology by unraveling predicted 
and unexpected functional heterogeneity, which underpins the 
dynamic repertoire of our immune system in health and disease.

Proteomics
Proteomics analysis has revealed differences in viral sensing path-
ways between murine splenic DC subsets (54) and identified the 
murine common monocyte progenitor (cMOP), an intermediate 
cell-type between the monocyte/macrophage and DC precursor 
(MDP) and monocyte (55). However, current large-scale proteom-
ics approaches require high cell numbers for robust analysis and 
are impractical for rare populations, especially from limited human 
tissue material. Protein expression on a more limited scale has been 
the mainstay of conventional flow cytometry to define popula-
tions and assess MP functions at single-cell resolution. Although 
the number of parameters that can be analyzed simultaneously 
is limited (17–18 parameters using commercial instruments), 
the application of new unbiased probabilistic analysis to define 
populations could reveal new insights to MP heterogeneity (56). 
Mass cytometry (CyTOF) provides additional parameters (up to 
100) and combined with unbiased population assignment has 
enormous discovery potential. This combined analysis on mouse 
myeloid cell populations has revealed far greater population 
heterogeneity than previously appreciated (57).

Functional validation
Comparative functional analysis between mouse and human MPs 
has resulted in variable findings [reviewed in Ref. (30, 58)]. It is 
unknown if this is due to true biological differences or experimen-
tal factors which are not comparable within and between species, 
including the common use of murine in vivo models in contrast to 
human in vitro assays to assess MP functions. Conserved functions 
are detailed in Figure 4.

Lineage Analysis
The power and utility of comparative biology to identify homologous 
MP populations is beginning to be applied to MP lineage analysis. 
The recent identification of the successive downstream progenies 
of human MDP; the Common DC precursor (CDP) and precursor 
of myeloid DCs (pre-cDCs) exploited the conserved dependency 
on growth factors and cytokines between human and mouse DC 
precursors (27, 28). Similarly, comparative analysis suggested the 
monocyte-origin of human dermal CD14+ cells (25) and inflamma-
tory DCs (47). The preservation of LCs and dermal macrophages 
in GATA2 and biallelic IRF8 deficiencies show that they are bone 
marrow independent in the steady state and similar to their murine 
counterparts, also arise from prenatally seeded precursors (59, 60).

DC, Monocyte, and Macrophage Subsets 
in Mice and Humans

This approach of using ontogeny and by extension transcription 
factor dependence to define MPS populations was formalized 

recently in a proposed nomenclature (61). In this scheme, four 
adult HSC-derived MP populations are described in mice: two 
conventional/classical DC subsets (cDC1 and cDC2), plasmacy-
toid DCs (pDCs), and monocyte-derived cells (61). Both cDCs and 
pDCs are derived from murine CDP (62, 63). The CDP-derived 
cells are defined by their dependence on specific transcription fac-
tors (TFs): cDC1 are Batf3-dependent, cDC2 are Irf4-dependent, 
and pDC are E2-2-dependent (61). This definition is unambiguous 
and avoids using surface markers that can vary between tissues 
and in inflammation. While the ontogeny approach aids definition 
of murine populations, it cannot be easily transferred to human 
DC nomenclature, due to inherent logistical difficulties of human 
ontogeny studies. However, with the aid of comparative biology 
approaches, homologous populations between human and mouse 
MP subsets can be identified and inferences between species on 
ontogeny and function can be made (Figures 3 and 4).

cDC1
Phenotype
This subset is identified in mouse by the expression of CD8α in 
the spleen and CD103 in non-lymphoid tissues (NLT). Its human 
equivalent in blood and NLT were initially defined by their high 
expression of CD141 (thrombomodulin, BDCA-3) (19–23). 
However, this antigen can be upregulated on blood monocytes 
and expressed promiscuously by other DC subsets in human tissue 
(23). The cell adhesion molecule CADM1 (NECL2), C-type lectin, 
CLEC9A (which recognizes damaged cells), and the chemokine 
receptor XCR1 are expressed on human and mouse cDC1 (19, 
22, 64–66). However, CADM1 expression is not restricted to leu-
kocytes and CLEC9A is also expressed on murine DC precursors 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
www.frontiersin.org


June 2015 | Volume 6 | Article 3305

Reynolds and Haniffa Tale of two species

Frontiers in Immunology | www.frontiersin.org

(67, 68). Although cDC1 is the only leukocyte expressing XCR1, 
a commercial antibody against it is currently unavailable. Notably, 
langerin is expressed on murine but not human cDC1 (23, 69, 70).

Homology
Homology between human (XCR1+CD141+DCs) and mouse 
(CD8+/CD103+) cDC1 was demonstrated by comparative tran-
scriptomics, phenotype, and functional analyses (17, 19–21, 23, 
71). Furthermore, blood and skin CD141+ DCs cluster together 
separately from CD1c+ DCs, CD14+ and CD16+ monocytes, and 
pDCs, suggesting that skin XCR1+CD141+ DCs are the tissue 
equivalents of blood XCR1+CD141+ DCs (23).

Transcription Factors
In addition to Batf3 (72), murine cDC1 differentiation requires Irf8 
(73), Id2 (74, 75), and NFIL3 (76). In human, shRNA knockdown 
of BATF3 in cord blood HSCs inhibits their differentiation into 
cDC1 in vitro (22). However, cDC1 were detectable in humanized 
mice reconstituted with BATF3 knockdown CD34+ HSCs (22). A 
possible explanation for this seeming contradiction was shown in 
mice, where in inflammatory conditions (specifically in the pres-
ence of IL-12), other members of the Batf family of TFs appear 
to be able to compensate for loss of Batf3 (77). ID2 mRNA is 
expressed at low amounts in human CD34+ HSCs but upregulated 
during DC differentiation in the presence of GM-CSF and IL-4 
(74). Its role is potentially in suppressing B cell differentiation 
from a common precursor. Definitive evidence for the requirement 
of ID2 and NFIL3 in cDC1 development in humans is lacking 
and highlights the potential difficulties of translating TF-based 
definitions of DC subsets from mice to humans.

Function
The cDC1 subset is thought to be able to efficiently prime CD8+ T 
cells through functional specializations such as cross-presentation 
of antigens and the production of IL-12p70 (78–80). This process is 
important in the induction of tumor immunity and the control of 
viral and bacterial infections when DCs are not the malignant cells 
or directly infected. The expression of Clec9A and XCR1 by both 
murine and human cDC1s supports this notion. cDC1s express a 
more limited TLR profile than cDC2s with high expression of TLR3 
and TLR10 but without TLR4, –5, –7 and –9 (54, 81). TLR3 senses 
viral dsRNA but the role of TLR10 is currently unknown. Human 
cDC1s do not produce large amounts of IL-12p70 in response 
to TLR ligands alone but do following the combination of TLR 
ligands and CD40-CD40L signaling through activated T cells (71), 
in common with the finding in mice (82). IFN-λ is produced by 
murine and human cDC1 upon stimulation with the TLR3 agonist, 
poly I:C (83).

Murine cDC1s have an advantage over other subsets at cross-
presentation of antigens by being able to (1) maintain optimal 
phagosomal pH for antigen processing (84) and (2) enhance the 
transfer of proteins from the endosome in to the cytosol so they can 
be loaded on to MHC Class I (85). This advantage is apparent when 
assessing cross-presentation of dead cell-derived antigens and upon 
stimulation with TLR3. However, recent data showed that murine 
cDC2 are also able to cross-present and cross-prime antigen upon 
stimulation with R848, a TLR7/8 agonist (86). In human, cDC1 

appears to be superior at cross-presenting cell-derived antigen, par-
ticularly upon polyI:C stimulation (19–21, 71) and when antigens 
are delivered to late endosomes and lysosomes (87). However, in 
common with mice, cDC2 are also able to cross-present soluble 
antigen and long-peptide particularly upon R848 stimulation 
(88, 89). The variable findings reported may also be due to type 
of antigens used in the cross-presentation assays and the validity 
of comparing murine in vivo models with human in vitro assays.

In mouse, cDC1 preferentially induce Th1 immune response 
through IL-12p70 production (90, 91), although Th2 induction 
has also been reported (92). In human, both cDC1 and cDC2 have 
been shown to induce Th1 and Th2 responses (93). cDC1s were 
also shown to promote enhanced Th2 differentiation in response 
to TSLP in an influenza infection humanized mouse model (94). 
As most human experiments are performed using blood DCs and 
in vitro, it has been logistically difficult to establish pathogen and 
tissue-specific effects relevant for driving Th priming in vivo.

cDC2
Phenotype
cDC2s in mice are lin–MHCIIhiCD11c+CD11b+. However, this 
fraction also includes monocyte-derived cells and macrophages 
(95). This is demonstrated by the variable depletion of cells from 
this fraction in Flt3 or Csf1r KO mice suggesting contamination by 
Flt3-independent cells (75). This is in contrast to the near complete 
absence of cDC1 in Flt3 KO mice (74).

Genetic tracing using Clec9A-reporter mouse to identify all 
CDP-derived cells demonstrated near-complete labeling of cDC1s 
but variable labeling of CD11b+ DCs in NLT (68). Although 
this is in keeping with the presence of monocyte-derived cells 
and macrophages within CD11b+ cells, it does not exclude 
the possibility of an alternative DC differentiation program 
that does not undergo a monocyte or CDP intermediate stage. 
Splenic CD11b+ DCs are divided into an ESAMhi population that 
requires Notch2-, Flt3, and LTβ-signaling for its development 
and a monocyte-like ESAMloClec12A+CX3CR1+ population that 
is Flt3-independent and expresses high levels of CD14, TNFα, 
CCR2, and Lyz2 (96). In murine lung, it has been possible to 
divide the MHCII+CD11c+CD11b+ fraction into CD11b+CD64+ 
monocyte-macrophage cells and CD11b+CD24+ cDC2s (24). In 
murine skin, the MHCII+CD11b+Langerin– fraction comprises 
cDC2, monocyte-derived cells, and macrophages (97).

There is evidence that similar heterogeneity may be present 
within human cDC2. Only 170 genes characterized human 
cDC2, in comparison to 1020 for cDC1 and 1065 genes for pDCs 
(23). This limited list of differentially expressed genes predicts 
heterogeneity within the boundaries of the phenotype parameters 
used to define human cDC2, specifically a subpopulation derived 
from or closely related to another mononuclear phagocyte such 
as CD14+ monocytes.

Human cDC2 (CD1c+ DCs) are defined as lin–MHCII+CD14–

CD16–CD11c+CD1c+ cells, a definition they share with in vitro 
monocyte-derived DCs. Although human peripheral blood and 
murine cDC2 additionally express CD11b, CX3CR1, and SIRPα, 
these antigens do not distinguish them from monocyte-derived 
cells (24, 98). Uniquely in the small intestine, cDC2s co-express 
CD103 and SIRPα (24, 26). In  vitro human mo-DCs express 
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CD206/MMR and CD1a but peripheral blood cDC2 do not (47, 
99). However, tissue CD1c+ DCs express CD206 and CD1a (100, 
101). In addition, some tissue CD1c+ DCs co-express CD14 
particularly during inflammation (47).

Homology
The transcriptional signatures of human blood CD1c+ DCs are 
enriched with that of mouse spleen CD4+/CD11b+ DCs (17, 23). 
In NLT, the transcriptional signatures of human small intestine 
CD103+SIRPα+ DCs and dermal CD1c+ DCs are enriched with 
that of murine spleen and mesenteric lymph node CD11b+ DCs 
and dermal CD11b+ DCs, respectively (25, 26). A similar relation-
ship was also observed between murine lung CD11b+ DCs with 
human blood CD1c+ DCs (24).

Transcription Factors
cDC2 development has been shown to be dependent on the 
TFs Irf4, PU.1, RelB, and RBPJ (24, 96, 102–108). Irf4 directly 
supports MHC class II antigen presentation to promote CD4+ 
T cell responses (109). In humans, CD1c+ DCs express high 
amounts of IRF4 (24). Interestingly, IRF4 is also required for 
mo-DC differentiation, suggesting a shared differentiation 
program between cDC2 and mo-DC. PU.1 interacts with Irf4 
but also upregulates Flt3 expression critical for early DC dif-
ferentiation in mice (110, 111). The PU.1 binding site in the Flt3 
promoter is conserved in mice and humans, and so it is thought 
to be similarly required for DC differentiation in humans (111). 
Administration of Flt3 results in expansion of DC subsets in 
lymphoid and non-lymphoid tissue (112). PU.1 mutations in 
humans and mice are associated with myeloid leukemias (113). 
Biallelic human IRF8 K108E mutation resulted in complete 
loss of monocytes, pDCs, cDC1, and cDC2 in the peripheral 
blood (60). Surprisingly, human autosomal dominant IRF8 
T108A mutation results in selective loss of the cDC2 subset 
and IL-12 production (60). It is now apparent from studies on 
Irf8R294C(BXH2) and Irf8-/- mice that in addition to cDC1, pDCs 
and monocytes are also dependent on IRF8 (73, 75, 114–116). 
However, cDC2 frequency in mice with Irf8-/- and the hypomor-
phic mutation Irf8R294C are unaffected, in contrast to the findings 
in humans (73, 75, 114).

Function
The transcriptome of cDC2s is enriched for genes related to antigen 
processing such as LAMP1, LAMP2, and cathepsins (117). Murine 
cDC2s have been shown to be able to promote Th17, Th2, and regu-
latory T cell responses depending upon the pathogen and antigen 
stimulus (24, 108, 118–120). This may be a consequence of their 
innate plasticity but could also relate to unresolved heterogeneity 
within murine cDC2. In human, cDC2 have been shown to induce 
Th17 differentiation (24).

Both human and mouse cDC2 share many transcriptional 
and functional similarities with monocyte-derived cells (24, 25, 
47, 97). Both cDC2 and mo-DC are capable of promoting naïve 
CD4+ and CD8+ T cell proliferation and in mice cDC2 appear to 
be superior at trafficking to lymph nodes (97, 98), leading to the 
hypothesis that mo-DCs specialize in activating tissue-tropic T 
cells. Mo-DCs also produce higher levels of monocyte-attracting 

chemokines (CCL2, CCL7, CCL12) than cDC2s (98). Human 
blood cDC2 have a TLR expression profile that is close to murine 
lymphoid cDC2 with significantly higher levels of TLRs 2, 4, and 
5 than other DC subsets (81), a profile it also shares with in vitro 
mo-DCs (121). The pathogenic role of cDC2 in human disease is 
not clear but they have been shown to accumulate in conditions 
such as RA (122), chronic kidney disease (123), and atopic airway 
inflammation (124), although their distinction from inflamma-
tory mo-DCs is unclear. Human cDC2 are also implicated in the 
accumulation of CD103+CD8+ mucosal T cells in the lung and 
promote fibrosis in the kidney through production of TGFβ (123, 
125). Finally, human and mouse cDC2 share a similar cytokine 
production profile which includes IL-6, IL-23, and IL-1β (24, 81, 
126, 127). In addition, unlike murine cDC2, human blood cDC2 
can secrete high amounts of IL-12p70 upon in vitro stimulation 
with R848 and LPS, which was augmented in the presence of IFNγ 
and CD40L (89).

Plasmacytoid DCs (pDCs)
Phenotype
Plasmacytoid DCs are specialized IFNα producing cells that were 
first described in human peripheral blood and tonsil (128–131). 
In blood, their morphology resembles that of lymphocytes but 
upon in vitro culture with IL-3 and CD40L, they acquire dendrites 
resembling myeloid DCs (129). pDCs are identified in mice by 
expression of CD11cintCD11b–B220+ in combination with markers 
such as SiglecH and CD317 (BST2) to exclude a subset of NK cells 
and precursors of cDCs (132). In humans, they are identified by 
expression of CD123, CD303, and CD304. CD123 is the IL-3 recep-
tor alpha chain and is also expressed on precursor cells, basophils, 
and eosinophils (133, 134). CD303 (BDCA-2) is a C-type lectin 
that is specifically expressed by human pDCs (135). Functionally, 
it has a role in antigen capture and when ligated it inhibits IFNα 
production (136). CD304 (BDCA-4) is uniquely expressed by pDC 
in peripheral blood but is also expressed by other cells such as 
endothelial cells (137).

Homology
The relative distance of the pDC transcriptome from other leu-
kocyte subsets and its conservation directly aligns murine and 
human pDCs (17). However, a subset of murine pDCs also appears 
to have cDC differentiation potential (138, 139), which has not 
been observed in human.

Transcription Factors
Plasmacytoid DC development in humans and mice is depend-
ent on the transcription factor E2-2 (140). E2-2 opposes default 
differentiation of precursors into cDCs and controls expression 
of a range of pDC-associated TFs, including SpiB, Irf7, and 
Irf8 (140, 141). In humans, haploinsufficiency of E2-2 results 
in Pitt-Hopkins syndrome, a condition with a range of features 
including developmental delay and characteristic facial features 
but without known clinical immunodeficiency (142). A population 
of CD45RA+CD123+ cells is present in the blood of patients with 
Pitt-Hopkins syndrome but these cells fail to express CD303 and 
have severely reduced expression of IFNα, indicating that loss of 
E2-2 blocks full pDC differentiation (140). The transcription factor 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
www.frontiersin.org


June 2015 | Volume 6 | Article 3307

Reynolds and Haniffa Tale of two species

Frontiers in Immunology | www.frontiersin.org

SpiB is required for IFNα production by pDCs in mice (143). SpiB-
knockdown in human CD34+ HSCs inhibits pDC differentiation 
in vitro (144).

Function
Plasmacytoid DCs have a functional program that is well-
conserved between mice and humans (145). In contrast to cDCs, 
pDCs express a narrow range of pattern recognition (146). Both 
mouse and human pDCs express TLR7 and TLR9 (146). TLR8 is 
expressed at very low amounts if any by human pDCs (81, 147, 148) 
and appears to have a different function in mice (146, 149, 150). 
pDCs in both mice and humans are specialized in the production 
of IFNα and thought to be important in viral immunity but also 
human autoimmunity such as SLE (151, 152).

Monocytes and Monocyte-Derived Cells
Phenotype
Two subsets of monocytes exist in mice and can be distinguished by 
the differential expression of Ly6C, CCR2, and CX3CR1. Similarly 
in humans, there are two monocyte subsets in peripheral blood 
identified by expression of CD14 and CD16 (CD14++CD16– 
and CD14+CD16+) as well as an intermediate phenotype 
(CD14++CD16+). In addition to these antigens, human monocytes 
are also heterogeneous for the expression of the angiopoietin 
receptor, Tie2, and 6-sulfoLanNAc(Slan), a carbohydrate modifica-
tion of the P-selectin glycoprotein ligand-1 (PSGL-1) (153, 154).

Homology
Homology between peripheral blood monocyte subsets has been 
demonstrated by the extensive transcript enrichment between 
Ly6ChiCX3CR1lo and CD14++CD16- monocytes and between 
Ly6CloCX3CR1hi and CD16+ monocytes (18, 23, 155).

Transcription Factors
The TFs that regulate the sequential differentiation of HSCs 
into MDP in mice include PU.1, Irf8, and Klf4 [reviewed in 
Ref. (156)]. PU.1 is required at each developmental bifurcation 
including HSC maintenance (157) and the generation of early 
myeloid progenitors (16, 158–160). Similarly in humans, PU.1 
is required for monocyte differentiation from CD34+ cord blood 
precursors (161). In murine monopoiesis, Irf8 and Klf4 act 
together to skew differentiation toward monocytes by antagoniz-
ing the granulocyte-supporting TF C/EBPα (115, 162). Consistent 
with this, human autosomal recessive Irf8 deficiency results in 
complete loss of circulating monocytes and DCs in the presence 
of neutrophilia (60).

The TFs that control cell-fate decisions downstream of MDP 
are less well defined. In mice, Irf5 and TCFEB are implicated 
during MDP to CMoP differentiation (55). The TF Nur77 has 
been implicated in Ly6CloCX3CR1hi monocyte generation (163).

PU.1 and MafB act antagonistically to support human mono-
cyte differentiation into mo-DC and mo-Mac, respectively in vitro 
(164). Irf4 was also implicated in human in vitro mo-DC differ-
entiation (165). Irf5 promotes the differentiation of classical/M1 
macrophages from human monocytes in vitro (166). In contrast, 
Irf4 activates transcription of the alternative/M2 macrophage 
markers in mice (167) and humans (168, 169).

Function
CD14+ human and Ly6ChiCX3CR1lo murine monocytes can 
exhibit considerable functional plasticity as demonstrated by 
their acquisition of DC-like and macrophage-like characteristics 
in vitro and in vivo. Recent fate mapping studies have demon-
strated that monocytes do not contribute to tissue-resident 
macrophages in the steady state (12, 14, 15), with the notable 
exception of gut and dermal macrophages (14, 97, 170). However, 
monocytes can give rise to tissue macrophage-like cells in inflam-
mation (35, 171). Monocytes can also differentiate into DC-like 
cells in the steady state in mucosal tissues and skin (97, 172). 
This process is enhanced during inflammation (97, 98, 173), 
including infections with Leishmania (34), Influenza (174), 
Trypanosoma (175), Listeria (33), and pulmonary Aspergillus 
(176). Alternatively, rather than DC-like or macrophage-like 
differentiation, monocytes may remain as tissue monocytes upon 
extravasation (177).

CD14+CD16+ intermediate and CD16+ non-classical monocytes 
are expanded in multiple disease, infection, and inflammatory 
states (178). CD16+ monocytes “patrol” the endothelium in vivo, 
are weak phagocytes, and sense nucleic acids and viruses via TLR7 
and 8 receptors (155). Additional heterogeneity has been reported 
within human monocytes. Tie2+ monocytes are associated with 
angiogenesis and Slan+CD16+ cells, which are also present in 
inflamed skin, are potent producers of TNF α, IL-1β, and IL-12 
(179, 180). Monocyte-derived dermal CD14+ cells express IL-1α 
(25) have been shown to induce differentiation of follicular helper 
T cells (126) and provide direct B cell help (181).

Langerhans Cells
Langerhans cells are located in epidermal surfaces such as skin 
and are characterized by the presence of cytoplasmic organelles 
containing Langerin called Birbeck granules (182). The function 
of these organelles is unclear but their absence does not affect 
their capacity to process and present antigen (183). LCs form 
a dynamic network with adjacent keratinocytes and protrude 
dendrites through tight junctions to pick up antigens that have 
passed the stratum corneum barrier (184). The easy accessibility 
of LCs and their functional plasticity has generated significant 
interest in targeting them for vaccination strategies (185).

In the steady state, LCs are maintained independently of the 
bone marrow through local self-renewal (186–188). Human LCs 
can proliferate in situ and have been shown to remain donor in 
origin up to 10  years after limb transplant (189–191). During 
inflammation, LCs can be replaced by circulating precursors. 
The identity of the circulating LC precursor remains unclear. 
In mice, there appears to be two waves of replenishment with 
monocytes in the first wave giving rise to short-term LCs that 
retain some monocyte features and an as yet unknown CD34+ 
HSC-derived precursor that gives rise to long-term LCs (186, 
187). In humans, CD1c+ DCs are able to upregulate langerin and 
CD1a, a phenotype resembling LCs, upon in vitro culture with 
TSLP and TGFβ or GM-CSF and BMP7, but the relevance of this 
to in  vivo LC differentiation is uncertain (192, 193). Although 
human LCs can self-renew locally after BMT, they are replaced 
by donor-derived cells, even after non-myeloablative transplant 
conditioning (194–196).
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Langerhans cells are developmentally independent of Flt3 
but dependent on Csf1r. However, it is IL-34 signaling through 
Csf1r, rather than Csf1, that is critical for LC development and 
maintenance (197). IL-34 is also expressed in human skin but the 
dependence of human LCs on this cytokine remains untested.

Phenotype
Human and murine LCs are CD11clo, langerinhi, EPCAM+, and 
also characterized by the presence of cytoplasmic Birbeck granules 
(198). In human, LCs are additionally CD1ahi and CD1c+ (23, 199).

Homology
The homology between LCs in humans and mouse is obvious given 
their exclusive anatomical occupancy and shared expression of 
langerin, EPCAM, and presence of Birbeck granules. Comparative 
transcriptomic analysis of human and mouse LCs has never been 
performed.

Transcription Factors
Langerhans cell development is dependent on PU.1, Runx3, and 
Id2, although the latter may be dispensable for bone marrow-
derived LCs (74, 188, 200, 201).

Function
Langerhans cells are able to induce different immune responses 
depending on the context. Depletion of murine LCs can either 
exacerbate or suppress contact hypersensitivity immune response 
[reviewed in Ref. (202)]. In a mouse model of graft versus host 
disease (GVHD), LCs neither primed CD8+ T cells nor programed 
their homing to the epidermis but were required for their effec-
tor function in situ (203). This is consistent with their inability to 
cross-present antigen in vivo (80, 204), although cross-presentation 
has been reported using in vitro assays (205). In mice, LCs appear 
to be critical for Th17 response against the yeast form of Candida 
albicans in the epidermis through engagement of Dectin-1 and their 
subsequent production of IL-6 (206). In humans, failure to gener-
ate effective Th17 responses (as a result of a range of mutations in, 
for example, IL-17RA, IL-17F, STAT1 genes) can result in chronic 
mucocutaneous candidiasis (CMC) (207). However, it is unclear if 
immunity against Candida infections in the skin in healthy individu-
als is dependent upon LCs. Notably, human LCs do not appear to 
express Dectin-1, which is important for Candida recognition (208). 
In vitro human LCs appear versatile and are capable of generating 
Th1, Th2 (209), Th17 (210), Th22 (211), and Treg (212) responses 
depending on the experimental conditions used.

Macrophages
Macrophages are a diverse population of tissue-resident cells with 
roles in inflammation, tissue homeostasis, and repair. Macrophage 
identity and function can be influenced by three variables: (1) 
resident tissue environment; (2) exposure to activation signals; 
and (3) ontogeny (monocyte- vs. prenatal precursor-derived) 
[reviewed in Ref. (3)].

The nomenclature of macrophages is based upon their tissue of 
origin [for example, Kupffer cells (liver), osteoclasts (bone), and 
microglia (CNS)]. This is in recognition of the central influence of 
environment on their phenotype and function. Examples of these 

functional specializations include breakdown of RBCs (Kupffer 
cells and splenic macrophages), bone resorption (osteoclasts), 
gut peristalsis (muscularis macrophages), and neural network 
development and maintenance (microglia) (213–215). Although 
macrophages in the vast majority of tissues, except dermis and 
the lamina propria, are prenatally derived, their preservation into 
adulthood by self-renewal is variable by site and in the presence 
of inflammation [(15, 216, 217) and reviewed in Ref. (218)]. The 
relative preservation of dermal macrophages and LCs in patients 
lacking circulating blood monocytes and DCs due to heterozygote 
GATA2 and biallelic IRF8 deficiencies supports a prenatal origin 
of some human macrophages (59, 60).

Microarray transcriptome analysis has identified several thou-
sand transcripts with greater than twofold difference in expression 
between macrophages from different sites in mice (219), support-
ing unique local microenvironment-related characteristics. These 
tissue specific transcripts are more prominent within macrophages 
than DCs (219) and may reflect the tissue-resident nature of 
macrophages. The impact and underlying mechanisms of envi-
ronmental regulation on macrophages was elegantly demonstrated 
by the unique epigenetic modulation of macrophage in distinct 
tissues and the ability of macrophages from one environment to 
develop the characteristics of their counterparts in another tissue 
(220, 221).

Phenotype
Murine macrophages express the antigens CD11b, CD68, CSF1R, 
and F4/80 (215). With the exception of F4/80 which is predomi-
nantly expressed on eosinophils (222), these antigens are also 
expressed on human macrophages (223). Furthermore, human 
alveolar macrophages were shown to express many antigens, which 
are conserved at transcript level with murine bone marrow-derived 
macrophages (163).

Homology
Comparative analysis between human and mouse macrophage 
populations has been poorly studied. In skin, homologous 
monocyte-derived dermal macrophage populations have been 
identified (25) but the murine counterparts of human dermal 
macrophages containing melanin-granules (melanophages) 
remain uncertain. While a range of transcriptional analyses of 
human macrophage populations in health and disease have been 
performed, comparisons between human tissues and across species 
have not been rigorously undertaken (224).

Transcription Factors
The transcriptional requirements of murine YS-derived mac-
rophages differ to those of HSC-derived macrophages. YS-derived 
microglia require PU.1 and Irf8 but are independent of Myb, Id2, 
Batf3, and Klf4 (2, 12, 225). Consistent with macrophage tissue 
specializations, additional TFs such NFATc1 and Spi-C have been 
shown to be required for osteoclasts and splenic and bone marrow 
macrophage differentiation, respectively (226–228).

Function
The M1/M2 paradigm has been described to model the diverse 
programs of macrophage activation but has largely relied on 
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in vitro generated macrophages. This has provided a useful tool 
to examine macrophage activation in the absence of tissue-specific 
effects. More recently, a spectrum of responses, with M1 and M2 
being two poles of a continuum that is transcriptionally appar-
ent, were identified (229). It is unclear how closely human and 
murine macrophages are aligned in response to a similar range 
of stimuli. There are inter-species differences in the response to a 
single stimulus (LPS) between human and mouse in vitro derived 
macrophages; INOS transcript is preferentially induced in mouse 
but human macrophages characteristically upregulate CCL20, 
CXCL13, IL-7R, P2RX7, and STAT4 (230).

Mononuclear Phagocytes in inflammation
Classical Ly6ChiCX3CR1lo monocytes infiltrate inflamed tissues 
where they can acquire either DC or macrophage properties (33, 
231). This in  vivo process (thought to be analogous to in  vitro 
mo-Mac and mo-DC differentiation) can be influenced by local 
microbiota (97, 98, 170, 171). In infection and disease, monocyte-
derived cells accumulate in greater numbers in a broad range of 
tissues [reviewed in Ref. (232)]. In many such models of infection, 
they are non-redundant and required for clearance of pathogens 
by promoting protective Th1 and Th17 responses (34, 233, 
234). This suggests that despite shared functions with resident 
conventional DCs, there are important differences that require 
the presence of monocyte-derived cells to overcome infection. In 
murine experimental autoimmune encephalomyelitis, monocytes 
infiltrate the CNS but are not long-lived and following resolution 
do not contribute to the microglial pool (231). Analysis of murine 
Kupffer cells suggests functional heterogeneity between resident 
and recruited populations (235).

Snapshot analysis of inflamed human tissue similarly reveals 
additional subsets that are not present in health [(47, 99, 179, 
236, 237) and reviewed in Ref. (31)]. These include inflammatory 
dendritic epidermal cells (IDECs) found in atopic dermatitis, 
TNF, and iNOS producing DCs (Tip DCs) and slan DCs, found 
in psoriasis (99, 179, 236, 237). In rheumatoid arthritis synovial 

fluid and malignant ascites, there is an accumulation of cells 
that express overlapping markers with blood CD1c+ DCs but 
additionally express CD1a, CD206, SIRPα, and CD14 (47). 
Monocytes can acquire DC characteristics when cultured with 
ex vivo GM-CSF-primed synovial T cells, which potentially sug-
gests a mechanism for their generation (238). Histiocytes are 
pathological MPs expressing CD68 and CD163. It is unknown 
if these cells, often found in granulomas, arise from resident 
macrophages or are monocyte-derived. Further studies are 
required to establish the in  vivo differentiation requirements 
of inflammatory MP populations and how they contribute to 
disease.

Conclusion

In this review, we have discussed the parallel organization of 
the MPS between humans and mice. We demonstrate the use of 
comparative biology approaches as both a validation and discovery 
tool to dissect the development and functional heterogeneity of 
mononuclear phagocytes in a reciprocal manner across the two 
species. The incorporation of high-dimensional unbiased single-cell 
genomics and proteomics technologies will facilitate the interroga-
tion of functionally relevant populations with indiscrete phenotypes 
and validate current definitions of cell-types based on limited 
antigen expression profile particularly during inflammation. This 
combined strategy will accelerate the translation of fundamental 
MPS biology to clinical benefit through enhanced understanding 
of the pathomechanisms of disease and facilitate the development 
of novel approaches in vaccination and cancer immunotherapy.
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