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C-type lectin receptors (CLRs) are a large family of soluble and trans-membrane pattern
recognition receptors that are widely and primarily expressed on myeloid cells. CLRs are
important for cell–cell communication and host defense against pathogens through the
recognition of specific carbohydrate structures. Similar to a family of Toll-like receptors,
CLRs signaling are involved in the various steps for initiation of innate immune responses
and promote secretion of soluble factors such as cytokines and interferons. Moreover,
CLRs contribute to endocytosis and antigen presentation, thereby fine-tune adaptive
immune responses. In addition, there may also be a direct activation of acquired immunity.
On the other hand, glycans, such as mannose structures, Lewis-type antigens, or
GalNAc are components of tumor antigens and ligate CLRs, leading to immunoregulation.
Therefore, agonists or antagonists of CLRs signaling are potential therapeutic reagents
for cancer immunotherapy. We aim to overview the current knowledge of CLRs signaling
and the application of their ligands on tumor-associating immune response.
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Introduction

Interaction between tumors and the immune system is a complex and dynamic process. The immune
system consists of innate and adaptive immunity whose cooperative interactions are required for
eliminating pathogens efficiently. Similar protective mechanisms are effective against cancer cells;
the endogenous non-self which potentially grow into harmful cell mass. To prevent and suppress
such tumor progression, the immune system utilize host defense mechanisms (1, 2).

Protecting self from harmful pathogens, and facilitating the symbiosis with harmless environ-
mental microorganisms are the original mission of immune system. Above all, the innate immune
system provides the first line of host defense against invading pathogens, with use of soluble
factors, anti-microbial peptides, compliments, and natural antibodies. Initial activation of innate
immune cells are mediated via pattern recognition receptors (PRRs) by recognizing characteristic
structures of microorganisms (3, 4). Known PRRs are categorized into Toll-like receptors (TLRs),
Nod-like receptors (NLRs), RIG-I-like receptors (RLRs), C-type lectin receptors (CLRs), and cyclic
GMP–AMP synthase (cGAS) that has been recently identified.

Toll-like receptors and CLRs are involved in antigen capture, presentation, and activation of
immune responses by enhancing cytokine/chemokine production and up-regulation of MHC class
II molecules (5–7). NLRs predominantly recognize microbial products and endogenous danger
signals, and enhance caspase activity to produce activated IL-1β (8). RLRs and cGAS are involved
in cytosolic recognition of nucleic acids and other microbial components, i.e., RLRs are sensors of
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cytosolic dsRNA and cGAS are sensors of DNA, respectively, and
both induce type I IFN production (9, 10).

C-type lectin receptors are a large family of receptors
that encompass upwards of 1000 members with diverse
functions including cell adhesion, complement activation, tissue
remodeling, platelet activation, endocytosis, phagocytosis, and
activation of innate immunity (11, 12). CLRs contain one or
more C-type lectin-like domains, which are important for the
recognition of specific carbohydrate structures of pathogens and
self-antigens (13). Because of their specificity for glycans, such
as mannose structures, Lewis-type antigens, or GalNAc (14, 15),
CLRs may also mediate specific interactions with tumor antigens
and facilitate tumor rejection. On the other hand, tumor cells
devise multiple strategies to inhibit effector anti-tumor immune
responses through modulating CLRs signaling (16, 17). It is
therefore important to identify CLRs signaling toward immune
evasion and regulate them in a specific way, while making the
best application of beneficial side of CLRs signaling to mount
anti-tumor immunity (Figure 1).

The Immune Regulation by CLRs and
Signaling Pathways

C-type lectin receptors are widely expressed on myeloid cells,
such asmacrophages, neutrophils, and dendritic cells (DCs). They

contain one ormore C-type lectin-like domains, which are impor-
tant for recognition and internalization of glycosylated antigens.
Ligand activation of CLRs initiates intracellular signaling path-
ways that regulate the immune response. Mounting evidence has
been shown that CLRs play roles in sharping innate immune
response. Many CLRs such as dectin-1, dectin-2, dectin-3, Min-
cle, and DEC-205 have been demonstrated to trigger cellular
immune responses, including DC maturation, chemotaxis, reac-
tive oxygen species production, and inflammasome activation (18,
19). The innate immune cells stimulated through CLRs acquire
the capacity to secrete pro-inflammatory and anti-inflammatory
cytokines such as TNF-α, IL-12, IL-6, IL-1β, and IL-10 (20–22).
On the other hand, ligand engagement of some CLRs, such as
MICL andDCIR, has inhibitory effects on host immunity through
controlling DC maturation, activation, and proliferation (23–25).

The ability of CLRs to exhibit activation or inhibition of
immune response is regulated by the specific motifs in their cyto-
plasmic tails. Intracellular signaling through CLRs with immune-
receptor tyrosine-based activation motif (ITAM) domains result
in cell activation, whereas CLRs which possess immune-receptor
tyrosine-based inhibition motif (ITIM) domains usually mediate
inhibitory functions (18, 26). The tyrosine residues are phos-
phorylated by Src family kinases and a tri-molecular complex
composed of CARD9, Bcl10, and MALT1 is involved in the
subsequent activation of NF-κB and expression of inflammatory

FIGURE 1 | Effects of CLRs signaling on dendritic cells and anti-cancer
immune response. Stimulation of CLRs enhances endocytosis of antigens
and up-regulate antigen presentation. It also increases the production of
mediators such as cytokines and interferons. Thus, CLRs–ligands possibly
contribute to enhance anti-tumor immunity via two independent mechanisms.

One mechanism leads to enhancement of tumoricidal activity of NK cells and
cytotoxic T lymphocytes (CTL) via induction of IFN-γ and target cancer cells
directly. The other mechanism support maturation of anti-inflammatory cells
and lower the level of local inflammation, blocking inflammation-induced
cancer.
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FIGURE 2 | Signaling pathways associated with CLRs on dendritic
cells. CLRs are dominantly expressed on myeloid cells such as dendritic
cells and macrophages. MR, MGL, DC-SIGN, Mincle, Dectin-1, Dectin-2,
MICL are expressed on cDCs, and BDCA-2 is expressed on pDCs,
whereas DCIR is expressed on both cDCs and pDCs. Syk kinase/CARD9

pathway is activated by some CLRs signaling and mediates cell
activation. ITAM-containing FcR are associated with Mincle, dectin-2,
dectin-3 (MCL), and BDCA-2. Dectin-1 and DC-SIGN contain ITAM-like
motifs whereas MICL and DCIR contain ITIM motifs in their cytoplasmic
tails.

cytokines (6, 27, 28). Syk/CARD9 pathway is utilized by dectin-1,
dectin-2, dectin-3, orMincle and plays important roles in bridging
the innate immunity and adaptive immunity. Dectin-1 directly
signals through Syk using cytoplasmic ITAM and activates NF-
κB, whereas dectin-2, dectin-2/dectin-3 heterodimer, and Mincle
couple to Syk via the FcRγ and mediate NF-κB activation (29–
32) (summarized and depicted in Figure 2). Signaling through
Syk/IRF5 is crucial for the production of dectin-1-mediated IFN-
β (33). Furthermore, it is reported that dectin-1 activates inflam-
masomes and caspase-1, leading to production of IL-1β (34).

Stimulation of these CLRs has been shown to drive the devel-
opment of Th1, Th17, and CD8+ cytotoxic T lymphocytes (CTLs)
cells immune responses through triggering the production ofmul-
tiple cytokines (26, 35–37). In particular, dectin-1 has been found
to activate NFAT also and enhance IL-2 and IL-10 production in
DCs (38). A further study found that Src-homology phosphatase
(SHP)-2 is an essential component, which facilitates the recruit-
ment of Syk to the dectin-1 or the ITAM-containing adaptor
FcRγ of dectin-2/3 and Mincle, and mediates the induction of
Th17 responses (39). Given that T-cell immunity is essential for
anti-tumor immunity, activation of ITAM-based CLRs signaling
should support the development of protective immunity.

Recently, the important role of CLRs in inducing immunologi-
cal tolerance has also been demonstrated. In the case of inhibitory
CLRs containing ITIMs, such as DCIR (on dendritic cells) or
MICL (on granulocytes and monocytes), SHP is an essential

element. Ligation of these CLRs results in phosphorylation of
ITIMdomain, leading to SHP-1 and SHP-2 activation and inhibits
cellular activation (25). Ligation of DCIR increases the number
and function of Foxp3+ Treg cells, thus attenuates airway hyper
responsiveness and inflammation (40). BDCA-2 and DC-SIGN
do not contain a cytoplasmic ITIM motif but signaling through
these CLRs has been shown to modulate TLR signaling through
alternative pathways (41) and be critical for the maintenance of
Foxp3+ Treg cells (42, 43). Moreover, several CLRs such as DC-
ASGPR, SIGNR1, and dectin-1 are shown to play an important
role in triggering IL-10-producing suppressive CD4+ T cells (44–
47). Recently, it is highlighted that inflammation-induced cancers
are prevented by anti-inflammatory mechanisms including Tregs
(48). Therefore, the anti-inflammatory pathway lead by CLRs
activationmay also become a therapeutic strategy for reducing the
risk of such diseases (Figure 1).

Recognition of Tumor-Associated
Antigen by CLRs

Tumors are recognized by the immune system through tumor
antigens, including membrane proteins and altered carbohydrate
molecules of glycoproteins or glycolipids on the cell surface
(49). Tumor-associated carbohydrate antigens (TACAs) can be
specifically recognized by CLRs. It has been shown that DC-
SIGN recognizes carcinoembryonic antigen (CEA), a well-known
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tumor-associated antigen overexpressed on almost all human col-
orectal, gastric, and pancreatic adenocarcinomas, 70% of non-
small cell lung carcinomas, and 50% of breast carcinomas A (50).
DC-SIGN also exhibits high affinity for Mac-2-binding protein
(Mac-2BP), which increases in patients with pancreatic, breast,
and lung cancers (51).

Macrophage galactose type C-type lectin (MGL) is involved in
the recognition and binding of tumor-associated Neu5Ac-Tn and
Neu5Gc-Tn antigens (52). It has also been demonstrated that DCs
are able to recognize cancer-specific glycosylation changes of the
mucin 1 (MUC1), in particular, the carbohydrate sialyl Lewis X,
and the sialyl TN epitope through MGL and DC-SIGN (53, 54).
In addition, MUC1, CA-125, and TAG-72 show strong binding
activity to mannose receptor (MR) and induce its internalization
(55–57). Further, mannose-binding lectin (MBL) has been shown
to recognize glycoproteins from a human colorectal carcinoma
cell line in a fucose-dependent manner (58–60).

A critical role of dectin-1, a receptor for β-glucans (61, 62),
has recently been shown in recognition of N-glycan structures on
tumor cells. N-glycosidase treatment markedly reduced the bind-
ing of dectin-1 to tumor cells. Importantly, tumoricidal activity of
splenocytes was reduced when tumor cells were pretreated with
N-glycosidase (63).

Plasmacytoid dendritic cells (pDCs) are responsible for pro-
duction of type I interferons (IFN-α and β), type III IFNs (IFN-
λ/IL-28/29), and pro-inflammatory cytokines. Antigen presen-
tation by CpG-activated pDC influenced anti-tumor immune
responses by promoting efficient Th17 differentiation (64). A
study showed that BDCA-2 exclusively expressed on pDCs
binds tumor cells via asialo-oligosaccharides containing terminal
residues of galactose (65) and potently suppresses the ability of
pDCs to produce type I IFNs. Such direct regulation and/or
cross-regulation ofTLRs signaling byBDCA-2, an inhibitoryCLR,

may also suppress beneficial adaptive immune response in vivo
(Figure 3).

CLRs in Induction of Anti-Tumor
Immune Response

Effective immunological eradication of tumors requires NK cells
and tumor-specific CD8+ and CD4+ T cells. The potential role
of CLRs improving anti-tumor activity of immune cells has been
investigated. A study showed that MGL interacts with tumor-
associated Tn antigens and efficiently internalized with antigens
for presentation to CD4+ T cells (5). Furthermore, engagement of
MGL using α-N-acetylgalactosamine-carrying tumor-associated
antigens promotes the up-regulation of maturation markers of
DCs, decrease phagocytosis, enhance motility, and most impor-
tantly increase antigen-specific CD8+ T-cell activation (54).

DC-SIGN is another important CLR in inducing anti-tumor
immune responses. It is reported that Lewis X oligosaccha-
rides–heparanase complex activate and enhance the maturation
of DCs, leading to enhancement of antigen-specific IFN-γ pro-
duction and cytotoxic T-cell response. Furthermore, the modified
DCs also significantly suppress the established tumor growth and
prolong the life span of tumor-bearing mice (66). In addition,
glycan-modified liposomes lead to efficient antigen presentation
of DCs in the presence of LPS and augment CD4+ and CD8+

effector T-cell activation via DC-SIGN-dependent pathway (67).
The potency of MR to improve anti-tumor immune responses has
also been conducted. Cross-presentation of antigen and strong
antigen-specific immune response were induced by conjugation
of glycan ligands to MR (68), which resulted in an efficient anti-
tumor response and tumor clearance (69).

Dectin-1 is one of the most important CLRs and its con-
tribution to anti-tumor immunity has been intensively studied.

FIGURE 3 | CLRs and their ligands on tumor cells. CLRs recognize carbohydrate structures including tumor antigens. Known ligands expressed on tumor cells
are represented with bold black letters. Known ligands other than tumor cells (such as yeasts) are represented with gray letters as references.
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Dectin-1 engagement is apparent to up-regulate costimulatory
molecules such as CD80, produce TNF-α, IL-6, IL-2, IL-10, IL-
12, and IL-23, and elicit potent CTL responses that protect mice
from tumor challenge (35). Targeting of dectin-1 with its ligands
β-glucan has been shown to increase the infiltration of activated
T cells into the tumor. On the other hand, the number of tumor-
caused immunosuppressive regulatory T cells and myeloid-
derived suppressor cells are decreased (70, 71). More recently, the
critical role of dectin-1 on enhancement of NK-mediated killing
of tumor cells has been demonstrated. Dectin-1 recognize N-
glycan structures on the surface of some tumor cells, and cause
the activation of IRF5 transcription factor and downstream gene
induction, for the full-blown tumoricidal activity of NK cells (63).

As described above, MR and DC-SIGN are major players for
both immune evasion and eradication of tumor cells. Further
information is necessary to clarify how these CLRs signaling affect
the direction of the immunological outcome. Whether cell types
or expression level is important, or ligands andmicroenvironment
is the key, or maybe both are closely related. It is known the nature
of ligands (i.e., size, form, or chemical side chains of ligands)
directly modulate CLRs signaling (62). Further investigation on
such regulation of CLRs signaling should lead to make the best
application of beneficial side of CLRs signaling to mount anti-
tumor immunity.

CLRs and Tumor Immune Evasion

C-type lectin receptors mediate beneficial effect on anti-tumor
immunity via enhancement of type I and type II interferon pro-
duction. On the other hand, CLRs signaling also play roles on
induction of anti-inflammatory factors and molecules (23), and
suppress TLRs-mediated protective immunity, thereby tolerating
cancer cells escape from immune surveillance. Some examples
of such process are induction of specific tolerance to tumor
antigens, TGF-β and/or IL-10 production, down-regulation of
MHC molecules, or up-regulation of FasL expression (72). Sev-
eral studies have shown the involvement of CLRs on dysfunc-
tion of anti-tumor immune responses. The interaction between
DC-SIGN and tumor-associated Le glycans results in enhanced
IL-10 production, and impairs production of pro-inflammatory
cytokines in tumor-associated macrophages (TAMs) from breast
adenocarcinoma and melanoma patients, which leads to decrease
capacity to elicit anti-tumor T-cell responses (73). Ligation of
DC-SIGN and tumor-associated Le glycans also strongly enhance
LPS-induced anti-inflammatory cytokine secretions of IL-6 and
IL-10 by monocyte-derived DCs (50). Therefore, ligation of DC-
SIGN might cause tumor progression by contributing to the
maintenance of an immunosuppressive environment.

Other CLR associated with tumor immune evasion is MR.
The research study showed that tumor-activated liver sinusoidal
endothelial cells (LSECs) affect liver sinusoidal lymphocytes
(LSLs) anti-tumor cytotoxicity and IFN-γ/IL-10 secretion through
MR-dependent mechanisms. Further, immunosuppressive effects
of tumor-activated LSECs on LSLs were abrogated by way of
anti-mouse MR antibodies or MR−/− mice (74).

Recently, the important role of CLRs on modulating the func-
tion of tumor-associated cells in tumor microenvironment has

been demonstrated. TAMs are a major component of the tumor
stroma, which contribute to the evasion of tumors from immune
control by producing immune-suppressive cytokines such as IL-
10 and TGF-β (75). It has been found that TAMs from human
ovarian carcinoma abundantly express MR and dectin-1, MDL-1,
MGL, DCIR. MR engagement by tumoral mucins and an ago-
nist anti-MR antibody modulates cytokine production by TAMs
toward an immune-suppressive profile: increase of IL-10, absence
of IL-12, and decrease of the Th1-attracting chemokine CCL3,
indicating that tumoral mucin-mediated activation of the MR on
TAMs is important for their immune-suppressive phenotype (57).

In addition to expressing in immune cells, some CLRs have
been shown to express on tumor cells, and involved in suppressing
human immune system function. LSECtin, a cell-surface member
of the C-type lectin DC-SIGN, has been found to express in B16
melanoma cells and inhibit tumor-specific T-cell responses (76).
It is therefore important to identify such self-recognition toward
immune evasion and regulate them in a specific way.

Genetic Variation of CLRs and Cancers

Host genetic background is one of important factors influencing
susceptibility to cancer. Recently, study on single nucleotide poly-
morphisms (SNP) has been widely used to explore genetic sus-
ceptibility. SNPs in CLRs loci have been investigated to clarify its
relationship to inflammatory responses. Because chronic inflam-
mation is highly associated with the onset and progression of a
multiplicity of human cancer, it is possible SNPs in CLRs associate
with cancer susceptibility. Lu et al. (77) evaluated the correlation
between colorectal cancer (CRC) risk and SNPs in three C-type
lectin genes, i.e., DC-SIGN, MBL, and REG4. They found that
polymorphisms in DC-SIGN gene promoter were associated with
increased risk in CRC patients, while a SNP in REG4 might be
a useful marker for CRC progression. The association of poly-
morphisms of genes encoding DC-SIGN with nasopharyngeal
carcinoma risk has also been investigated. Three SNPs in the GG
genotype of the rs2287886, AA genotype of the −939 promoter
polymorphism, and the G allele of the rs735239 are connected
with increased risk of nasopharyngeal carcinoma (78).

Mannose-binding lectin, soluble CLRs, is a plasma col-
lectin and one of the key molecules involved in modulating
innate immune system. Low level of serum MBL is associ-
ated with increased risk of colon cancer. Polymorphisms in
the 3′-untranslated region of MBL2 at rs10082466, rs2120132,
rs2099902, and rs10450310 reduceMBL plasma levels and activity
(79). Odds ratio for homozygous variants versus wild-type ranged
from3.17 to 4.51, whereas the 3′-UTR region haplotype consisting
of these four variants had an OR of 2.10.

Ligand Treatment or Blockade of
CLRs and Cancer

Based on the immune-regulatory effects of CLRs on cellu-
lar immunity, application of their ligands to cancer therapy
is a scheme of promising scope. Several CLR agonists or
antagonists are candidates for anti-cancer drugs. β-glucan as
dectin-1 agonists has been extensively investigated for their
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anti-tumor activity. In murine lung carcinoma models, orally
administered particulate β-glucans significantly inhibited tumor
growth (71, 80). Both oral and intraperitoneal injection of highly
purified soluble β-glucan derived from Grifola frondosa were
reported to exert anti-tumor effects in experimentalmurinemam-
mary and colon adenocarcinoma tumor models (70, 81). In addi-
tion to their direct effects on specific immunity, β-glucans signif-
icantly augment the therapeutic efficacy mediated by anti-tumor
monoclonal antibodies (mAbs) in murine breast, liver metastasis,
lung, and lymphoma tumor models as well as in human neu-
roblastoma, lymphoma, and melanoma xenograft models (82). In
human, the combination therapy of β-glucan and conventional
chemotherapy was reported to improve the long-term survival of
patients with ovarian cancer (83). A meta-analysis shows that the
addition of lentinan (a purified β-glucans isolated from shiitake
mushroom) to chemotherapy prolonged the survival of patients
with advanced gastric cancer as compared to chemotherapy alone
(84).

Somemechanisms have been proposed to explain the therapeu-
tic response of β-glucan on anti-tumor activity. First, β-glucans
are capable of eliciting anti-tumor innate and adaptive immune
response via dectin-1-dependent pathway. As discussed above, β-
glucans play an essential role in activating DCs and macrophages
both in vitro and in vivo, leading to enhanced antigen-specific
CD4+ and CD8+ T-cell responses. Moreover, β-glucans modu-
late the suppressive tumor microenvironment and facilitate anti-
tumoral cellular immunity.

The other important role of CLRs is to serve as sensors that
transduce tumor antigen into DCs. Some CLRs, including MGL,
MR, DNGR-1, and DEC-205, have been found to deliver exoge-
nous antigens on MHC-I for inducing efficient CTL immune
response and MHC-II for stimulation of CD4+ T cells (68, 85,
86). Moreover, targeted delivery of tumor antigens via DC-SIGN,
DNGR-1, andDEC-205 with an appropriate adjuvant is capable to
prevent development or mediate eradication of tumor in grafted
mouse models (87–90).

Along with the rapid and thorough innate immune systems,
targeting CLRs has emerged as a translational approach to treat
a wide variety of cancers. However, there still are some problems
yet resolved and further research is required for improving the
anti-tumor strategies via CLRs. Some CLRs signaling results in
immunosuppressive responses, for instance, and lead to tumor
immune escape. Drugs targeting immune checkpoint molecules
such as PD-1, PD-L1, and CTLA-4 have recently been demon-
strated beneficial and safe (91, 92). The combination of strategy
targetingCLRs and immune checkpointsmay improve anti-tumor
effectiveness.

Concluding Remarks

C-type lectin receptors are multifunctional receptors that have a
key role in the recognition of pathogens and regulating innate and
adaptive immune responses. In fact, abundant evidence supports
that CLRs, especially on DCs, contribute to the recognition of
TACA. CLRs also play important roles in inducing anti-tumor
immune response and regulate tumor-promoting inflammation.
On the other hand, the function of CLRs in tumor remains
unknown, therefore CLRs may act as double-edged swords in
tumor-associated immune response. Specific regulation of CLRs
signaling by modulating tumor microenvironment such as gly-
coligands and immune cells should lead to the best application of
CLRs biology.
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