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Multiple sclerosis (MS) is a neurodegenerative disease resulting from an autoimmune 
attack on central nervous system (CNS) myelin. Although CD4+ T cell function in MS 
pathology has been extensively studied, there is also strong evidence that CD8+ T lym-
phocytes play a key role. Intriguingly, CD8+ T cells accumulate in great numbers in the 
CNS in progressive MS, a form of the disease that is refractory to current disease-mod-
ifying therapies that target the CD4+ T cell response. Here, we discuss the function 
of CD8+ T cells in experimental autoimmune encephalomyelitis (EAE), a mouse model 
of MS. In particular, we describe EAE in non-obese diabetic (NOD) background mice, 
which develop a pattern of disease characterized by multiple attacks and remissions 
followed by a progressively worsening phase. This is highly reminiscent of the pattern 
of disease observed in nearly half of MS patients. Particular attention is paid to a newly 
described transgenic mouse strain (1C6) on the NOD background whose CD4+ and 
CD8+ T cells are directed against the encephalitogenic peptide MOG[35–55]. Use of this 
model will give us a more complete picture of the role(s) played by distinct T cell subsets 
in CNS autoimmunity.

Keywords: multiple sclerosis, relapsing–remitting multiple sclerosis, progressive multiple sclerosis, experimental 
autoimmune encephalomyelitis, cD8+ t cell, cD4+ t cell, non-obese diabetic mouse, 1c6
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encephalomyelitis; HLA, human leukocyte antigen; MBP, myelin oligodendrocyte glycoprotein; MOG, myelin oligodendrocyte 
glycoprotein; MS, multiple sclerosis; NOD, non-obese diabetic; PLP, proteolipid protein; RR, relapsing-remitting; SCID, severe 
combined immunodeficient; SP, secondary progressive; T1D, type 1 diabetes; TcR, T cell receptor; Tg, transgenic; Th, T helper; 
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iNtrODUctiON

Multiple sclerosis (MS) is a complex chronic neurological disease 
that results from an immune-mediated attack against central 
nervous system (CNS) myelin. It is characterized by demyelina-
tion, axon damage, white matter inflammation, and glial scarring 
(1). Approximately 2.5 million people in the world are affected 
by MS (2) and it is therefore important that we better under-
stand its causes, with the goal of developing treatments that can 
improve disease outcomes. The four known subtypes of MS are 
relapsing–remitting (RR), secondary progressive (SP), primary 
progressive, and progressive relapsing. Approximately 85% of MS 
patients display an RR disease course in which repeated periods 
of inflammatory response are followed by remission. Nearly 50% 
of RR patients eventually transition to a chronic SP phase marked 
by slow and steady increase in disability, and more than half of 
all MS patients will exhibit some form of progressive disease (3). 
Although CD4+ T helper cells have been thought to be the main 
players in the pathogenesis of MS, the evidence suggests that dis-
ease processes in MS involve other immune cell types that include, 
among others, CD8+ T cells, B cells, macrophages, microglia, and 
neutrophils (4). Our goal here is to discuss the role of CD8+ T cells 
in the pathology of MS with a particular focus on findings from 
studies of experimental autoimmune encephalomyelitis (EAE), a 
mouse model of MS.

t ceLLs iN Ms PAtHOGeNesis

Autoimmunity results from (a) the escape of self tissue antigen-
specific T cells from negative selection and deletion in the 
thymus and (b) the breakdown of peripheral immune tolerance 
mechanisms, such as inhibitory receptor signaling and regulatory 
T cell-mediated inhibition. MS specifically results from an auto-
reactive T cell inflammatory reaction against myelin-producing 
CNS oligodendrocytes (1). The role of T cells in MS pathogenesis 
is strongly supported by genetic analysis demonstrating that poly-
morphisms in the human leukocyte antigen (HLA) gene region 
(5) and in genes encoding T cell-related signaling molecules 
and cytokines (6) which are strongly linked to MS susceptibil-
ity. Furthermore, immunohistochemical analysis of acute and 
recent MS lesions reveal extensive perivascular infiltration of T 
lymphocytes (7).

Myelin-reactive T cells proliferate and differentiate into 
effector subpopulations in peripheral lymphoid tissues, where 
they recognize myelin-derived antigenic epitopes presented by 
specialized antigen-presenting cells. The CD4+ IFN-γ-secreting 
Th1 and IL-17-secreting Th17 subsets have been well described 
in both MS (8, 9) and EAE (10). However, CD8+ T cells can also 
respond vigorously to myelin antigen and induce neuroinflam-
matory damage (11). Activated T cells express cell adhesion 
molecules (e.g., LFA-1, VLA-4, and PSGL-1) and chemokine 
receptors (e.g., CCR5 and CXCR3) that permit them to cross the 
blood brain barrier (12). Once in the CNS, they are reactivated 
by local antigen-presenting cells, such as microglia and dendritic 
cells (13), which themselves produce proinflammatory cytokines 
(e.g., IFN-γ, IL-23, TNF-α, and lymphotoxin-α) and chemokines 

(e.g., RANTES, CXCL10, and IL-8). This attracts other immune 
effector cells from the circulation (12–14).

It has been more than 20 years since the first effective disease-
modifying therapies were introduced for RR–MS. Both IFN-β and 
glatiramer acetate appear to modulate the function of inflamma-
tory T cells (15, 16). More recently developed drugs, such as natali-
zumab (17) and rituximab (18), also target lymphocyte function, 
thus emphasizing the critical role played by dysregulated adap-
tive immune responses in MS. However, there are no currently 
available treatments for progressive MS, which has led some to 
argue that this form of the disease is driven by neurodegenerative 
rather than inflammatory mechanisms (19). On the other hand, 
lymphocytes accumulate in the meninges (20–22) and CD3+ T 
cells are detected in normal-appearing white matter of the spinal 
cord during progressive disease (20). Intriguingly, CD8+ T cells 
are detected in normal-appearing white matter, active lesions, and 
inactive lesions in progressive MS (23), and can directly induce 
demyelination (24). Thus, CD8+ T cell function may present an 
attractive target for the treatment of progressive MS.

cD8+ t ceLLs iN Ms

A number of current MS drugs, such as interferon-β (15), 
glatiramer acetate (16), and natalizumab (17), appear to modulate 
CD4+ T cell responses, indicating the relevance of these cells to 
pathogenesis. However, multiple lines of evidence suggest that 
CD8+ T cells also play a key role in MS pathology. On the genetic 
level, positivity for the HLA class I allele A3 increases one’s risk 
of developing MS (25, 26); as the human CD8+ T cell repertoire 
is restricted by class I molecules, this implies that CD8+ T cell 
reactivity to specific myelin antigens can predispose an individual 
to developing MS. Myelin-specific CD8+ T cells show oligoclonal 
expansion in plaques, cerebrospinal fluid (CSF), and blood of MS 
patients, and the frequency of CD8+ T cells greatly exceeds that 
of CD4+ T cells in acute MS lesions (27). Interestingly, CD8+ T 
cells are detected in NAWM in MS brains, suggesting that they 
are among the first lymphocytes on the scene in the earliest stages 
of disease (23). In addition, during MS, CD8+ T cells upregulate 
cell adhesion molecules involved in immune trafficking into the 
CNS; increased frequency of CCR5+ and CXCR3+ CD8+ T cells 
in peripheral blood correlates with increased annualized MS 
lesion load (28) and increased PSGL-1+CD8+ T cell frequency is 
observed in active MS (29).

CD8+ T cells can execute inflammatory damage in the CNS 
via two distinct mechanisms: a direct mechanism by which they 
attack MHC class I-expressing axons, or an indirect one by which 
they attack oligodendrocytes, thereby exposing axons to further 
damage (30). Granzyme B-positive CD8+ T cells are found in 
close proximity to demyelinated axons in MS lesions and their 
cytolytic granules appear to be polarized toward the site of injury 
(24). CSF levels of granzymes A and B are elevated during active 
MS (31) and highly differentiated CD8+ T cells are enriched in 
the CSF during early MS (32). Importantly, various cells of the 
CNS, including neurons, astrocytes, and oligodendrocytes, can 
be induced to express MHC class I on their surface in the context 
of an inflammatory response. These cells are, thus, susceptible to 
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CD8+ T cell-mediated killing (24). Indeed, abundance of CD8+ 
T cells in MS brain tissue positively correlates with the extent 
of axonal damage (33). Taken together, these data suggest that 
CD8+ T cells proliferate in response to myelin antigens, and traffic 
to the CNS, where they can help to initiate and maintain tissue 
inflammation and damage.

ANiMAL MODeLs OF Ms

Experimental autoimmune encephalomyelitis is a murine disease 
that recapitulates the immunopathogenesis of MS. It can be 
induced (a) by active immunization with encephalitogenic pep-
tides derived from myelin component proteins, such as myelin 
basic protein (MBP), proteolipid protein (PLP), or myelin oligo-
dendrocyte glycoprotein (MOG) or (b) by passive (“adoptive”) 
transfer of myelin-reactive lymphocytes to genetically susceptible 
recipient mice (34). Classic adoptive transfer approaches entail 
the isolation and re-stimulation of myelin-specific lymphocytes 
from actively immunized donor mice, followed by transfer to 
genetically susceptible recipient mice. As will be described below, 
EAE can also be induced by the adoptive transfer of transgenic, 
myelin antigen-reactive, T cells.

Immunization of C57BL/6J (B6) mice with MOG[35–55] is a 
popular model of EAE induction, in part because of the ready 
availability of genetically modified strains on the B6 background 
(34). These mice typically develop an ascending paralysis that 
is either monophasic or chronically non-remitting (35), which 
does not reflect the full clinical course of MS. By contrast, 
immunization of SJL/J mice with PLP[139–151] induces a RR dis-
ease pattern characterized by epitope spreading of the immune 
response to secondary myelin antigens (36). Furthermore, as 
we will discuss, immunization of non-obese diabetic (NOD) 
background mice with MOG[35–55] induces a RR →  SP disease 
course characterized by extensive demyelination and axonal loss 
(37). This disease course is reminiscent of that seen in close to 
half of MS patients (3).

In recent years, the field has welcomed the introduction of 
T cell receptor (TcR) transgenic (Tg) mouse strains, such as 
MBP-reactive Ac1-11 (38) and T/R (39), PLP-reactive 5B6 (40), 
and MOG-reactive 2D2 (41) and 1C6 (42), in which >90% of an 
animal’s T cells are directed against a defined myelin epitope, thus 
providing a readily available source of myelin antigen-specific T 
cells for adoptive transfer. Although EAE develops spontaneously 
on the T/R Tg strain (39) and can be observed at a low spontane-
ous frequency in 2D2 mice, the disease typically requires robust 
induction of T cell activation, either via the use of adjuvants that 
stimulate the innate immune system or by the ex vivo triggering 
of TcR and costimulatory receptors on myelin-reactive T cells 
(10, 43). No single model of EAE can recapitulate the complex 
clinical presentation of MS in its entirety. However, depending 
on the immunogen used and the method of induction, one can 
observe paralysis of the extremities (44), ataxia (10), optic nerve 
inflammation (45), and weight loss (46).

Although EAE models have yielded invaluable insights into 
the role of autoreactive CD4+ T cells in pathogenesis, they have 
been less forthcoming with respect to the role of CD8+ T cells. 
This is in part because 21–23mer peptides, such as MOG[35–55] or 

PLP[139–151], are optimally presented by MHC class II molecules. 
Nevertheless, Ford et al. demonstrated that adoptive transfer of 
CD8+ T cells from MOG[35–55]-immunized B6 mice into severe 
combined immunodeficient (SCID) recipients resulted in severe 
EAE, and found that the pathogenic CD8+ T cells recognize a 
minimal core epitope MOG[37–46] in the context of class I H-2Db 
(47). Notably, CD8+ T cells from MOG[35–55]-immunized NOD 
mice elicited reactivity toward a core epitope MOG[39–47] (48).

Early models, involving the transfer of ectopic Ag-specific T 
CD8+ T cells to Tg mice expressing the ectopic Ag in CNS tissue, 
supported a role for CD8+ T cells in CNS inflammation (49). More 
recently, models with CD8+ T cells directed at myelin Ag have 
been described, such as Tg mice (strain 8.8) that express a MHC 
class I-restricted TcR specific for MBP[79–87] (46). Infection of these 
mice with a recombinant vaccinia virus encoding MBP efficiently 
induced EAE. Intriguingly, wild-type (WT) vaccinia virus induced 
EAE in 8.8 mice as well. The effect appeared to be due to the 
expression of endogenous TcR chains, as WT virus did not cause 
EAE in 8.8 × Rag1−/− mice and as CD8+ T cells co-expressing 2 dis-
tinct β-chains (Vβ8 and Vβ6) were detected in WT virus-infected 
mice. Their findings suggest a cellular mechanism by which dual 
antigen-specific CD8+ T cells can be initially activated in response 
to virus and then induce damage to CNS tissue, and thus reveal 
a potential mechanism by which viral infection can trigger CD8+ 
responses directed against myelin. More recently, a Tg strain (BG1) 
was described that carries CD8+ T cells specific for astrocytic glial 
fibrillary acidic protein (50). These mice spontaneously develop 
a RR disease course characterized by lesions in both CNS white 
and gray matter. Intriguingly, B6 mice adoptively transferred with 
BG1 CD8+ T cells develop atypical EAE and suffer from weight 
loss upon inoculation with Vac-GFAP, in a manner reminiscent 
of Vac-MBP-inoculated 8.8 mice (46). However, WT Vac does not 
induce symptoms in BG1 mice, indicating that this phenotype was 
not caused by the expression of endogenous TcR β-chains (50). 
The relevance of CD8+ T cells to virally induced CNS autoimmune 
pathology is further supported by Pirko et al., who infected B6 
mice with Theiler’s murine encephalomyelitis virus and found 
that the presence of T1 “black holes” on MRI – a classic sign of 
chronic and irreversibly damaged lesions  –  correlated with the 
accumulation of CD8+ T cells (51). As epitopes 35–55 of MOG 
are located in its extracellular domain, in the future it would be 
interesting to examine whether MHC class I-restricted peptides 
derived from myelin-associated glycoprotein (MAG) or PLP, both 
of which have extracellular domains (52), could induce CD8+ T 
cell-driven EAE.

NOD Mice As A MODeL FOr 
AUtOiMMUNe DiseAse

Type 1 diabetes (T1D) is an autoimmune disease initiated by 
the infiltration of mononuclear cells into the pancreatic islets 
of Langerhans (insulitis). This is followed by autoreactive T 
cell-mediated destruction of insulin-producing pancreatic 
β-cells (53). T1D and MS have been linked epidemiologically. A 
large-scale Danish study found that T1D patients had a threefold-
greater risk of developing MS (54), and a study of Sardinian MS 
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patients found that they were approximately threefold more likely 
to have T1D than their healthy siblings (55). Indeed, MS and T1D 
share common etiological factors, such as increased incidence at 
northern latitudes and among individuals born in springtime 
(56). Furthermore, MS patients have islet-antigen-reactive T 
cells in their repertoire, whereas T1D patients have T cells that 
respond to myelin-derived epitopes (57). Taken together, these 
findings suggest that MS and T1D may share common patho-
genic mechanisms.

The NOD strain has been used as a model for T1D for over 
three decades (58). NOD mice spontaneously develop T cell 
responses to the β-cell antigen GAD65, resulting in insulitis and 
subsequent β-cell destruction (59). NOD mice can also develop 
self-reactive inflammatory responses to a variety of tissues, and 
EAE can be induced in these animals upon active immunization 
with MOG[35–55] (60, 61). More than 20 non-MHC genetic loci 
(termed Idd) have been identified that can contribute to T1D 
pathogenesis on the NOD strain (62). In an elegant series of 
experiments, Encinas et al. immunized a series of congenic NOD 
mice carrying B6-derived Idd loci with MOG[35–55] (60). They 
found that NOD mice carrying B6-origin Idd3 developed milder 
EAE than WT NOD mice. In contrast to WT NOD, B6-Idd3 mice 
did not develop chronic disease, suggesting that differences in 
this genetic region were potentially responsible for the develop-
ment of progressive EAE in NOD mice. Thus, the immunoregula-
tory factor(s) encoded in the Idd3 locus have been the subject 
of intense interest. The gene encoding the T cell growth factor 
IL-2 is located in Idd3, and there is a coding polymorphism 
between the B6 and NOD Il2 genes (60). NOD.Idd3 lymphocytes 

transcribe twofold more Il2 than WT NOD mice. This seemingly 
paradoxical observation is explained by the findings that excess 
IL-2 in NOD.Idd3 mice increases the function of IL-2-dependent 
FoxP3+ regulatory T cells, which suppress pancreatic inflamma-
tion (63), and that IL-2 responsive macrophages can suppress 
inflammatory Th17 responses (64). IL-21 is also encoded in the 
Idd3 locus (65), and NOD.Idd3 T cells produce less IL-21 than 
their WT NOD counterparts. This reduction in IL-21 results in 
defective NOD.Idd3 Th17 responses due to both T cell-intrinsic 
and -extrinsic mechanisms (66). Furthermore, IL-21 plays a 
crucial role in CD8+ T cell-driven T1D (67). Thus, the Idd3 locus 
can likely restrict tissue inflammation in both the pancreas and 
CNS through multiple regulatory mechanisms.

eAe iN NOD Mice

Upon immunization with MOG[35–55], NOD mice develop RR– 
EAE that progresses to a chronic SP disease course characterized by 
loss of both axons and myelin as measured by magnetic resonance 
imaging (37). During the initiation phase, inflammatory cells 
infiltrate the perivascular and arachnoid space, and splenocyte 
production of IFN-γ, TNF-α, and IL-6 is enhanced. By contrast, 
IL-17 is upregulated in re-stimulated splenocytes during relapses 
that follow the initiation phase. These relapses are characterized 
histologically by mononuclear cell infiltration into the white mat-
ter and demyelination (68). However, CNS-resident cells, such as 
microglia and astrocytes, also participate in the transition from 
RR to SP phase in NOD–EAE, with reactive gliosis being present 
from the early stage of the disease (69).

FiGUre 1 | Generation of 1c6 mice. A NOD mouse was actively immunized with MOG[35–55]. CD4+ T cells were isolated from the immunized mouse and were 
re-stimulated at one T cell per well with antigen-presenting cells plus MOG[35–55]. The T cell receptor of an expanding clone was sequenced (Vα5Jα22; Vβ7Dβ2Jβ2.7), 
cloned, and injected into NOD pronuclei to derive 1C6 transgenic mice. The resulting mice possessed both CD4+ and CD8+ T cells that were MOG[35–55] reactive.  
Tg, transgenic; TcR, T cell receptor.
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Both CD8+ and CD4+ T cells appear to play important roles in 
mediating EAE on the NOD background. NOD mice deficient in 
key regulators of CD4+ T cell function show alterations in their 
susceptibility to EAE (70, 71). Immunization with MOG[35–55] 
causes the expansion of an IFN-γ+ CD8+ T cell population in 
NOD mice that recognize the core epitope MOG[39–47] (48). Our 
preliminary data reveal the infiltration of inflammatory effector 
CD44hi CD8+ T cells into the CNS upon active immunization with 
MOG[35–55]. These CD8+ T cells display a Tc1 phenotype with the 
production of proinflammatory cytokines, such as IFN-γ, TNF-α, 
and IL-2 (unpublished).

1c6 tcr trANsGeNic Mice

Recently, Anderson et al. generated a novel TcR transgenic mouse 
model on the NOD background, using the TCRα and TCRβ 
chains of a MOG[35–55] CD4+ clone (42). Surprisingly, the result-
ing strain (named 1C6) possesses both CD4+ and CD8+ T cells 
with specificity for MOG[35–55] (Figure 1), with the proportion of 
CD4+/CD8+ T cells in peripheral lymphoid tissues being similar 
to that seen in WT animals. The 1C6 transgenic strain is thus 
the first to have both myelin-reactive CD4+ and CD8+ T cells, 
allowing us to interrogate the relative contribution of both cell 
types to EAE. Active immunization of 1C6 mice with MOG[35–55] 
induces a RR to SP disease as seen in NOD mice. Furthermore, 
1C6 mice develop spontaneous EAE and optic neuritis at a 
frequency of about 2%. Adoptive transfer of 1C6 CD4+ T cells, 
CD8+ T cells, or both together, to lymphocyte deficient NOD.
Scid mice, followed by immunization with MOG[35–55], results in 
the development of EAE. Both the incidence and severity of EAE 
were lower in 1C6 CD8+ T cell transfer recipients when compared 
to mice receiving 1C6 CD4+ T cells alone or 1C6 CD4+ plus CD8+ 
T cells. It remains to be seen whether immunization with the 
class I-restricted MOG[39–47] peptide (48) could induce disease of 
greater incidence and/or severity in NOD.Scid mice reconstituted 
with 1C6 CD8+ T cells given that the 21-mer MOG[35–55] peptide is 
optimally presented by MHC class II molecules. 1C6 CD8+ T cells 
did have the capacity to induce optic neuritis; furthermore, they 
produced IFN-γ and granzyme B, and degranulated, in response 
to MOG[35–55] (42).

Importantly, the 1C6 model will enable us to distinguish 
between the molecular pathogenesis of CD4+ versus CD8+ T 
cell-driven CNS autoimmunity. CD4+ and CD8+ T cells express 
many of the same effector molecules; it is therefore difficult to 
draw conclusions on the relative contribution of the two cell types 
based on active immunization of whole-animal gene knockouts. 
Furthermore, T-cell-specific transgenic deleter strains, such as 
Lck-Cre and CD4-Cre, target gene expression in both CD4+ and 
CD8+ T cells (72, 73). To address this gap in the field, we have 
developed an EAE induction protocol in which T cells are isolated 
from 1C6 mice, are stimulated and differentiated ex vivo into 
defined effector subsets (Th1 or Th17 CD4+; Tc1 or Tc17 CD8+), 
and are then adoptively transfer to NOD.Scid mice (unpublished 
data). Using retrovirally mediated gene transduction, we can 
now manipulate the expression of a target gene in 1C6 CD4+ T 
cells, CD8+ T cells, or both concomitantly, to assess in which cell 
type the molecule of interest exerts its effects (Figure  2). This 

will allow us to ascertain in which T cell compartment a given 
immune regulatory molecule exerts its function, in a mouse 
model that can recapitulate both the relapsing/remitting and 
progressive phases of MS.

cONcLUsiON

Several decades’ worth of evidence from animal models have 
supported the idea that CD4+ T cells are the chief drivers of 
inflammation in MS. However, histopathological and clinical 
findings from human patients indicate that CD8+ T cells are key 
players as well. Indeed, several popular therapeutic reagents that 
are believed to subvert CD4+ T cell function in MS – namely, 
interferon-β, natalizumab, and alemtezumab  –  could also 

FiGUre 2 | Determining the contribution of specific genes to cD4+ 
and/or cD8+ t cell-driven eAe using the 1c6 model. CD4+ (left) and/or 
CD8+ T cells (right) are isolated from the peripheral lymphoid tissue of 1C6 
mice. They are stimulated ex vivo using plate-bound anti-CD3 and anti-CD28 
monoclonal antibodies that mimic the physiological signals required for T cell 
proliferation. They are coincidentally transduced with gene-specific 
retroviruses that can augment or knock down expression of the candidate 
molecule. Transduced 1C6 T cells are purified using high-speed cell sorting 
based on expression of retrovirally encoded bicistronic reporters, such as 
GFP. They are then transferred to NOD.Scid mice that are assessed for the 
development of EAE. This design can help us isolate the function of 
candidate T cell regulatory molecules to CD4+ T cells, CD8+ T cells, or both, 
in the context of MS-like disease.
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cells could present an attractive mechanism by which to treat 
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The 1C6 mouse model will allow us to examine this possibility. 
As these mice possess both CD8+ and CD4+ myelin-reactive T 
cells, we can address both the role of CD8+ T cells in CNS autoim-
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ultimately help us to design and validate novel therapeutics for 
the betterment of MS patients.
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