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Human immunodeficiency virus type 1 (HIV-1) causes a chronic infection that afflicts 
more than 30  million individuals worldwide. While the infection can be suppressed 
with potent antiretroviral therapies, individuals infected with HIV-1 have elevated levels 
of inflammation as indicated by increased T cell activation, soluble biomarkers, and 
associated morbidity and mortality. A single mechanism linking HIV-1 pathogenesis to 
this inflammation has yet to be identified. Purinergic receptors are known to mediate 
inflammation and have been shown to be required for HIV-1 infection at the level of HIV-1 
membrane fusion. Here, we review the literature on the role of purinergic receptors in 
HIV-1 infection and associated inflammation and describe a role for these receptors as 
potential therapeutic targets.
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inTRODUCTiOn

Human immunodeficiency virus type 1 (HIV-1) disease afflicts more than 30 million individuals 
worldwide. The infection remains incurable despite the advent of antiretroviral therapies. Individuals 
who are infected with HIV-1 can live long lives without infectious complications; however, they 
experience non-infectious comorbidities known as non-AIDS-associated comorbidities. These are 
thought to be due to a process of chronic inflammation that occurs despite virologic suppres-
sion (1). This phenomenon may account for a wide variety of comorbidities including cognitive 
decline, cardiovascular disease, and thrombotic disease (2–8). A unifying mechanism has not been 
identified; however, an emerging literature implicates the role of purinergic receptors, proinflam-
matory signaling mediators, as important regulators of HIV-1 productive infection. Because these 
receptors are required for HIV-1 entry, it is hypothesized that they may additionally play a key 
role in inflammation and underlie comorbidities that shorten the life expectancy of HIV-infected 
individuals. An understanding of how these receptors may be involved in HIV-1 infection and 
inflammation would enable the production of novel therapeutics that both antagonize HIV-1 entry 
and inflammation associated with HIV-1 infection.

Hiv-1 AnD inFLAMMATiOn

Patients with HIV-1 infection have experienced a tremendous leap in life expectancy due to the 
advent of effective antiretroviral therapy (ART). The result has been that individuals are living longer 
and now experiencing comorbidities similar to disease processes found in the general population. In 
fact, a study in 2008 demonstrated that only 10% of deaths in HIV-infected individuals were related 
to AIDS-defining illnesses while other causes included non-AIDS-defining malignancies, cardio-
vascular disease, liver disease, and others (9). There are certain conditions that appear to develop 
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in HIV-infected individuals at an earlier age than the general 
population. This phenomenon has been referred to as “acceler-
ated aging” and is thought to relate to chronic inflammation and 
immunosenescence. There are multiple possible explanations 
that may include ART toxicity, lifestyle (i.e., tobacco, alcohol, and 
IV drug abuse), as well as HIV-1 infection itself (10, 11).

How might HIV-infected individuals develop comorbidi-
ties associated with chronic inflammation? There are multiple 
possible explanations. HIV-1 infection causes a chronic viral 
infection that results in selective CD4+ T cell depletion which 
has a major impact on lymphocytes in the gastrointestinal tract 
(12, 13). Chronic HIV-1 infection leads to reduced integrity of 
the mucosal epithelium causing bacterial translocation. This 
process is proposed to play a key role in chronic inflammation in 
HIV-1 disease (14–16). High bacterial lipopolysaccharide (LPS) 
levels in HIV-infected individuals are associated with elevated 
inflammatory biomarkers (17). Abnormally high levels of T cell 
activation can persist despite years of virologic suppression (18), 
and these individuals have lower levels of CD4+ reconstitution 
(19, 20). Elevated soluble inflammatory biomarkers are detected 
in these individuals including markers of type I interferon (1), 
monocyte activation (21), and inflammation and coagulation 
(22). Specifically, levels of IL-6, hsCRP, and D-dimer persist 
at elevated levels in HIV-infected patients. There are multiple 
proposed mechanisms that may elevated immune activation 
even when virus is suppressed (1). One is that low levels of viral 
replication may continue, but with viral loads below the limit 
of detection. These levels may stimulate systemic inflammation; 
however, no studies support a role for intensification of therapy 
to reduce inflammation (23, 24). The importance of this chronic 
inflammation lies in its associations with comorbidities that 
account for the major mortality in individuals infected with 
HIV-1. These include cardiovascular disease, neurological 
decline, end organ dysfunction, and thrombotic events (2–8). 
Even with highly active antiretroviral therapy, which is effective at 
achieving virologic suppression, individuals who are chronically 
infected with HIV-1 have elevated inflammatory biomarkers and 
display innate immune activation and immune dysfunction that 
does not normalize with therapy (25). No unifying mechanism 
thus far has connected HIV-1 infection to the regulation of 
proinflammatory signaling.

OveRview OF PURineRGiC ReCePTORS

Purinergic receptors are ubiquitously expressed in mammalian 
cells. In 1970s, extracellular nucleotide became recognized 
as an important mediator of cellular signaling (26). A large 
literature describes the role of purinergic receptors as detectors 
of extracellular adenosine and adenosine triphosphate (ATP) 
that activate intracellular signaling events (27). These recep-
tors can be characterized into two classes, the P1 adenosine 
receptors and P2 ATP/ADP receptors. P2 receptors are further 
divided into two categories: the P2X and P2Y subtypes. P2X 
receptors are ATP-gated plasma membrane channels that can 
be formed by a trimeric assembly of seven different subunits 
(P2X1–P2X7) which assemble as homotrimers or heterotrim-
ers (28, 29).

P2X receptors are key regulators of a number of important 
physiological processes including neuronal synaptic and modu-
lation, cell death and proliferation, cell and organ motility, and 
infection and inflammation (30–34). P2X receptors are ATP-gated 
non-selective cation channels. An agonist, ATP or other nucleo-
tides, binds to the extracellular portion, inducing conformational 
changes that triggers channel opening and cation flux (28, 35). 
Some of these receptors can dilate to a larger pore, thus increasing 
permeability to large organic molecules (36–38). This occurs with 
prolonged exposure to agonist; other subtypes, notably P2X1, 
undergo fast desensitization with prolonged ATP exposure, result-
ing in closure of the channel (39, 40). Functional P2X receptors 
assemble as either homotrimers or heterotrimers, each subunit of 
which contains two transmembrane domains, a large extracellular 
loop containing 10 conserved cysteine residues and glycosylation 
sites, and intracellular N and C termini containing consensus 
phosphorylation sites (29, 31, 41–43). P2X7 specifically has a large 
pore that assembles as a homotrimer, by contrast to some other 
P2X receptors. Roles for the P2X7 subtype are well-characterized 
in the innate immune response and include proinflammatory 
cytokine activation, antigen presentation, and lymphocyte pro-
liferation and differentiation (44–46). P2X7 receptor activation 
requires submillimolar ATP concentrations which are only tran-
siently released extracellular compartments in response to acute 
cell death or injury (28). Sustained activation of P2X7 can result 
in large pore opening which enables passage of molecules up to 
900 Da that to eventually induce cell death (31, 47).

P2Y receptors function widely across diverse physiological 
systems and have roles in clotting, hormone secretion, vasodila-
tation, neuromodulation, cell migration, cell proliferation and 
cell death, wound healing, and immune response (26, 27, 34, 37, 
48–50). The P2Y subtypes are of G protein-coupled receptors. 
They consist of seven transmembrane domains with an extracel-
lular N-terminus and an intracellular C-terminus (48, 51, 52). 
Activation of the receptor results in G protein dissociation into α 
and βγ subunits which activates downstream effector molecules. 
A large sequence diversity encodes for diverse pharmacological 
profiles among these receptors (53). There are eight P2Y monomer 
subtypes. P2Y1, P2Y2, P2Y4, and P2Y6 couple to Gq to activate 
phospholipase C and P2Y12, P2Y13, and P2Y14 couple to Gi to 
inhibit adenylyl cyclase and activate GIRK-family K+ channels. 
P2Y11 can couple to both Gq and Gs and trigger increases in 
intracellular Ca2+ and in cAMP levels.

PURineRGiC SiGnALinG in 
inFLAMMATiOn

Purinergic receptors can be found in a wide variety of leukocyte 
sub-types, notably lymphocytes, monocyte/macrophages, and 
dendritic cells (29, 44, 54–56). They are critical mediators of the 
innate immune response in a variety of different disease states 
including rheumatoid arthritis, transplant rejection, and inflam-
matory bowel disease (57–60). Nucleotides are known mediators 
of innate immune cell function including cell migration (61, 62). 
Extracellular nucleotides, such as ATP, are released by metabolic 
stress, ischemia, hypoxia, and inflammation that leads to cell 
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death and the further release of intracellular contents into sur-
rounding tissue (26, 33). Release of ATP of through channels 
can signal through purinergic receptors to modify cellular 
orientation, cytoskeletal rearrangement, chemotaxis, and cell 
migration (63, 64). Studies have supported a role for signaling 
of these receptors in immune function of macrophages, neu-
trophils, B lymphocytes, and T lymphocytes. Thymocytes can 
undergo programed cell death in response to purinergic activa-
tion and nucleotides have been implicated in fate-determination 
during T cell development (65). Extracellular ATP bind these to 
purinergic receptor which can activate T cells through extracel-
lular calcium influx, p38 MAPK activation, and IL-2 secretion 
(66–69). ATP can also activate γδ T cells through the P2X4 
receptor, while P2X7 activation can promote differentiation of 
T into proinflammatory TH17 effector cells (45, 70). The P2X1, 
P2X4, and P2X7 subtypes are most highly expressed on leuko-
cytes, and literature implicates the P2X7 subtype specifically in 
inflammatory signaling (71–74).

P2X7 receptors are the most highly expressed P2X recep-
tor subtype in innate immune cells (44, 71, 75). They activate 
proinflammatory cytokine production (44, 76) and can trigger 
activation of the inflammasome. The inflammasome is a central 
scaffold protein complex that serves to coordinate interaction 
with caspase molecules which cleave precursor protein substrates 
into immunomodulatory products. Activation of P2X7 results in 
massive K+ efflux, and this change in ionic strength signals to 
the processing of procaspase-1 (77). Mature caspase-1 cleaves 
prointerleukin-1β (pro-IL-1β) into interleukin-1β (IL-1β) which 
is released into the cytoplasm (23, 30). Signaling takes place as 
part of a two component signal which requires an initial signal, 
such as a toll-like receptor activation via bacterial or viral ligands. 
Activation of P2X7 can serve as a second signal, inducing assem-
bly of the inflammasome complex which activates caspase-1, with 
consequent cleavage of  pro-IL-1β to mature secretory IL-1β (78). 
Inflammasome activation is also known to mediate pyroptosis, 
a mode of inflammatory programed cell death in myeloid and 
lymphoid leukocytes (79–81).

PURineRGiC ReCePTORS in Hiv-1 
inFeCTiOn

Because purinergic receptor signaling can clearly mediate 
inflammatory responses, these receptors are likely to be activated 
in response to infections. As HIV-1 is a viral infection marked 
by chronic inflammation, this signaling pathway might serve as 
an important intersection between viral infection and chronic 
inflammation. Purinergic signaling is involved in several infec-
tious processes (82, 83), including bacterial and mycobacterial 
[Mycobacterium tuberculosis (84–87) and Chlamydia infections 
(88)], protozoal infections including Leishmania (89, 90) and 
Toxoplasma (91, 92), and viral infections including respiratory 
viral infections (93, 94), hepatitis B and hepatitis delta virus (95, 
96), hepatitis C virus (97, 98), Cytomegalovirus (99), and HIV-1 
(100–105).

Adenosine receptors have been implicated in HIV pathogen-
esis as Nikolova et  al. reported an association between CD39 

expression and AIDS progression (106). CD39 is an ectoenzyme 
that breaks down ATP to AMP which in turn, is hydrolyzed by 
CD73 to generate adenosine that signals through purinergic 
A1/2-type receptors. Treg inhibition was shown to be mitigated 
by CD39 downregulation with associated elevated levels of A2A 
receptor on T cells of infection patients. The authors also noted 
that Treg CD39 expansion was associated with elevated immune 
activation and that a CD39 gene polymorphism was associated 
with reduced CD39 expression and a delay in the onset of AIDS.

A role for extracellular ATP signaling has been proposed 
in HIV-1 infection. Sorrell et  al. observed that treatment with 
a non-selective P2X antagonist reduced neurotoxic effects of 
opiates with generated in the context of HIV Tat activity which 
suggested that P2X receptors might modulate neurotoxicity. 
Those authors proposed that P2X inhibitors may serve to reduce 
neuroinflammation and neurodegeration in neuro-AIDS in 
the context of opiate abuse (107). Tovar and colleagues found 
that ATP released from HIV-infected macrophages can reduce 
dendritic spine density through purinergic-dependent glutamate 
receptor down-modulation. They proposed that neuronal injury 
in HIV-infected patients may relate to purinergic signaling and 
ATP release from macrophages that can impact on glutamate 
regulation (108).

Recent studies have raised the possibility that purinergic 
receptors as host proteins may be directly related to HIV-1 
pathogenesis. Seror et al. demonstrated that infection of human 
lymphocytes with HIV-1 can induce ATP release and that this 
event is required for infection (104). Pharmacologic inhibition 
of purinergic receptors reduced HIV-mediated cell death and 
HIV infection. Non-selective purinergic receptors antagonists 
inhibited CCR5 and CXCR4-tropic HIV-1 productive infection 
in lymphocytes and CCR5-tropic virus in dendritic cells and 
macrophages. This study found that the selective depletion of 
P2Y2 with small interfering RNA diminished the HIV-induced 
inflammatory response and also resulted in mildly elevated levels 
of P2Y2 in HIV-infected patient tissue compared with uninfected 
control tissue. Immunofluorescence analyses indicated that P2Y2 
and the ATP-release channel pannexin-1 appeared to polarize 
to the virologic synapse; the latter is the interface between an 
infected donor cell and an uninfected target cell where cell-to-cell 
transfer and infection takes place (109, 110).

Hazleton et al. demonstrated a key role for purinergic recep-
tors in HIV-1 replication in macrophages (102). Macrophages 
are critical to HIV-1 pathogenesis as they may represent key 
reservoirs and can mediate immune responses through produc-
tion of proinflammatory cytokines. The authors demonstrated 
that selective pharmacologic inhibition of P2X1, P2X7, and P2Y1 
resulted in dose-dependent inhibition of HIV-1 infection. Using 
a beta-lactamase fusion assay, they observed a requirement for 
P2X1 in HIV-1 fusion in macrophages and that activation of 
P2X1 results in calcium flux that enables HIV-1 entry (111). 
More recently, Giroud et  al. described a role for P2X1 (112) 
that involved block age of binding of HIV-1 to the chemokine 
receptors CCR5 and CXCR4. The group corroborated findings 
that inhibition of P2X1 with an inhibitor did not interfere with 
attachment but did inhibit fusion downstream of CD4 binding 
prior to coreceptor engagement.

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


November 2015 | Volume 6 | Article 5854

Swartz et al. Purinergic Receptors in HIV and Inflammation

Frontiers in Immunology | www.frontiersin.org

Swartz et  al. demonstrated that non-selective P2X receptor 
inhibitors inhibit HIV-1 infection of CD4+ lymphocytes by cell-
to-cell and cell-free mechanisms (105). Using a systematic phar-
macologic screening approach, it was found that only antagonists 
of a P2X subclass of purinergic receptors mediated inhibition of 
HIV-1 viral membrane fusion and productive infection of T cells. 
Because P2X inhibitors are a major focus of current pharmaceuti-
cal development for chronic inflammation, pain, and depression 
(59, 113, 114), this drug class has variants that may be assessed 
for both HIV inhibitory and inflammation inhibitory activities.

Orellana and colleagues observed that the function of the 
pannexin-1 ATP-release hemichannel was transiently increased  
during early infection with both R5 and X4 tropic HIV-1 and that 
HIV-1 envelope binding to CD4 and coreceptors (both CXCR4 
and CCR5) activates pannexin-1 channel opening as a feed-
forward signal which can enable HIV-1 internalization in CD4+ 
T cells (103). This study highlights the pannexin-1 hemichannel 
and associated factors, i.e., purinergic receptors as host factors 
that  play important roles in early stages of HIV-1 entry (115). The 
role of purinergic inhibitors in HIV-1 disease is currently being 
investigated (116).

Most recently, Graziano et  al. demonstrated that extracel-
lular ATP induced rapid release of HIV-1 particles from human 
monocyte-derived macrophages that was P2X7 dependent (117). 
They hypothesized that virion egress may be additionally regu-
lated by P2X7 function.

Definitive data are still lacking regarding which P2X 
receptor(s) are specifically required by HIV-1 and how puriner-
gic signaling facilitates HIV-1 entry. Additionally, it is unknown 
whether HIV-1 infection activates other P2X7 signaling path-
ways, notably those involved in the NLRP3 inflammasome, 
which mediates IL-1β release. Elevated IL-1β is observed in 
HIV-infected patients (118–121), although these studies do have 
not directly link HIV-1 infection to inflammasome activation. 
Intriguing studies in CD4+ T cells found that pathogen sensor 
IFI-16 recognition of HIV-1 DNA can activate the inflammasome 
that induces proinflammatory lymphocyte programed cell death 
known as pyroptosis (122–125). This may represent a mechanism 
for CD4+ T cell depletion in HIV-1 disease and AIDS (126, 127). 
We present a model for the role of HIV-1 and purinergic signaling 
in Figure 1. This posits that HIV-1 entry results in the activation 
of P2X receptors and facilities fusion. This event may also trigger 

FiGURe 1 | Model for Hiv infection and purinergic receptor signaling in a lymphocyte or macrophage/monocyte. HIV-1 attaches to a cell, and this is 
associated with P2X activation which results in cation and potentially large molecule flux. Concurrent toll-like receptor (TLR) activation by ligands, such as bacterial 
lipopolysaccharide (LPS), results in gene regulation through NF-kB. These two signals – TLR and P2X – are required for inflammasome activation which results in 
cleavage of procaspase-1 to caspase-1 which activates IL-1β which is then secreted.
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TABLe 1 | P2X7 inhibitors in clinical trials.

Drug Company Phase endpoint Reference

EVT 401 Evotec I Safety inhibition 
of ATP-stimulated 
IL-1β release

(133)

AZ9056 AstraZeneca IIa Safety, ACR20a (58)

CE-224,535 Pfizer IIa Safety, ACR20 (59, 134)

GSK1482160 GlaxoSmithKline I Safety (113, 135)

aAmerican College of Rheumatology 20% response criteria (136).
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inflammasome activation which results in maturation and release 
of IL-1β; this in turn drives inflammation and inflammatory cell 
death, thus depleting neighboring CD4+ T cells and contributing 
to systemic inflammation.

Novel antiretroviral therapies that target both HIV-1 produc-
tive infection as well as inflammation would be helpful in treating 
HIV-associated comorbidities. Because targeting purinergic 
receptors appears to be equivalently effective at blocking cell-free 
and cell-to-cell infection, these are attractive targets; inhibition 
of cell-to-cell infection with some ART can exhibit diminished 
efficacy (128–130). Finally, a recent study suggests that nucleo-
side reverse transcriptase inhibitors can inhibit inflammasome 
activation and reduce levels of IL-1β production (131). This 
suggests an important connection between HIV-1 pathogenesis 
and underlying inflammation through inflammasome activation.

Well-studied purinergic compounds in advanced stages of 
therapeutic development are the P2X7 antagonists. Various 
inhibitors, such as KN-62, PPADS, oxidized ATP, brilliant Blue 
G, AZ9056, A 740003, and A 438079, have been tested in inflam-
matory and neurological diseases (132). Several highly selective 
P2X7 receptor antagonists have been tested in clinical trials for 
safety for inflammatory pain conditions, specifically rheumatoid 
arthritis (Table 1). All drugs tested have demonstrated safety but 
have yet to show efficacy at reducing inflammatory pain.

While these drugs have not demonstrated efficacy in reducing 
neuropathic pain, there is potential for their applications in the 

modulation of inflammation related to infection. Of note, suramin is 
a well-described antiprotozoal agent that also has reverse transcrip-
tion inhibitor activity in vitro against HIV-1 (137). In the 1980s, 
suramin was proposed as an ART and was given to 98 patients with 
AIDS (138). The study was ineffective at demonstrating survival 
advantage in the treated patients, largely because the patients had a 
high burden of disease and because the compound is toxic. Current 
drug development aims for compounds with a lower molecular 
weight that are moderately lipophilic (132). We propose that testing 
these agents may yield novel classes of anti-infective drugs that can 
function both to reduce viral replication and associated inflamma-
tion. An important goal in this area is to clarify how purinergic 
receptor antagonists block HIV-1 entry and to determine the role of 
purinergic signaling pathways in HIV-1 pathogenesis. The develop-
ment of drugs that target these pathways may aid in treatment and 
prevention of HIV-1 disease and associated comorbidities.

COnCLUSiOn

Human immunodeficiency virus type 1 disease remains incur-
able, and as the affected population ages, patients will experience 
sequelae of chronic inflammation. As ART is still ineffective 
at eliminating this inflammation, novel therapies and a clearer 
understanding of the mechanisms that induce inflammation 
are necessary for improving long-term health of HIV-infected 
patients. An intriguing convergence of purinergic signaling with  
HIV-1 infectious pathways and inflammatory pathways indicates 
that these pathways may be central to disease pathogenesis. 
Understanding of the mechanisms that underlie such inflam-
mation may enable targeted therapies that are more effective 
at enhancing the survival of HIV-infected patients by reducing 
chronic HIV-induced inflammation.
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