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Natural killer (NK) cells were discovered 40  years ago, by their ability to recognize
and kill tumor cells without the requirement of prior antigen exposure. Since then, NK 
cells have been seen as promising agents for cell-based cancer therapies. However, 
NK cells represent only a minor fraction of the human lymphocyte population. Their
skewed phenotype and impaired functionality during cancer progression necessitates 
the development of clinical protocols to activate and expand to high numbers ex vivo 
to be able to infuse sufficient numbers of functional NK cells to the cancer patients. 
Initial NK cell-based clinical trials suggested that NK cell-infusion is safe and feasible 
with almost no NK cell-related toxicity, including graft-versus-host disease. Complete 
remission and increased disease-free survival is shown in a small number of patients 
with hematological malignances. Furthermore, successful adoptive NK cell-based ther-
apies from haploidentical donors have been demonstrated. Disappointingly, only limited 
anti-tumor effects have been demonstrated following NK cell infusion in patients with 
solid tumors. While NK cells have great potential in targeting tumor cells, the efficiency 
of NK cell functions in the tumor microenvironment is yet unclear. The failure of immune 
surveillance may in part be due to sustained immunological pressure on tumor cells 
resulting in the development of tumor escape variants that are invisible to the immune 
system. Alternatively, this could be due to the complex network of immune-suppressive 
compartments in the tumor microenvironment, including myeloid-derived suppressor
cells, tumor-associated macrophages, and regulatory T cells. Although the negative
effect of the tumor microenvironment on NK cells can be transiently reverted by ex vivo 
expansion and long-term activation, the aforementioned NK cell/tumor microenviron-
ment interactions upon reinfusion are not fully elucidated. Within this context, genetic 
modification of NK cells may provide new possibilities for developing effective cancer 
immunotherapies by improving NK cell responses and making them less susceptible to 
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iNTRODUCTiON

Natural killer (NK) cells are lymphocytes of the innate immune 
system. They are cytokine producing and have cytotoxic ability to 
kill both viral infected and tumor cells. Tumor-killing lympho-
cytes were first reported in 1968 by Hellström et al. (1). Kiessling 
and colleagues, in parallel with Ronald Herberman’s research 
laboratory, defined a novel lymphocyte population named NK 
cells that are able to target tumor cells in 1975 (2–5). Unlike T 
cells and B cells, NK cell recognition is not governed by high-
resolution antigen specificity. Target cell recognition is mediated 
by the signals delivered through several activating and inhibitory 
receptors. The balance between activating and inhibitory signals 
decides the response of NK cells. When there is a mismatch 
between an inhibitory subgroup of killer immunoglobulin-like 
receptors (KIRs) on NK cells and self-human leukocyte antigen 
(HLA) class I proteins on the surface of target cells the NK cells 
can get activated due to lack of inhibitory signals leading to 
lysis of the host cell. This mismatch mediates alloreactivity and 
is the strategy behind the missing-self concept (6). KIRs can be 
divided into two haplotypes; the A haplotype with predominantly 
inhibitory KIRs plus only one activating KIR and the B haplotype 
containing inhibitory and activating receptors (7). During NK 
cell education, KIRs go through a random sequential acquisi-
tion process where they get functionally competent after they 
encounter self-MHC class I molecules. Consequently, mature NK 
cell function is inhibited by self-MHC class I and KIR interaction 
(8). When a NK cell confronts a target cell without expression of 
self-MHC class I molecules, the inhibitory signals are not active 
and the NK cell gets activated.

The majority of NK cells, as well as certain T cell subpopulations, 
may express the receptor family NKG2. One of the ligands for 
most NKG2 receptors is HLA-E, which is expressed on all nucle-
ated cells. NKG2-family consists of seven members: NKG2A, B, 
C, D, E, F, and H in which NKG2A and B are inhibitory receptors. 
NK cells also express activation receptors on the surface, such 
as natural cytotoxicity receptors (NCRs), DNAM-1, and receptor 
members of the 2B4 family. NCRs, including NKp30, NKp44, 
and NKp46, are one of the main and initial groups of NK cell-
activating receptors identified and they recognize viral ligands, 
heat shock-associated proteins, or tumor antigens (9). NK cells 
can also get activated by crosslinking of Fc receptor CD16 to 
target cell leading to antibody-dependent cellular cytotoxicity 
(ADCC) and lysis of the target cell (10, 11).

Natural killer cells perform their cytotoxic activity through 
granzyme B- and perforin-mediated apoptosis or by expression 
of death receptor ligands such as FasL and TNF-related apoptosis-
inducing ligand (TRAIL). While the release of cytolytic granules 

is one of the essential cytotoxic responses, perforin deficient NK 
cells can still kill tumor cells through Fas-mediated apoptosis 
(12). Moreover, TRAIL-TRAILR mediated cytotoxicity also plays 
an important role in eliminating the target cells. Various tumor 
cells express TRAIL death receptors, which could be upregulated 
by proteasome inhibitors such as bortezomib (13). Additionally, 
immunomodulatory drugs (IMiDs) such as lenalidomide upregu-
lates TRAIL expression on NK cells that potentially enhance the 
TRAIL-mediated elimination of tumor cells (14, 15).

Natural killer cells are derived from hematopoietic stem cells 
(HSC) in the bone marrow. The differentiation from HSC can be 
divided into five stages based on surface markers [detailed review 
in Ref. (16)]. The stages can be identified by the following surface 
markers, CD34, CD117, CD94, and CD16 among the Lin− events, 
where stage 1 is CD34+CD117−CD94−CD16−. First at stage 2, the 
cells are able to respond to IL-15, which is necessary for NK cell 
development (17, 18). In the transition between stage 2 and 3, they 
lose their CD34 expression. At stage 4, the NK cells are CD56bright, 
produce IFNγ, and are capable of cytotoxic killing of K562 cells 
in vitro (19). NK cells in stage 5 are CD56dim and express CD16.

The majority of human NK cells are CD14−CD19−CD3
−CD56+. While most of the CD56+ cells express lower levels of 
CD56 (~90% CD56dim), they are potent cytotoxic killers of target 
cells and secrete cytokines such as IFNγ. Approximately 10% of 
peripheral NK cells express high levels of CD56 (CD56bright), have 
low cytolytic activity, and have the capacity to produce high titers 
of immunoregulatory cytokines. The cell surface phenotypes of 
these two subpopulations also differ in respect to the receptors 
they express: the CD56bright population expresses the inhibitory 
receptor NKG2A that could also be expressed on CD56dim NK 
cells. While the CD56dim population expresses FcγRIIIa (CD16a) 
as well as the inhibitory receptors KIRs (20).

NK CeLLS iN CANCeR

Natural killer cells recognize tumor cells by the activating recep-
tors like NCRs, which detect the altered expression of their ligands 
on the tumor cell surface. Additionally, downregulation or lack of 
MHC class I molecules on the cell surface of tumor cells can trig-
ger NK cell activation since it diminishes the inhibitory signals 
transduced through KIR-MHC interactions. Moreover, since NK 
cells’ target recognition and activation are mainly through NCRs 
and missing-self, this engagement could induce upregulation of 
FasL on the NK cell surface leading to an alternative pathway 
inducing apoptosis in tumor cells. Nevertheless, both IL-2 stimu-
lation and NK cell activation through NCRs also upregulate Fas 
on NK cells that may initiate regulation of the NK cell activation 
and expansion (21, 22).

the tumor microenvironment. Within this review, we will discuss clinical trials using NK 
cells with a specific reflection on novel potential strategies, such as genetic modification 
of NK cells and complementary therapies aimed at improving the clinical outcome of NK 
cell-based immune therapies.

Keywords: natural killer cells, adoptive cell therapy, immunotherapy, cancer, clinical trials, expansion, tumor 
microenvironment, genetic modifications
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Many tumors have gained methods to evade the surveillance 
by NK cells and other members of the immune system. For 
example, 16 of 18 patients with acute myeloid leukemia (AML) 
had reduced NCR surface expression compared to healthy donor 
NK cells, resulting in reduced cytotoxic capacity against target 
cells (23). Another way for tumor cells to escape recognition 
by NK cells is upregulation of the non-classical MHC class I 
molecule HLA-G, which dampens NK cell responses (24, 25). In 
numerous malignancies, there are also abnormalities found in the 
NK cell population. Examples of this include defective expres-
sion of activating receptors found in hepatocellular carcinoma 
(26), metastatic melanoma (27), AML (23), chronic lymphocytic 
leukemia (CLL) (28), and multiple myeloma (29, 30) or defective 
NK cell proliferation in metastatic renal cell carcinoma (31) and 
chronic myelogenous leukemia (CML) (32).

In renal cell carcinoma, infiltrating NK cells have, compared to 
peripheral blood NK cells, increased expression of NKG2A recep-
tor contributing to decreased NK cell activity (33). NKG2D is a 
well-studied activating receptor on NK cells. Membrane-bound 
NKG2D ligand has a stimulatory effect on immunity, while solu-
ble NKG2D ligands have the opposite effect on immune system 
leading to metastatic cancer progression (34). Patients with colo-
rectal cancer have increased serum titers of the soluble NKG2D 
ligand, MHC class I chain-related protein A (sMICA), compared 
to healthy controls, leading to downmodulation of activating and 
cytokine receptors on the NK cells (35). A potential way to reduce 
the risk of soluble NKG2D ligand is to give the patients neutral-
izing antibody treatment. Clinical observations demonstrate that 
patients treated with cytotoxic T lymphocyte-associated antigen 
4 (CTLA-4) antibody blockade have reduced sMICA in a close 
correlation with increased titers of autoantibodies against MICA 
(36). Interestingly, a new report from Deng et al. shows that the 
soluble high-affinity ligand MUL1 causes NK cell activation and 
stimulates tumor rejection in mice, instead of inhibition of NK 
cells as earlier reported (37).

The potential benefits of NK cell-based cancer immunotherapy 
products have led to the design of in  vitro methods aiming to 
cultivate NK cells in cGMP conditions. Some of these methods 
have already been tested in clinical trials, which will be discussed 
later in this review.

CLiNiCAL-GRADe NK CeLL PRODUCTS

It is possible to activate NK cells and increase their anti-tumor 
activity through short-term cytokine exposure in vitro prior to 
adoptive transfer (38). However, to achieve clinically relevant 
numbers of NK cells, there also needs to be development of long-
term NK cell expansion protocols (Table 1; Figure 1) (39–47). 
Yet, there are concerns when expanding NK cells in vitro, such as 
potential phenotypic changes, selective expansion, and reduced 
cytotoxic killing. When expanded in vitro with IL-2, there is a 
chance of CD3+ cell expansion as well (48, 49). Thus, there is still 
room for improvement to achieve optimum clinically relevant NK 
cell numbers, in vivo NK cell persistence and survival, and most 
importantly, anti-tumor activity. There are numerous parameters 
affecting the clinical-grade NK cell manufacturing such as source 
of the NK cells, cytokine stimulation, cell culture medium, and 

expansion platform. Here, in this section, we will address these 
parameters.

Source of the NK Cells
The majority of clinical NK cell products or pre-clinical research 
on efficient NK cell manufacturing platforms are making use 
of peripheral blood mononuclear cells (PBMC), umbilical cord 
blood (UCB), cell lines, and human embryonic stem cells (hESC), 
as well as induced pluripotent stem cells (iPSC) as a source of 
start material.

Peripheral Blood Mononuclear Cells
The majority of NK cell products are generated through utiliza-
tion of PBMCs either by apheresis or ficoll separation under 
cGMP conditions. An advantage of using PBMCs is the ability to 
collect cells in a closed aseptic system. Although PBMC consists 
of 5–20% NK cells, it is not possible to achieve sufficient numbers 
of potent NK cells. Thus, various techniques to expand NK cells 
ex vivo have been developed. For example, we have designed a 
feeder-free NK cell expansion system where it is possible to 
expand and activate tumor-reactive NK cells in a clinically 
compatible manner (45). These cells have a high cytotoxic effect 
specifically against autologous and allogeneic tumors in  vitro 
and in  vivo (42, 45). We have also completed a first-in-man 
clinical trial using donor-derived ex vivo expanded NK cells in 
terminal cancer patients that had CLL, kidney cancer, colorectal 
cancer, and hepatocellular carcinoma with promising results 
(43). Having optimized the procedure for NK cell expansion 
in a closed-automated bioreactor using clinical-grade GMP-
compliant components, we have initiated a first-in-man phase I/
II clinical trial to expand and restore the function of patients’ own 
NK cells (45, 62). To our knowledge, this is the first advanced 
therapy investigational medicinal product trial performed using 
autologous NK cells in Sweden.

Sakamoto et al. have established another similar approach that 
generates large numbers of activated NK cells from peripheral 
blood without prior purification of the cells. The PBMCs are 
cultured with autologous plasma, IL-2, OK-432, and γ-irradiated 
autologous FN-CH296 stimulated T cells, reaching up to a 
median purity of 90.96% of NK cells at day 21 or 22. Many of 
the NK expansion protocols are based on enrichment of NK cells 
either prior to NK cell activation and expansion through cell 
selection or sorting in order to achieve pure cell therapy product 
and avoid unwanted side effects stemming from T cells especially 
in allogeneic NK cell transfusions.

One of the main methods of enriching the purity and the 
number of initial NK cells is the clinical-grade immuno-magnetic 
depletion of other lymphocyte subsets such as T cells and/or B 
cells as well as myeloid cells (60). Depletion of CD3+ cells followed 
by CD56+ cell enrichment can lead to highly pure NK cells which 
could be supplemented by CD19+ cell depletion before infusion 
in order to prevent passenger lymphocyte syndrome in allogeneic 
transplantation (63). Nguyen et  al. have shown that a partial 
depletion of T cells could get a more beneficial clinical outcome 
compared to a complete T cell depletion after hematopoietic stem 
cell transplantation, suggesting that T cells may have a positive 
role in in vivo NK cell function (64).
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TABLe 1 | Clinical-grade NK cell products.

Cell source Medium Serum Feeder cell Other System Time 
(days)

Purity (% 
NK cells)

UCB CD34+  
cells (46)

GBGM 10% HS – High-dose cytokine cocktail (SCF, Flt3L, TPO, IL-7), 
low-dose cytokine cocktail (GM-CSF, G-CSF, IL-6), 
IL-15, low molecular weight heparin, high-dose 
cytokine cocktail (IL-7, SCF, IL-15, IL-2)

Vuelife bags 42 >90
Wave bioreactor 
system
Biostat CultiBag 
system

UCB CD34+ cells 
(50)

GBGM 2% HS – 250 pg/mL G-CSF, 10 pg/mL GM-CSF, 50 pg/mL 
IL-6, high-dose cytokine cocktail (20 ng/mL IL-7, 
SCF, IL-15), 1000 U/mL IL-2, 200 pg/mL IL-12

Vuelife bags 21–28 >80
SCGM

NK-92 cell line (51) X-Vivo 10, 
15, 20

HS – 450 IU/mL IL-2, 0.2 mM I-inositol, 2 mM 
L-glutamine, 20 mM folic acid, 10−4 M 
2-mercaptoethanole

Flaske 15–17 –

Aim VR Human HP Vuelife bags
TCM
QBSF-56 HSA X-Fold culture 

bags

NK-92 cell line (52) X-Vivo 10 2.5% HP – 500 U/mL IL-2, 0.6 mM l-asparagine, 3 mM 
l-glutamine, 1.8 mM l-serine 

Vuelife culture 
bags 

15–17 –

Total PBMC (48, 53) CellGro SCGM 5% HS – 500 U/mL IL-2, 10 ng/mL OKT3 Flasks 21 55–74

Total PBMC (54) CellGro SCGM 
or RPMI-1640

10% FBS K562-mb15-
41BBL

10 U/mL IL-2 Flasks 7–14 96.8
Teflon bags 83.1

Total PBMC (55) RHAMα 5%AP HFWT 100 U/mL IL-2 24-well plates 6–7 86

Total PBMC (42) CellGro SCGM 5% HS – 500 U/mL IL-2, 10 ng/mL OKT3 Flasks 20 65%

Total PBMC (45) CellGro SCGM 5% HS – 500 U/mL IL-2, 10 ng/mL OKT3 Wave bioreactor 
system

20 Relative: 
64%

Flasks 74%
Vuelife bags 47%

Total PBMC (47) GT-T510 1% HP Autologous 
FN-CH296 
induced T cells

IL-2, OK-432 CultiLife bag 20–21 90%

CD56 enriched 
PBMC (49)

X-VIVO 10 10% HS – 500 U/mL IL-2, 10 ng/mL IL-15, 200 mM 
l-glutamine

NR 14 NR

CD5 and CD8 
depleted PBMC 
(56)

RPMI-1640 10% HS – 1000 U/mL IL-2, 2 mM l-glutamine, 1000 U/mL 
penicillin, 100 U/mL streptomycin

Polystyrene Cell 
Factories

21 88

Teflon bags
Polyolefin bags

CD5 and CD8 
depleted PBMC 
(41)

2:1 
DMEM:Ham’s 
F12-based NK 
medium

10% HS – 1000 U/mL IL-2, 20 μM 2-mercaptoethanole, 
50 μM ethanolamine, 20 mg/mL l-ascorbic acid, 
5 μg/L sodium selenite, 100 U/mL penicillin, and 
streptomycin

Stirred-tank 
bioreactor

33 95–96

Spinner flasks
24-well plates

Non-adherent 
PBMC (57)

RPMI-1640 10% FBS RPMI 8866 50 U/mL IL-2 24-well plates 10–12 80

Non-adherent 
PBMC (58)

RPMI-1640 10% FBS RPMI 8866 50 U/mL IL-2 24-well plates 10–12 90

CD3 depleted non-
adherent PBMC 
(39, 59)

DMEM 8% HS LAZ 388 200 U/mL IL-2, 2 mM l-glutamine, 1 mM sodium 
pyruvate, 0.2% NaOH, 100 U/mL penicillin, 0.1 mg/
mL streptomycin

V-bottom 
microplates

13–21 >90

Purified NK cells 
(60)

X-VIVO 20 – Allogeneic 
mononuclear 
cells

100 U/mL IL-2, 10 U/mL IL-15, 100 μg/mL PHA, 
1 μmol/mL ionomycin

Teflon bags 14–21 92

Purified NK  
cells (61)

X-VIVO 20 10% HS EBV-TM-LCL 500 U/mL IL-2, 2 mM GlutaMAX-1 at 6.5% CO2 Flasks or Baxter 
bags

28 99

Adherent activated 
NK cells (40)

RPMI-1640 10% HS Allogeneic 
mononuclear 
cells

6000 U/mL IL-2 Flasks 14–18 85

PBMC, peripheral blood mononuclear cells; HS, human serum; FBS, fetal bovine serum; HP, human plasma; HAS, human serum albumin.
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Additionally, direct enrichment of CD56+ NK cells through 
immuno-magnetic selection is an option to achieve high purity 
initial NK cell product. Nevertheless, NK cells might require 
physical and cytokine-dependent communication with other 
cells such as monocytes (65) in order to activate and expand. 
Thus, it is essential to fine-tune the enrichment of NK cells by 
making use of feeder cells and/or optimizing the cytokine cocktail 
used in ex vivo NK cell expansion protocols.

Furthermore, using feeder cells and cell lines is another 
approach in expanding NK cells ex vivo since feeder cells can 
provide essential stimulatory signals for NK cells proliferation. 
Monocytes, irradiated PBMC, feeder cell lines, and engineered 
feeder cell lines are the most commonly used sources for 
stimulation of NK cell expansion through humoral signals 
and cell-to-cell contact. Example of feeder cells that have been 
used in clinical trials are irradiated autologous PBMCs (60, 66), 
irradiated Epstein–Barr virus-transformed lymphoblastoid cells 
(61), and K562 engineered cells expressing 4-1BB ligand (67) or 
membrane-bound IL-21 (68, 69) on cell surface.

Stem Cells
While PBMC is one of the major sources for achieving clinically 
relevant doses of tumor-reactive NK cells, HSC and potentially 
hESC as well as iPSC are likewise essential sources for achieving 
clinically relevant doses of NK cells.

One of the potential sources to accomplish clinically relevant 
doses of tumor-reactive NK cells is making use of HSC (CD34+) 
through differentiation and expansion of CD34+ cells isolated 
from bone marrow, peripheral blood, or UCB into functional NK 
cells. It was recently demonstrated that it is possible to expand 
activated, tumor cytotoxic and pure NK cells by differentiating 
UCB CD34+ HSC under cGMP condition (46). Furthermore, 
NK cells derived from CD34+ UCB cells lack expression of KIRs 
such as KIR2DL1 (CD158a), KIR2DL2/DL3 (CD158b), and 
NKB1, as well as diminished CD16 expression in the CD56dim 
population (70). Even though NK cells derived from UCB have 
reduced cytotoxicity, this could be restored by ex vivo cytokine 
stimulation such as IL-2, IL-12, and IL-15 (50, 71–73). Infusion 

of UCB-derived NK cells supplemented with IL-15 has shown 
to inhibit growth of human bone marrow resident leukemia 
cells in vivo (74). Recently, it was demonstrated that frozen UCB 
CD34+ cells differentiate into NK cells with better expansion than 
freshly isolated UCB CD34+ cells, and more importantly, UCB 
CD34+ cells gave more NK cell product than peripheral blood 
HSC without jeopardizing NK cell functionality (75). Thus, UCB 
CD34+ cells are one of the essential sources for manufacturing 
NK cell therapy protocols, providing an option to create NK cell 
biobanks.

Another potential source of NK cells is hESC and iPSC, with 
the advantage of potential usage of iPSCs in autologous set-
tings with reduced risk of immune rejection. The first step is to 
generate CD34+ hematopoietic precursor cells from the hESCs 
and iPSCs and then differentiate these cells into NK cells, which 
could be efficiently achieved through growing hESCs and iPSCs 
on murine stromal cells (76, 77). Yet, the involvement of xeno-
geneic cells could limit the potential clinical usage of hESCs and 
iPSCs. Addressing this potential problem, Knorr et al. developed 
a two-stage culture method where hESCs and iPSCs are first dif-
ferentiated to CD34+ hematopoietic cells by spin-EB system in 
xeno-free and serum-free conditions followed by stroma-free NK 
cell differentiation, which enables generation of cytotoxic NK cells 
without involvement of xenogeneic cells taking a step forward 
toward clinical-scale production (78). Since IL-2-activated NK 
cells are potent killers of both allogeneic and autologous iPSCs 
(79), it is possible to manufacture a pure NK cell therapy product. 
This sticks out as one of the advantages of using in vitro NK cell 
differentiation from iPSCs.

Cell Lines
Cell lines derived from NK cells with similar biological functions 
(NK-92, NKL, KYHG-1, and NKG) are potential candidates 
for NK cell-based products enabling design and development 
of off-the-shelf anti-cancer cell therapy products. Furthermore, 
it is more feasible to generate genetically modified NK cell 
lines expressing intracellular IL-2 for activation or cell surface 
molecules such as CD16, NCRs, and chimeric antigen recep-
tors (CARs). To our knowledge, the NK-92 cell line is the most 
clinically studied one. The IL-2-dependent NK-92 cell line is 
cytotoxic to a wide range of malignant cells (80–83). It has also 
been used as a source of NK cells for cGMP-grade cellular therapy 
products (51) as well as in clinical trials (52, 84). The NK-92 cell 
line expresses several activating receptors but lacks most of the 
inhibitory KIRs, NKp44, and CD16 (80, 85). NK-92 cells require 
irradiation to prevent proliferation prior to being used effectively 
in immunotherapeutic approaches without compromising 
hematopoietic cell function. For example, recently, clinical-grade 
NK-92 cells have been manufactured and were safely used as 
anti-tumor therapy for patients with a variety of tumors (84) 
with promising results (52). As of today’s date, two phase I clinical 
trials (NCT00900809 and NCT00990717) are recruiting patients 
with hematological malignancies for treatment with NK-92 cells. 
The first clinical phase II study (NCT02465957) with NK-92 cells 
has recently been initiated.

KHYG-1 is the first NK cell line derived from NK leukemia 
and has higher cytotoxicity than NK-92 cell line (86). Likewise 
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NK-92 cells, these cells can also be irradiated to inhibit prolifera-
tion and can still efficiently kill tumor targets. Furthermore, NKL 
cell line, which is the most biologically and functionally similar 
to primary NK cells, is more cytotoxic to certain tumor cells 
than NK-92 cell line and, additionally, it has the ADCC capacity 
whereas NK-92 cells lack CD16 expression. Thus, both KHYG-1 
and NKL cell lines have the potential to be used as anti-cancer 
NK cell products.

Additionally, one of the advantages of using such master 
cell bank is an appealing opportunity in the manufacture 
of cellular therapy products since it is possible to establish a 
comprehensive standardization and characterization of the cell 
source. It is also possible to genetically modify these cell lines 
to exert more tumor specificity and cytotoxicity. For example, 
NK-92 cell lines are dependent on external IL-2 stimulation, 
which increases manufacturing costs as well as potentially 
reducing the long-term cytotoxic capacity of these cells unless 
they are supported by IL-2 infusions. Thus, constitutive expres-
sion of IL-2 in NK-92 cells through genetic modification leads 
to auto-activated and -proliferating cells, which reduces the 
manufacturing costs as well as potentially increases the in vivo 
tumor reactivity (87, 88).

Cytokines
Ex vivo manufacturing of NK cell-based products is dependent 
on extensive use of cytokines to stimulate, differentiate, activate, 
and expand NK cells in order to get clinically relevant doses and 
enhanced anti-tumor reactivity. Historically, one of the most 
popular cytokines in NK cell research is IL-2 since it was the first 
cytokine to be injected to patients to treat metastatic melanoma 
(89). Thirty years ago, Rosenberg et al. published the first report 
where they treated 25 metastatic cancer patients, who did not 
respond to standard therapy, with autologous lymphokine-
activated killer (LAK) cells together with recombinant-derived 
IL-2. LAK cells are generated from mononuclear cells collected 
from IL-2 injected patients. In 11 patients, the cancer regression 
was observed with >50% of tumor volume (90). This adoptive 
immunotherapy was followed by a larger scale study, where 157 
patients with advanced metastatic cancer were treated with suc-
cessful results (91). In the same year, it was shown that it was 
the NK cells that mediated the cytotoxic activity in response 
to systemic administered recombinant IL-2 (92). These reports 
were followed by many years of IL-2 and NK cell research. In a 
dose-dependent manner, IL-2 is important for NK cell infiltration 
and killing of the tumor. For example, in the bone marrow, there 
are hypoxic regions leading to reduced NK cell killing of plasma 
cells in multiple myeloma. IL-2-activated NK cells ex vivo have 
increased NKG2D expression resulting in increased targeting of 
multiple myeloma upon infusion (93). Cytokine-activated NK 
cells in vitro are dependent on constant stimulation both in vitro 
and in vivo. Basse et al. reported that when no exogenous IL-2 is 
present the amount of injected NK cells found in tumors were 
very low (94). The half-life of IL-2 in serum is not more than 
10 min, which makes the administration of IL-2-dependent cells 
difficult (95). By transducing NK cells to produce IL-2 prior to 
transplantation, the activated NK cells would have a constant 
source of IL-2 in vivo (87, 96). One of the disadvantages of using 

IL-2 to activate NK cell in vivo is the competition over IL-2 by 
regulatory T cells, which express high levels of the high-affinity 
receptor for IL-2, IL-2Rα (CD25). By treating patients with 
lympho-depleting agents (fludarabine and cyclophosphamide) 
followed by NK cell infusion and IL-2 fused with diphtheria 
toxin (IL-2DT), CD25+ cells are selectively depleted, leading to 
increased NK cell expansion and complete remission rate for 
patients with AML compared to regular IL-2 treatment (97). 
Overall, the majority of cGMP-grade NK cell therapy protocols 
include IL-2 as a main cytokine to stimulate NK cell activation 
and proliferation.

Another important cytokine is IL-15 which is required for both 
NK cell maturation and survival (98). IL-2 and IL-15 share the 
same receptor components: IL-2/15Rβ and common γ chain (also 
shared with IL-4, IL-7, IL-9, and IL-21). Recent advances in the 
production of cGMP quality cytokines enabled further optimiza-
tion of cytokine supplementation during NK cell expansion. For 
example, use of IL-15 in combination with IL-2 has a synergetic 
effect on product viability and NK cell proliferation (66). This 
highlights the necessity of other cytokines to achieve NK cell 
product potency especially when it comes to the NK cell expan-
sion protocols that are not using feeder cell support. Additionally, 
IL-21, primarily described in 2000 (99), has significant homology 
with IL-2 and IL-15. Compared to IL-2 and IL-15, IL-21 promotes 
maturation and survival but does not promote proliferation of 
NK cells alone. However, IL-21 does have synergetic effects with 
IL-2 and IL-15 (100). Interestingly, it has been suggested that 
IL-21 does not drive proliferation of regulatory T cells in  vivo 
and might be a good candidate to substitute for IL-2 in CLL (101).

Other Factors
Besides NK cell source, feeder support, and cytokine stimulation, 
other parameters such as expansion platform, cell culture media, 
and serum supplementation are also very important in achieving 
clinically relevant cell numbers, viability, and tumor cytotoxicity. 
More specifically, we have recently investigated the importance 
of the culture vessels on the quality and efficacy of the NK cell 
product. Briefly, PBMCs from healthy donors and myeloma 
patients were cultured for 21 days using flasks, cell culture bags, 
and bioreactors. Even though we have achieved high yield in 
NK cell expansions in all systems, NK cells expanded in the 
bioreactor displayed significantly higher cytotoxic capacity. These 
results demonstrate that highly active NK cells can be produced 
in a closed, automated, large-scale bioreactor under feeder-free 
current GMP conditions facilitating adoptive immunotherapy 
clinical trials (45).

Additionally, cell culture media is another important factor 
to consider in the manufacturing of cellular therapy products. 
There are very few cGMP quality medias that work optimally 
for ex vivo NK cell expansion protocols. The most commonly 
preferred media in the generation of NK cell products are 
stem cell growth medium (SCGM; CellGenix, Freiburg, 
Germany), X-VIVO serum-free media (BioWhittaker, 
Verviers, Belgium), or AIM V (Life Technologies, Grand 
Island, NY, USA) (49, 102, 103). Generally, medium is sup-
plemented by human AB serum or fetal bovine serum from 
certified sources.
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TABLe 2 | Clinical trials with infusion of autologous NK cells.

Malignancy n NK cell 
source

Depletion Product Ex vivo 
handling

Purity Dose Outcome

Colorectal 
carcinoma/
NSCLC (105)

11/1 PBMC – IL-2 + Hsp70 peptide 4 days Mean: 14% 
(range: 
8–20%)

Range: 
0.1–1.5 × 109 NK 
cells

Cytotoxic activity of NK cells. No 
significant tumor response

Colon 
carcinoma 
(107)

1 PBMC – IL-2 + Hsp70 peptide 4 days Mean: 22.4% 
(range: 
16–25%)

Mean: 1.48 × 109 
NK cells (range: 
0.9–1.9 × 109)

Anti-tumor activity by NK cells

Glioma (55) 9 PBMC – Irradiated feeder cell line 
(HFWT) + autologous 
plasma + IL-2

14 days 82.2 ± 10.5% i.c. 0.4–2.3 × 109 
cells

3 partial responses, 2 minimal 
responses

i.v. 0.2–6.5 × 109 
cells

RCC (39) 10 PBMC CD3+ 
depletion or 
Immunorosette 
depletion

Cultured on LAZ388 
with allogeneic 
irradiated PBMNC as 
feeder cells + IL-2 

13–
21 days

>90% except 
1 patient 
(33%)

Mean: 5.8 × 109 
total cells (range: 
1.8–15.1 × 109)

All patients improved, 4 
complete response, 2 partial 
response

Melanoma/
RCC (103)

7/1 PBMC CD3+ 
depletion

Autologous irradiated 
PBMNC as feeder 
cells + IL-2 and OKT3

21 days 96% ± 2% Range: 4.7 × 1010 
(±2.1 × 1010) NK 
cells

No tumor lysis by NK cells. No 
tumor response

Rectal/
esophageal/
gastric/colon 
cancer (47)

4/4/3/3 PBMC – Autologous FN-CH296 
stimulated T 
cells + autologous 
plasma + IL-2 and 
OK-432

21–
22 days

Median: 
90.96% 
(range: 65.94 
−99.45%)

0.5–2.0 × 109 cells No tumor response

Lymphoma/
breast cancer 
(104)

20/14 In vivo IL-2 
activated NK 
cell

– IL-2 Over 
night

Not reported Range: 
0.33–2.09 × 108 
cells/kg

No improvement of survival

Breast cancer 
(108)

5 In vivo IL-2 
activated NK 
cell

Monocyte 
depletion

Allogeneic irradiated 
PBMNC as feeder 
cells + IL-2 

14 days Mean: 83.2% 
(range: 
67–93%)

Mean: 3.97 × 109 
total cells (range: 
1.55–9.1 × 109)

1 complete response, 1 partial 
response, 2 had stable disease, 
1 disease progression

Lymphoma/
breast cancer 
(40)

10/1 In vivo IL-2 
activated 
NK cell 
progenitors

Monocyte 
depletion

Allogeneic irradiated 
PBMNC as feeder 
cells + IL-2 

14–
18 days

Mean: 85% 
(range: 
64–98%)

Range: 6.8 × 108–
4 × 1010 total cells

Increased NK cell numbers and 
activity in 4 patients 

NSCLC, non-small cell lung cancer; PBMC, peripheral blood mononuclear cell; RCC, renal cell carcinoma.
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Finally, there are numerous variables that may impact quality 
and quantity of NK cell products. Future pre-clinical research and 
results from more clinical trials will evaluate the contribution of 
each factor to the product purity, potency, and safety, as well as 
assist in acquiring NK cell products that can be manufactured 
reproducibly with the optimal safety and anti-tumor responses.

CLiNiCAL USe OF NK CeLL-BASeD 
ANTiCANCeR PRODUCTS

Autologous NK Cells
Several clinical studies have been performed with adoptive 
autologous NK cells in an attempt to target tumors, such as breast 
cancer, lymphoma, glioma renal cell carcinoma, non-small cell 
lung cancer, and adenocarcinoma (Table 2) (39, 40, 55, 103–107). 
In general, autologous NK cell trials are safe with no toxic side 
effects (39, 40, 55, 105). For example, ex vivo activated autologous 
peripheral blood lymphocytes get enhanced cytolytic activity 
against heat shock protein 70 (Hsp70) membrane-positive 
tumors in vivo if pre-incubated with Hsp70 peptide and IL-2 (105, 

107). However, some clinical trials with autologous NK cells have 
only partial effect on tumors, such as glioma (55). While other 
tumors, such as metastatic carcinoma or relapsed lymphoma, do 
not demonstrate any improvement (103, 104, 108). Moreover, a 
recent clinical trial used ex vivo FN-CH296 stimulated T cells and 
OK-432 expanded, autologous NK cells with enrolled patients 
diagnosed with rectal, esophageal, gastric, or colon cancer that 
was either recurrent or at metastatic disease stage. The NK cell 
therapy in these patients was well tolerated with no severe adverse 
events and the cytotoxicity of peripheral blood was elevated 
approximately twofold up to 4 weeks post the last transfer (47).

Allogeneic NK Cells
Allogeneic NK cell products have been used in the treatment of 
a range of malignancies, such as leukemia, renal cell carcinoma, 
leukemia, colorectal cancer, hepatocellular cancer, lymphoma, 
and melanoma (Table  3) (38, 109–113). The major risk with 
allogeneic NK cell transplantation is the development of graft-
versus-host disease (GvHD). Several precautions can be taken 
to reduce the risk of GvHD, for example, immunosuppression, 
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TABLe 3 | Clinical trials with infusion of allogeneic NK cells.

Malignancy n NK cell source Depletion Product Ex vivo handling Purity Dose Outcome

Cell line

RCC/MM (52) 11/1 NK-92 – IL-2 3 weeks Clonal cell line 1 × 108–3 × 109 cells/kg 1 mixed response, 
4 stable disease, 6 
progressive disease

Solid tumor/CLL/B-
NHL (84)

13/1/1 NK-92 – IL-2 2–2.5 weeks Clonal cell line 1 × 109, 3 × 109, 1 × 1010 
cells/m2

2 mixed response, 
1 stable disease, 12 
progressive disease

Progenitor cells

AML/ALL/high-grade 
MDS (114)

11/1/2 Related CD34+ 
progenitors

CD34+ selection IL-15, IL-21+ 
hydrocortisone

42 days Not reported Mean: 3.49 × 108 
NK cells/kg (range: 
1.8–6.3 × 108)

2 with active leukemia 
had no response

Adult cells

AML/CML (110) 4/1 Haploidentical 
PBMC

CD3+ depleted, 
CD56+ enrichment

– Overnight storage in 
+4°C

Median: 97.35% 
(range: 77.9–98.9%)

Median: 0.93 × 107 
cells/kg (range: 
0.21–1.41 × 107)

3 donor chimerism, 1 
relapse

AML (112) 10 Haploidentical 
PBMC

CD3+ depleted, 
CD56+ enrichment

– Overnight storage Not stated Mean: 29 × 106 NK cells/
kg (range: 5–81 × 106)

In vivo expansion of NK 
cells. 2 years event-free 
remission in 100%

AML (113) 13 Haploidentical 
PBMC

CD3+ depleted, 
CD56+ enrichment

– – Median: 93.5% (range: 
66.4–99.2%)

Median: 2.74 × 106 cells/
kg (range: 1.11–5 × 106) 

3 disease-free. 4 
complete remissions, 5 
with active disease had 
no clinical benefit

AML (116) 1 Haploidentical 
PBMC

CD3+ depleted – – Not stated 3 × 107 NK cells/kg Complete response, 
relapse on day 80

Melanoma/RCC/HD/
AML (38)

10/13/1/19 Haploidentical 
PBMC

CD3+ depleted IL-2 Over night Mean: 40% (range: 
18–68%)

1 × 105–2 × 107 cells/kg In vivo expansion of 
NK cells. 5 complete 
remission (AML)

Breast/ovarian 
carcinoma (115)

6/14 Haploidentical 
PBMC

CD3+ depleted IL-2 Overnight 25.0 ± 0.3% Mean: 2.15 × 107 NK 
cells/kg

4 partial responses, 
12 and 3 stable or 
progressive diseases, 
respectively

8.33 × 106–3.94 × 107 
cells

Neurobalstoma/AML/
ALL/RMS/HD (117)

4/5/5/1/1 Haploidentical 
PBMC

CD3+ depleted, 
CD56+ enrichment

Group 1: – 9–14 days Median: 95% (range: 
84.4–98.6%)

Range Group 1: 3.2–
38.3 × 106 cells/kg, Range 
Group 2: 6–45.1 × 106 
cells/kg

Group 1: 3 complete 
remissions (1 NB, 2 ALL)

Group 2: IL-2 Group 2: 2 complete 
remissions (NB)

ALL/AML (109) 2/1 Haploidentical 
PBMC

CD3+ depleted, 
CD56+ enrichment

IL-2 14 days Mean: 95% Mean: 11.9 × 106 cells/kg 
(range: 3.3–29.5 × 106)

3 complete remissions, 
AML patient got early 
relapse

Neuroblastoma (118) 2 Haploidentical 
PBMC

CD3+ depleted, 
CD56+ enrichment

IL-2 14 days >95% 7.8–45.1 × 106 cells/kg Initially enhanced NK cells 
cytotoxicity

(Continued)
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infusion of CD3 depleted high purity NK cells and if available, 
selecting the donor that matches the host HLA (44, 114, 115).

In the first phase I clinical trial using the feeder-free ex vivo 
expansion platform, adoptive transfer of NK cells from HLA 
identical siblings into patients with leukemia or carcinoma was 
well tolerated and safe alongside in vivo NK cell expansion, with 
only some infusion-related complications (43).

If no HLA identical donor is available, host cells from a recep-
tor–ligand-mismatched donor can be used. If the donor is HLA 
matched, it is preferentially better if the donor cells are KIR B 
haplotype. Also, to further improve the outcome, T cell depletion 
is performed (120). In haploidentical transplantation, at least one 
KIR ligand is not expressed on the host cells leading to reduced 
inhibition of donor NK cells. Less inhibited NK cells could lead 
to better prognosis and might be the best treatment for a good 
clinical outcome if GvHD can be avoided (38, 121). When hap-
loidentical transplantation is performed, it is strictly necessary to 
make extensive T cell depletion to avoid GvHD. In most clinical 
trials, NK cells are collected from leukapheresis followed by a 
two-step purification procedure, with depletion of CD3+ T cells 
followed by enrichment of CD56+ cell (109, 110, 117, 118).

Completed clinical trials with haploidentical donors are safe 
with only a few reports of infusion-related complications such 
as dyspnea, nausea, hypertension, stroke, febrile reaction, and 
vomiting (38, 115). So far, allogeneic NK cell transplantations 
derived from PBMCs or CD34+ cells have shown promising 
results with engraftment, in vivo expansion of NK cells, complete 
remission, and a 100% 2-year event-free survival in one clinical 
trial by Rubnitz et al. (109, 112–114, 116).

iMMUNe SUPPReSSiON OF NK CeLLS iN 
THe TUMOR MiCROeNviRONMeNT

Natural killer cells can recognize and kill tumor cells in  vitro. 
However, their efficiency in targeting solid tumors has not yet 
been fully acknowledged in the clinical setting even though 
endogenous and adoptively transferred activated NK cells can be 
detected in various tumors (122, 123). Nevertheless, not all tumors 
are equally well infiltrated by NK cells, and many of the infiltrating 
cells are dysfunctional (124–127). The failure of immune surveil-
lance may in part be due to sustained immunological selection 
pressure on tumor cells resulting in the development of tumor 
escape variants that are in fact invisible to the immune system 
(Figure  2). In addition, cytotoxic function of immune effector 
cells is also largely suppressed in the tumor microenvironment 
(128), which could be explained by suppressive tumor-secreted 
factors as well as suppressive immune compartments, such as 
myeloid-derived suppressor cells (MDSCs), tumor-associated 
macrophages (TAM), and regulatory T cells (Figure 2). One of 
the most studied immune-suppressive cell types associated with 
tumor progression is regulatory T cells (Treg), characterized 
by their expression of CD4, high CD25 (CD4+CD25+CD127low/

neg) as well as the transcription factor forkhead box P3 (FoxP3) 
(129). The expansion of Treg population is promoted in different 
cancers and their accumulation correlates with impaired immune 
cell function and poor prognosis (130–135). In  vitro, NK cells 
are suppressed by Treg cells in a cell contact-dependent manner 
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through TGF-β-dependent mechanism (155). In patients with 
hepatocellular carcinoma, NK cells were shown to be suppressed 
by monocytic MDSC in a cell contact-dependent manner, but did 
not rely on the arginase activity of MDSCs, which is a hallmark 
function of these cells; however, MDSC-mediated inhibition of 
NK cell function was revealed to be mainly dependent on the 
NKp30 on NK cells (146). Moreover, a negative correlation 
between increased CD33+-MDSC accumulation and functional 
loss of NK cells has been demonstrated in patients with myelod-
ysplastic syndromes (156).

Macrophages are the dominant myeloid-derived population 
that is found in the tumor microenvironment. TAM has been 
identified as regulators of solid tumor development based on 
their capacity to enhance angiogenic, invasive, and metastatic 
programing of neoplastic tissue (157–160). TAMs could be found 
in several types of human cancer correlating with poor clinical 
outcome (161, 162). The immune-suppressive mechanisms 
applied by TAMs on NK cells in the tumor microenvironment 
can be different, such as recruitment of Treg, prostaglandin 
E2-mediated inactivation, and production of IL-10 (163–165). 
Furthermore, tumors are able to escape NK cells by releasing 
indoleamine 2,3-dioxygenase and prostaglandin E2, which inhibit 
the expression of activating receptors of NCRs and NKG2D 
(166). These molecules are also released by mesenchymal stem 
cells to inhibit NK cell function in the tumor microenvironment 
(167). There is a direct association between the surface density of 
NCRs (NKp46) and the intensity of anti-tumor cytolytic activity 
of the NK cells (168).

As mentioned earlier, the tumor microenvironment plays a 
significant role in suppressing NK cell responses against cancer. 
Therefore, therapies aim to target immunosuppressive cell 

where membrane-bound TGF-β is utilized to attenuate their 
cytotoxicity (136). In line with this, inverse correlation between 
NK cell activity and Treg cell expansion has been observed in 
patients with gastrointestinal stromal tumor (GIST) (136) as well 
as in hepatocellular carcinoma patients (137). Treg cells express 
the high-affinity IL-2 receptor alpha (CD25, IL-2Rα) and need 
IL-2 for their full function. Recent studies have indicated that NK 
cell proliferation, accumulation, and activation can be limited by 
Treg cells through hampering the availability of IL-2 released by 
activated CD4+ T cells (138, 139). Consequently, inadequate IL-2 
levels in the tumor microenvironment limits the extent of NK 
cell-mediated tumor rejection.

Another group of immunosuppressive cells in the tumor is the 
MDSCs. MDSCs are heterogeneous precursors of the myeloid 
cells, granulocytes, macrophages, and immature dendritic cells 
with immunosuppressive activity (140). Recently, MDSCs have 
been proposed as a key immunoregulator in various solid and 
hematologic malignancies (141, 142). MDSCs are divided into 
two groups that can originate from granulocytic (grMDSCs) 
and monocytic precursors (moMDSCs) (143). In human beings, 
distinct phenotypes of MDSCs are associated with different types 
of cancers (144–148). Their suppressive function is mediated by 
a few different mechanisms such as production of suppressive 
cytokines including IL-10 and TGF-β, depletion of arginine in 
the tumor or production of reactive oxygen species (ROS) (144, 
149–151). Additionally, recent studies investigated the induction 
mechanism of MDSCs and how they suppress T cells in  vitro 
(152–154). Furthermore, several studies have characterized 
cytokines that can induce MDSCs from healthy human PBMCs. 
We found that prostaglandin E2 treated healthy monocytes resem-
ble patient-derived moMDSCs and suppress NK cell responses 
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populations are emerging (169–174). In the next section, some of 
the alternative ways aiming to enhance tumor-specific targeting 
and NK cell survival in order to overcome immunosuppressive 
effect of the tumor microenvironment on NK cells and to improve 
intra-tumoral NK cell responses will be discussed.

FUTURe PeRSPeCTiveS

Genetically Modified NK Cells
In the last decade, several NK cell based anti-cancer products 
have been taken to clinical trial stage with promising clinical 
outcomes. However, in order to manufacture more efficient NK 
cell therapy products, it is essential to develop novel potential 
strategies such as genetic modification of NK cells (Figure  3). 
Although NK cells are inherently resistant to retroviral infections 
(96, 175–177), our group has significantly enhanced retroviral 
and lentiviral gene delivery to NK cells through enhanced pro-
liferation and targeting intracellular viral defense mechanism by 
small molecule inhibitors (96). Therefore, it is easier to design 
genetically modified NK cells expressing cytokine transgenes, 
silenced inhibitory receptors, overexpressing activating recep-
tors, or retargeting NK cells by expression of CARs on the cell 
surface. By genetically modifying NK cells to produce cytokines 
such as IL-2 or IL-15, their survival capacity and proliferation 
increase and their activation and anti-tumor activity in vivo are 
enhanced (83, 87, 88, 178, 179). To enhance the specificity for 
the target cells, NK cells can be modified to recognize antigens 
specifically expressed on the tumor cells.

Furthermore, another approach aiming to enhance tumor 
specificity is to make use of ADCC. The constant region of the 
tumor-specific monoclonal antibodies (mAbs) targeting the 
tumor cells can engage to the FcγRIIIa receptor (CD16a) on the 
NK cell, activating the NK cell. However, NK-92 cell line cannot 
perform ADCC since they lack CD16a expression (80, 85). This 
defect on NK-92 cells can be reverted by the introduction of 
CD16a through genetic modification so that they are able to per-
form ADCC in antibody combination treatments (180). Finally, 
CAR-modified NK cell lines can also function as tumor-specific 
standardized and characterized NK cell-based therapy products. 
Most of the NK cell lines require further in vivo characterization 
with a potential to become standard NK cell-based products for 
certain tumors.

Monoclonal Antibodies
When the antigen-binding fraction (Fab) of the antibody binds 
to the tumor target cell and the constant region (Fc) of the anti-
body binds to CD16 on the NK cells, NK cells get activated and 
ADCC is triggered. Several different mAbs have been developed 
for targeting specific tumor antigens, such as anti-CD20 (retuxi-
mab), anti-Her2 (trastuzumab), anti-CD52 (alemtuzumab), 
anti-EGFR (certuximab), and anti-CD38 (daratumumab) (181). 
Daratumumab treatment of patients with relapsed myeloma has 
mild infusion-related reactivity, complete or very good partial 
responses with reduced bone marrow plasma cell levels (182). 
mAbs bind to the target tumor cell plus engaging CD16 on NK 
cells and other cell types resulting in killing of tumor cell by 
ADCC both in vivo and in vitro [reviewed in Ref. (183)]. New 
generations of mAbs have been developed to increase ADCC 
and complement-dependent cytotoxicity. Second-generation 
anti-CD20 mAbs, such as veltuzumab (hA20) (184, 185) and 
ofatumumab (HuMax-CD20) (186–193), have the advantage 
of being humanized or of fully human origin. Both veltuzumab 
and ofatumumab had promising preliminary outcomes in 
various studies (184, 186, 187, 189, 190, 193). The benefit of 
third-generation anti-CD20 mAbs, ublituximab (TG-1101), 
ocaratuzumab (AME-133) (194, 195), and obinutuzumab (GA-
101) (196–200), is that they are both humanized and that their 
Fc regions have been modified for increased binding affinity to 
CD16a. So far, the most studied third-generation anti-CD20 
mAbs is obinutuzumab. The overall response rate for obinutu-
zumab is 44.6%, which is higher than the overall response rate 
for rituximab treatment which is 33.7% (200). In the same study, 
the progression-free survival did not promote obinutuzumab 
over rituximab. By increased affinity between CD16a and mAb 
better NK cell cytolysis can be induced by ADCC. Ublituximab, 
ocaratuzumab, or obinutuzumab-treated NK cells from CLL 
patients or healthy donors have more efficient ADCC compared 
to same cells treated with first- or second-generation anti-CD20 
mAb in vitro (201–203).

Monoclonal antibody therapies in combination with already 
existing treatments can potentially enhance NK cell activity 
in anti-tumor therapy. The completely human IgG4 anti-KIR 
antibody, IPH-2102, has been tested in several clinical trials for 
hematological diseases both as single treatment and as combina-
tion (204, 205). Some clinical trials for combination treatment of 
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advanced solid tumors with anti-KIR antibodies are done as well, 
for example, in combination with anti-CTLA antibody or anti-
PD1 antibody (NCT01750580 and NCT01714739, respectively). 
Thus, use of mAbs enhancing ADCC and stimulation of NK cells 
as well as blocking NK cell inhibition could potentially improve 
outcome of clinical anti-cancer NK cell products (Figure 3).

Bi- and Trispecific Antibodies
Likewise designing CARs through tumor-specific mAbs can be 
used to engineer bi- and trispecific antibodies crosslinking CD16 
with tumor-specific mAbs in order to enhance NK cell tumor 
reactivity (Figure  3). Briefly, the design of bi- and trispecific 
antibodies, fusing the Fab region of the antibody targeting the 
tumor cell antigen, such as CD19, CD20, and CD33, in combina-
tion with another Fab region recognizing CD16 on NK cell leads 
to stimulation of the NK cells followed by tumor cell killing. This 
technology makes it possible to select the amount of NK cells that 
should be activated as well as it is possible to add more Fab regions 
targeting other tumor-associated antigens. These Fab regions can 
be exchanged to other tumor-associated antigen-recognizing 
antibody parts, as long as the part crosslinking CD16 on the NK 
cell is present (206, 207).

Chimeric Antigen Receptors (CARs)
Design of CARs using antigen-specific variable part of these 
tumor antigen antibodies fused with intracellular lymphocyte 
stimulatory molecules (CD3ξ, CD28, 4-1BB) enables high-
affinity specific recognition of tumor antigens and tumors. CAR 
modifications of T cells have been studied extensively and have 
led to several phase I and phase II clinical trials (208–211). NK 
cells are less explored and so far only two clinical trials using CAR 
NK cells have been approved. The first study (NCT00995137) at 
St. Jude Children’s Research Hospital is completed and was a 
phase I clinical trial with 14 relapsed or refractory B-lineage ALL 
patients below 18 years. Haploidentical NK cells were expanded 
by co-culture with irradiated K562 cell line expressing IL-15 and 
4-1BB ligand on the surface to be transduced with a signaling 
receptor binding CD19 (anti-CD19 CAR). The second study 
(NCT01974479) is a phase II pilot study, which is still recruit-
ing refractory B-lineage ALL patients in all ages. NK cells are 
expanded by co-culture with K562 cells as the previous trial, 
together with IL-2 before transduction with the same construct. 
The patients will also receive IL-2 after NK cell administration to 
support NK cell viability and expansion. Although CAR T cell 
studies have been extremely promising, CARs designed for T cell 
therapies are still suboptimal for NK cells. Thus, it is essential to 
further optimize the construct design, especially the intracellular 
stimulatory adapter molecules, in order to trigger most efficient 
NK cell responses.

immunomodulatory Drugs (iMiDs)
Immunomodulatory drugs (IMiDs) such as thalidomide, 
lenalidomide, and pomalidomide, can stimulate both NK cells 
and T cells,  potentially resulting in better targeting cancer 
cells (212). Lenalidomide upregulates TRAIL molecules on NK 
cells and enhances anti-tumor activity (14, 15). So far, several 

different malignancies, both solid and hematological, have been 
treated with IMiDs. A large part of the nearly 100 clinical trials 
with IMiDs that has been reported with results to clinicaltrials.
gov is treatment of myeloma, lymphoma, and leukemia. IMiDs 
can be used as combination treatment, such as lenalidomide 
in combination with IPH-2102, anti-inhibitory KIR antibody 
therapy (205). Lenalidomide expands and activates the NK cells, 
while anti-inhibitory KIR antibody (IPH2101) promotes NK cell 
recognition and lysis of tumor cells. This combination could give 
a better therapeutic outcome.

Combination Treatments
It is possible that NK cell products cannot fully eliminate 
tumor cells due to several immunosuppressive effects of tumor 
microenvironment as well as reduced in  vivo expansion and 
cytotoxicity. These obstacles could be overcome by combina-
tion treatments using NK cell therapy products together with 
other drugs either directly targeting tumor cells or modulating 
cytotoxic activity of NK cells. As mentioned earlier, use of 
mAbs and IMiDs together with appropriate NK cell products 
could enhance tumor targeting and elimination. Another way 
to enhance NK cell-mediated killing is to combine drug therapy 
with NK cell stimulating cytokines such as IL-2, IL-12, IL-15, 
and IL-21 (213).

Furthermore, chemotherapy in combination with NK cell 
infusions is an alternative way to overcome tumor-induced dys-
functions. NK cells from haploidentical donor require combina-
tion treatments with the intense chemotherapy drugs high-dose 
fludarabin and cyclophosphamide (Hi-Cy/Flu) plus daily infusion 
of IL-2 to be able to expand in vivo (38). Total body irradiation 
could help to create immunological space for expanding NK cells 
in addition to chemotherapy after short-term ex vivo activation 
of NK cells (214).

CONCLUSiON

In this review, we have summarized current NK cell-based 
therapy strategies as well as some of the challenges that need to 
be addressed. Even though NK cell-based therapies represent 
one of the most promising strategies to combat cancer, to our 
knowledge, no clinical trial has clearly demonstrated a significant 
benefit in patients with malignancies. This is in part due to the 
lack of prospective large-scale clinical trials and partly due to a 
lack of consensus in which NK cell product preparation would 
show the best effect. Further comparative clinical studies are 
definitely warranted; however, the design of such clinical trials 
is challenging due to the advanced therapy regulations in major 
countries such as European Union member states and the United 
States of America. Although cell therapy clinical trials are reach-
ing a log-linear expansion, the number of NK cell-based therapies 
is not aligned with this increase. Nevertheless, there is a lot of 
promise in early clinical and pre-clinical data that cannot be omit-
ted. In the near future, different NK cell-based products will reach 
multicenter clinical trial stage and we will start to see efficacy data.

Separately, NK cell-based therapies are in theory comple-
mentary to many different upfront, maintenance, and late-line 
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therapies. Further studies clarifying the complementary efficacies 
and synergies have to be initiated to conclusively state if there 
is any place for these intriguing cells in search for an effective 
treatment of cancer.
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