
June 2016 | Volume 7 | Article 2181

Review
published: 06 June 2016

doi: 10.3389/fimmu.2016.00218

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Amy Rasley,  

Lawrence Livermore National 
Laboratory, USA

Reviewed by: 
Marina Sandra Palermo,  

National Council of Scientific and 
Technical Research-CONICET, 

Argentina  
Elsa Beatriz Damonte,  

Universidad de Buenos Aires, 
Argentina

*Correspondence:
Leopoldo Flores-Romo  

lefloresromo@gmail.com

Specialty section: 
This article was submitted to 

Microbial Immunology,  
a section of the journal  

Frontiers in Immunology

Received: 11 March 2016
Accepted: 20 May 2016

Published: 06 June 2016

Citation: 
Yam-Puc JC, Cedillo-Barrón L, 

Aguilar-Medina EM, Ramos-Payán R, 
Escobar-Gutiérrez A and Flores-

Romo L (2016) The Cellular Bases of 
Antibody Responses during  

Dengue Virus Infection.  
Front. Immunol. 7:218.  

doi: 10.3389/fimmu.2016.00218

The Cellular Bases of Antibody 
Responses during Dengue virus 
infection
Juan Carlos Yam-Puc1, Leticia Cedillo-Barrón2, Elsa Maribel Aguilar-Medina3,  
Rosalío Ramos-Payán3, Alejandro Escobar-Gutiérrez4 and Leopoldo Flores-Romo1*

1 Department of Cell Biology, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN, Mexico City, 
Mexico, 2 Department of Molecular Biomedicine, Center for Advanced Research, The National Polytechnic Institute, 
Cinvestav-IPN, Mexico City, Mexico, 3 Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa (UAS), 
Culiacan, Sinaloa, Mexico, 4 Department for Immunological Investigations, Institute for Epidemiological Diagnosis and 
Reference, Health Secretariat, Mexico City, Mexico

Dengue virus (DENV) is one of the most significant human viral pathogens transmitted by 
mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, 
classical dengue, and severe dengue. Neutralizing memory antibody (Ab) responses are 
one of the most important mechanisms that counteract reinfections and are therefore 
the main aim of vaccination. However, it has also been proposed that in dengue, some 
of these class-switched (IgG) memory Abs might worsen the disease. Although these 
memory Abs derive from B cells by T-cell-dependent processes, we know rather little 
about the (acute, chronic, or memory) B cell responses and the complex cellular mech-
anisms generating these Abs during DENV infections. This review aims to provide an 
updated and comprehensive perspective of the B cell responses during DENV infection, 
starting since the very early events such as the cutaneous DENV entrance and the arrival 
into draining lymph nodes, to the putative B cell activation, proliferation, and germinal 
centers (GCs) formation (the source of affinity-matured class-switched memory Abs), 
till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting 
plasma cells, and memory B cells. We discuss topics very poorly explored such as 
the possibility of B cell infection by DENV or even activation-induced B cell death. The 
current information about the nature of the Ab responses to DENV is also illustrated.
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iNTRODUCTiON

Dengue virus (DENV) is one of the most significant human viral pathogens transmitted by 
mosquitoes and causes every year ~390 million infections worldwide, resulting in around 500,000 
people with severe dengue (SD). It is estimated that over 50% of the world’s population is now 
at risk of dengue infection, caused by four serotypes (DENV1–4), which circulate in tropical 

Abbreviations: ADE, antibody-dependent enhancement; DC, dendritic cell; DENV, dengue virus; DHF, dengue hemor-
rhagic fever; DLN, draining lymph node; DSS, dengue shock syndrome; E, envelope; EDI-III, envelope domain I-III; FcγR, 
Fc  gamma receptor; FDC, follicular dendritic cell; GC, germinal center; IC, immune-complex; LLPC, long-lived plasma 
cell; M, membrane; MBC, memory B cells; MZ, marginal zone; NS, non-structural; OVA, ovalbumin; PB, plasmablast; PC, 
plasma cell; prM, precursor membrane; SCS, subcapsular sinus; SD, severe dengue.
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and subtropical regions (1). It is believed that the vast majority 
of dengue infections are asymptomatic; however, a proportion 
manifests as a non-specific febrile illness or progresses to 
classical dengue fever (DF), characterized by fever and severe 
joint pain. Some of those infections can evolve to SD, such as 
dengue hemorrhagic fever (DHF) or dengue shock syndrome 
(DSS) (1). Neutralizing memory antibody (Ab) response is one 
of the most important mechanisms to defeat both homotypic 
and heterotypic reinfections with DENV and is therefore the 
aim of vaccines (2–5). However, one of the main hypotheses 
about SD revolves around class-switched memory Abs, in a 
mechanism referred to as Ab-dependent enhancement (ADE) 
of the infection (6). Although this mechanism has been studied 
in vitro, its potential importance in vivo is only beginning to be 
elucidated (7, 8). Classical epidemiological studies indicate that 
individuals having a secondary infection with a DENV serotype 
different to the first one are at increased risk of developing SD 
(9–11). This includes circumstances such as infants infected for 
the first time but who already bear maternally acquired DENV-
specific Abs (12), which would predispose them to SD. While 
submitting this review, a report linked Zika virus infection with 
Guillain–Barré syndrome (13). Of note, there was concomitance 
of Zika infection, Guillain–Barré syndrome, and the presence 
of anti-DENV IgG Abs too, suggesting a relationship among 
these events. At least three preliminary scenarios are envisaged: 
(a) cross-reactive memory anti-DENV response may contribute 
to the Guillain–Barré syndrome (apparently discarded in the 
study), (b) anamnestic anti-dengue IgG responses might have 
been boosted by Zika in the Guillain–Barré syndrome, or (c) 
Zika induced cross-reactive Abs to DENV (13, 14). Of note, 
this is still preliminary and rather speculative, and more solid 
evidence is needed. What is clear, however, is that the involve-
ment of Ab responses needs very careful scrutiny, and this 
recent finding highlights the importance of studying the B cell 
responses not only in DENV but also in these other emerging 
flaviviruses infections. It is conceivable that memory responses 
to DENV could be involved in these other flaviviruses diseases.

While T cell responses during acute DENV infection have 
been studied in some detail, much less is known about the com-
plex mechanisms of B cell responses. Despite that memory Abs 
are generated by B cells, and that several recent elegant studies 
are still defining crucial features about the Abs to DENV [for 
instance, the antigenic epitopes that induce either neutralizing 
or non-neutralizing Abs (7, 8, 15)], we know surprisingly little 
about the B cell response itself, either during acute infection 
when disease is still manifested or regarding the mechanisms 
generating long-lived plasma cells (LLPCs) or memory B cells 
(MBCs). Herein, we provide an updated view of the immune 
response to DENV infection from the B cell perspective: since 
the early viral entrance into regional lymph nodes (LN) after 
cutaneous infection, highlighting B cell activation and prolif-
eration or activation-induced B cell death, to the induction of 
germinal center (GC) B cells, plasmablasts (PBs), plasma cells 
(PCs), and MBCs, we also illustrate some current information 
about the cellular bases of the Ab response to DENV antigens 
(Ag) (Figure 1).

DeNGUe viRUS

Dengue virus is an enveloped plus strand RNA virus whose 
genome encodes three structural proteins  –  capsid, envelope 
(E), and membrane (M)  –  and seven non-structural (NS) 
proteins  –  NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 
(16, 17). Because M protein is first formed as a precursor called 
precursor M protein (prM), the maturation process of DENV 
is directed by the proteolytic cleavage of the prM, producing 
then totally mature infectious particles (18–20). However, this 
mechanism is not completely efficient, and fully immature or 
partially mature virions are produced by host cells. Immature 
status of virions depends on the prM cleavage, modifying 
size, and morphology of the particles (21). It is estimated that 
at least 30–40% of DENV particles released from infected 
mosquito cells are immature, containing different quantities of 
prM (22). Thus, in the first instance after viral entrance into 
the host, the immune system might recognize E, M, and prM 
Ags from DENV. It has been suggested that in the presence of 
non-neutralizing class-switched memory anti-prM Abs, even 
immature and non-infectious virus can enter to the cells via 
Fc gamma receptors (FcγR) and replicate efficiently, leading to 
more infected cells, potentially contributing to a more severe 
disease (23, 24). On the other hand, the structural protein E 
has three domains (EDI-III) (25), and it is known that EDIII 
is involved in the virus attachment to host cell surface (26). 
Also, it has been known that neutralizing Abs are preferentially 
directed to EDIII; however, recent findings indicate that Abs 
to E protein might facilitate DENV infection when present at 
subneutralizing concentrations (7, 15). Likewise, it has been 
also proposed that Abs to the whole protein E can also behave 
as facilitating ones by enhancing infectivity of immature or 
partially mature particles due to recognition of epitopes that are 
exposed in immature virions (27, 28). In addition to the potential 
facilitating effects of these Abs, those that are indeed neutralizers 
seem to be directed against complex conformational epitopes, 
which are expressed only when proteins are already assembled 
on a mature virus particle; therefore, it has been complicated 
to dissect the precise antigenic nature of these structures (2). 
Nonetheless, the currently preferred animal model to study the 
in vivo immune response to DENV infection is mostly limited 
to immune-deficient mice [a mouse deficient for both α/β and 
γ interferon receptors in a 129 background (AG129)] (29–31). 
However, to assess precisely the intact immune responses to 
DENV and – for instance – the generation of potentially neutral-
izing or non-neutralizing Abs to this virus, these animals might 
not be the best indicated model.

In addition to this, despite the fact that only the E protein 
is exposed on the surface of the fully mature virions, the 
antigenic structure of DENV is very complex, since there 
are conformational changes in DENV morphology along 
the replication cycle, such as the different structures found 
in mosquitoes and humans. Thus, the ideal DENV vaccine 
candidates should generate an optimal humoral response with 
Abs that bind to and neutralize the whole spectrum of viral 
structures (32).

http://www.frontiersin.org/Immunology/
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FiGURe 1 | The B cell responses during DeNv infection. Mosquitoes inoculate DENV mostly intradermally (1); inoculum is a mixture of mature (black circles) 
and immature (yellow circles) virions. DCs would capture DENV or DENV Ags and enter lymphatics (2) ferrying these Ags to regional DLNs (3). On the other hand, 
DENV could also reach the DLN via the lymph flow in a putative cell-free manner. Upon arrival into DLNs, viruses can encounter DENV-specific naive B cells and 
could generate short-lived PCs producing IgMs by a T-cell-independent extrafollicular B cell response (4) or could enter to a T-cell-dependent GC reaction (5). GCs 
will generate long-lived PCs and MBCs (6), which can produce a mixture of both neutralizing and cross-reactive DENV-specific Abs. These Abs would either 
neutralize the virus, containing the spread of infection (7) or enhance the infection of other targets cells, according to ADE (8). Cross-reactive non-neutralizing Abs 
seem to predominate in the memory response by MBCs (9). On the other hand, DENV may infect B cells “directly” either in circulation or in tissues such as in 
secondary lymphoid organs (10).
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B CeLL iNFeCTiON AND ACTivATiON 
BY DeNv

For many years, monocytes were deemed the main primary 
target cells for DENV (33–35). However, the precise mecha-
nisms of in  vivo and in  vitro infection of these cells are still 
controversial, and the percentage of circulating DENV-infected 
monocytes is too low (36). It could be that after activation, 
monocytes may get infected, since in circulation, they are 
mostly resting or immature (37, 38), thus somehow “resistant” 
or not permissive to the infection. Many reports have used 
these cells to assess ADE in  vitro due to their FcγRs, obtain-
ing an increased frequency of infection (34); nevertheless, the 
proportion of infected monocytes is still low. Being B cells, 
the ones responsible for the Ab responses, not much is known 
about their role during DENV infection or whether they could 
be themselves targets of DENV. Studies in  vitro have shown 
that human lymphoblastoid cell lines with B cell characteristics 
were productively infected by DENV2 (39). Also, although many 
efforts have been done to elucidate the fraction of peripheral 
blood mononuclear cell (PBMC) infected with DENV during 
acute disease, there are no definite evidences yet and little is 
known about the cell types infected in vivo. There are reports that 
B cells are themselves targets of DENV infection. In particular, 
one study has identified B cells as the major DENV-infected cell 

population from the PBMCs. Cells were collected from acutely 
ill dengue patients and separated into subsets. The majority of 
the virus was recovered from the B cell subset, and this was 
irrespective of the DENV serotype. Interestingly, DENV was 
not recovered from monocytes or NK cells (40). It has also 
been shown that CD19+ cells increase during DENV infection 
and that these increments correlated with the presence of so-
called atypical lymphocytes seen in Giemsa-stained blood films. 
These atypical lymphocytes were defined as large mononuclear 
cells having a fine homogeneous nuclear chromatin and a dark 
staining cytoplasm, some of these cells resembled blast cells. 
In addition, these atypical lymphocytes accounted for 10% or 
more of PBMCs in patients with DF or DHF (41). However, 
the origin of these atypical lymphocytes is still unclear, and 
B  cells have been suggested as the source due to the increase 
of CD19+ cells in DHF patients (41, 42). It is possible that this 
population of atypical lymphocytes corresponds to PBs, since 
PBs responses seem to dominate the B cell compartment during 
DENV infection, as discussed below.

In another study (43), it was shown that B cells are the 
predominant DENV-infected cells in dengue patients, with 
20–81% of CD19+ cells in the PBMCs containing DENV3. 
Nevertheless, other in vitro studies have found different results. 
For instance, human splenic macrophages, but neither T nor 
B cells, appeared to be permissive for DENV infection, and these 

http://www.frontiersin.org/Immunology/
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splenic macrophages exhibited enhanced DENV infection in the 
presence of highly diluted DENV-immune human serum (44).

In a report analyzing one patient with DHF, it was possible 
to isolate two different genotypes of DENV2, and high levels of 
viral Ags were detected in peripheral B lymphocytes; one of the 
isolated viruses was capable of infecting and effectively multiply-
ing in a B cell line. However, the other isolated virus did neither 
efficiently bind to nor was able to infect the B-cell line (45). It 
could be that the infection of B cells during dengue is dependent 
on the DENV genotype or serotype. Also, it is important to note 
that B cells might get infected via FcγRs if Abs indeed facilitate the 
invasion of host cells during secondary heterologous infections. 
In fact, from this perspective alone, not only B cells but also any 
cell bearing FcγRs is potentially susceptible of DENV infection.

Are B cells infected with DENV? Are they infected only in 
peripheral blood or in tissues too? There are few reports suggest-
ing DENV infected B cells in tissues. Describing the distribution 
of the DENV-Ags in fatal cases in humans, the presence of viral 
Ags was found inside lymphoid organs. Positivity for DENV pro-
teins has been found in blast cells inside B cell follicles, PCs, and 
B cells in spleen and LNs (46). The presence of positive-strand 
viral RNA has been related to viral replication in GC B cells from 
humans (47) (GCs will be described below). On the other hand, 
NS3, NS1, prM, and E viral proteins have been reported inside 
GCs in LNs from both humans and mice (48–50), suggesting 
infection of GC B cells. These findings showed DENV Ags inside 
lymphoid tissues, particularly inside GCs, suggesting a potential 
infection of B cells in these structures. Perhaps B cells during GC 
reactions express molecules that DENV can target as receptors 
to infect them. Nevertheless, it is feasible that DENV Ags reach 
B  cell follicles by other routes (such as lymph, blood, or the 
complex intranodal conduit system), and the presence of DENV 
Ags inside B cell follicles does not necessarily indicate infection 
of B cells.

Altogether, these data suggest that B cells could indeed get 
infected by DENV, but are they activated by the virus or by other 
cells in the microenvironment during infection?

Analyzing the gene expression in B cells during their interac-
tion with DENV in vitro, it was described that in response to this 
virus, B cells over-expressed several genes such as TRAIL, IP-10, 
and MCP-2 (51). Another report assessed the permissiveness 
of human B cells to DENV2 infection indicating active DENV2 
replication, also that the infection induced IL-6 and TNF-α 
production by B cells. Furthermore, heterologous serum from 
patients infected with DENV3 was able to increase the proportion 
of DENV2-infected B cells and the cytokine production by these 
B cells (52).

During DENV infection, the interaction between infected and 
non-infected cells and the release of inflammatory mediators 
may play an important role in the outcome of the disease. Some 
reports have described the activation of B cells by other DENV-
infected cells. For instance, it was described that murine splenic 
B cells can be efficiently activated in vitro and in vivo by DENV-
infected peritoneal macrophages, leading to the clonal expansion 
of those B cells, as authors showed by counting the virus-specific 
IgM Ab plaque-forming cells (53). On the other hand, the 
help of T cells by direct cell contact, and the cytokines from 

macrophages were necessary, in  vitro, for activation of splenic 
B cells (54). A/J inbred mice that were inoculated intravenously 
with a non-mouse-adapted DENV2 showed early activation of 
B  lymphocytes and IgM production. These IgM-producing B 
cells may be important for clearing primary DENV infection 
(55), but more studies on this are needed.

In sum, many reports suggest that B cells are themselves 
infected by DENV, but this infection could depend on the sero-
type or genotype of the virus, as many other features of the infec-
tion, such as, for instance, the expression of FcγRs and the history 
of previous DENV infections. Moreover, it could be that either 
DENV or other infected-target cells, such as macrophages, might 
activate B cells that can then contribute to the release of inflamma-
tory mediators. Thus, in addition to producing Abs, B cells may be 
playing an important role in activating the immune system or in 
inflammatory reactions during acute DENV infection.

PLASMABLASTS AND PLASMA CeLLS 
ReSPONSeS DURiNG DeNv iNFeCTiON

Classical epidemiological studies indicate that SD is more 
common in secondary heterologous DENV infections (9–11), 
implying the involvement of immune mechanisms. Efforts 
to understand the immune bases of this SD have correlated 
cross-reactive class-switched (memory) non-neutralizing Abs 
from a previous infection with the enhancing effect upon new 
DENV-infected cells, among other mechanisms. These memory 
IgG Abs would be serotype cross-reactive and non-neutralizing. 
Since Abs derive from B cells, this implies that the mechanisms 
of B cell activation, maturation, and differentiation are important 
in determining the subsequent clinical outcome of the disease. 
Of note, these memory responses are dependent on T-cell help. 
The study of the basic cellular mechanisms for Ab production has 
been rather neglected in dengue. For instance, it was not until 
very recently that the potential role of PBs and PCs during DENV 
infection was evaluated, even when these latter cells are the 
actual Ab-producing cells. PBs responses in patients with acute 
DENV infection show a big increase over the levels observed 
in patients with other viral infections, such as influenza, and 
over the baseline levels found in non-infected healthy subjects 
(56–60). The global gene expression patterns in PBMCs isolated 
from DHF patients showed an enrichment of PBs signatures that 
was accompanied by an increase of PBs by FACS analysis (60). 
Of note, the amount of PBs is higher even in DENV-infected 
children than in control healthy subjects (59). As high numbers 
of PBs and PCs have been observed in dengue patients, this 
suggests increased Ab production. The numbers of PBs and 
PCs were higher in secondary than in primary dengue cases, 
suggesting re-activation of MBCs. In addition, DENV seems to 
activate polyclonal B cells that cross-react with other Ags, such as 
polio virus, since significant amounts of polio-reactive Abs were 
identified 15–25 days after fever in dengue patients compared to 
control subjects (56).

It is worth mentioning that PBs responses seem to overtly 
dominate the B cell compartment (often as much as 80% of 
the CD19+ cell population were PBs) during DENV infection, 
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making up as much as 30% of the total peripheral lymphocytes 
(58). In contrast, influenza vaccine or primary vaccination with 
the yellow fever vaccine induced a much smaller PBs response, 
around 2–3% of the total B (CD19+) cells (61). The PBs during 
DENV infection are present in the peripheral circulation only 
for a relatively short time, undergoing contraction or migration 
to tissues where long-term Ab production can be sustained. 
However, only a small number of them survive long-term as 
LLPCs. It could be that the majority of the induced PBs is predes-
tined to a short life span (58). The authors suggested that DENV 
could be inducing the surviving of cross-reactive B cells, since 
the increase in poly-serotype-specific PCs during a secondary 
DENV infection seem to be mediated by the cross-reactive MBCs 
formed during prior heterologous infections (59, 62).

Although in some cases PBs show a strong polyclonal response 
to the E protein, their specificity is not representative of the serum 
Abs secreted by LLPCs in the memory phase (63). In search of 
a potential dengue-specific genetic pattern regarding the usage 
of V and J genes for both H and L chain, it was described in 
DENV-specific and non-specific PBs isolated from secondary 
infections, that DENV-specific PBs showed a preference for VH1 
family, whereas VH3 gene usage was dominant in MBCs (63). 
Authors suggested that DENV might selectively bind to B cells 
using rather unusual V family genes and these B cells would be 
efficiently activated and differentiate into PBs during acute dis-
ease. Compared with the pauci-clonal response seen to influenza 
vaccines in subjects with pre-existing immunity, PBs responses to 
DENV infection were relatively polyclonal (61, 63).

Considering the neutralizing Ab responses to DENV, the 
data suggest that after secondary infections, neutralizing Abs 
are produced by newly activated B cells. This is because there is 
an increased response by cross-reactive MBCs producing cross-
reactive and non-neutralizing Abs, which would rather enhance 
the infection instead of controlling it (56). According to this, the 
neutralizing Abs would be produced by recently activated B cells. 
Understanding the nature of activated or re-activated B cells is of 
particular relevance in the context of efficient and safer human 
vaccination efforts. It will be important to determine the extent 
to which defined Ag-specific PBs clones are selected from the 
memory pool and whether they modify their specificity or affin-
ity in the memory phase, as this could help to determine more 
accurate correlates of protection (63). It is unknown whether a 
secondary encounter during a heterologous DENV infection will 
modify the affinities from the cross-reactive MBCs generated 
during the first GC reactions.

Additionally to an association of high PBs numbers with severe 
secondary DENV infection and with the production of memory 
Abs that cross-react with heterotypic DENV serotypes, DENV 
also induces B cell activation, proliferation, and cell death, mostly 
in patients with SD, suggesting that DENV infection promotes 
activation-induced B cell death and perhaps increased B cell 
turnover. Cell death has been determined by the expression of 
caspase-3, a marker of apoptosis, and by the increased expression 
of the pro-apoptotic marker CD95 (57). Analyzing the apoptotic 
genes upregulated in PBMCs during the acute phase of natural 
DENV infection, in patients with SD, it was found the upregu-
lation of the B cell translocation gene 1 (BTG1), and of many 

other apoptotic genes in B cells. However, it was not analyzed 
which PBMCs subsets underwent apoptosis (64). Another report 
showed that an apoptotic CD8+ T cell population is increased 
among the apoptotic PBMCs in patients with SD, but apoptosis 
in the B cell fraction was not examined (65). Is DENV inducing 
death in B cells? Is apoptosis the mechanism for this cell demise? 
Of note, apoptosis is a “silent” form of death that prevents, rather 
than promotes, inflammation. Is this activation-induced B cell 
death an advantageous mechanism for the virus to successfully 
establish the infection or to avoid overt inflammation by inducing 
apoptosis?

The gene expression pattern in the PBs fraction of PBMCs 
from DHF patients showed that the cell cycle/endoplasmic 
reticulum gene cluster displayed a strong positive correlation 
with CD19+ lymphocytes. Flow cytometry analysis revealed that 
most PBs/PCs also expressed the cell cycle-associated nuclear Ag 
Ki67, indicating that they were indeed proliferating (60). Genes 
associated with the regulation of apoptosis were also found 
among the group whose transcripts were more abundant during 
early DENV infection, which correlates with the expression of 
apoptosis markers such as caspase-3 and Fas in PBs and B cells 
(57, 60). Altogether, the data suggest that DENV induces a strong 
B cell response dominated by cross-reactive PBs during the acute 
phase of the infection; this response includes cell proliferation 
and cell death, apparently by non-inflammatory apoptosis, and 
also an increased B cell turnover.

It is important to highlight that, despite the difficulties, the 
majority of reports on B cell responses during DENV infection is 
based on human samples. Trying to overcome some of these com-
plications, other studies with DENV have used animal models, 
for instance, mice; however, very few findings have been reported 
regarding the B cell responses. In one of them, DENV-infected 
mice were challenged with LPS, and the Ab response against this 
molecule was evaluated. The response to LPS was significantly 
lower in DENV-infected mice in comparison with animals 
inoculated with control conditions such as inactivated DENV. 
These results suggest that DENV infection in mice may decrease 
intrinsic B-cell functions and that this immune “suppression” 
might be caused by active viral replication and not by the viral 
Ags themselves, since the administration of inactivated DENV 
failed to cause this decreased immune response (66).

Another study showed that after secondary DENV infections 
in the immune-deficient murine model (AG129 mice), increased 
DENV-specific avidity in Abs was not associated with increased 
DENV-specific neutralizing Abs, whose production appears to be 
mediated by naive B cells (67).

It is important to emphasize that despite the fact that class-
switched PBs, PCs, and MBCs are generated and selected mostly 
in GC reactions, so far, there are no studies about the potential 
involvement (or not) of GCs during DENV infection. The GC is 
a very complex microenvironment, where clonal B cell expansion 
and selection occurs in response to T-cell-dependent Ags. Two 
crucial molecular mechanisms are utilized in the GCs, somatic 
hypermutation and class-switch recombination. The outcome 
of the GC reaction is the generation of long-lived, high-affinity 
Ab-secreting cells/PCs, and MBCs, thus developing both imme-
diate and long-term protection against re-infections (68–70). 
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However, we do not know how the affinity is modified, especially 
during secondary homologous and heterologous DENV infec-
tions. Our group has recently shown that cutaneously delivered 
DENV has the ability to infect immune-competent mice inducing 
a strong GC response. The overall outcome of these GC responses 
seems a bigger quantity of prM-specific GC B cells and a higher 
titer of Abs to prM than those to the E viral protein (50). It is 
conceivable that DENV proteins might be inducing both neu-
tralizing and non-neutralizing memory Abs; some of these (the 
non-neutralizing ones) would potentially enhance the infection 
of other target cells via FcγRs, according to the ADE hypothesis, 
thus ensuring successful secondary heterologous infections. 
Moreover, it is unknown whether cross-reactive memory Abs 
from the first DENV encounter modify the activation, affinity 
maturation, and selection of B cells during GC reactions in 
heterologous subsequent DENV infections.

PRiMARY B CeLL ReSPONSeS AND  
igM Abs DURiNG DeNv iNFeCTiON

On first encounters with hosts, most pathogens will elicit a pri-
mary humoral immune response characterized by an early rise 
of Ag-specific IgM Abs in a T-cell-independent extrafollicular 
reaction, and if complex circumstances allow it, this might be 
followed by affinity maturation, isotype Ab switching, and the 
ensuing increase of Ag-specific IgG, IgA, or IgE Ab titers, but 
now in a T-cell-dependent manner (71). For instance, primary 
IgM Abs provide protection, and their absence in influenza-
infected mice triggered increased viral loads in the lungs, with 
significantly reduced levels of virus-specific IgG1 and IgG2a Abs 
(72). Of note, despite the fact that DENV-specific IgM has long 
been used as diagnosis for DENV infection (73), the precise B cell 
source and the putative effector mechanisms of these IgM Abs are 
unclear. IgM Abs could come from several possible B cell sources 
such as from extrafollicular reactions by B1 B cells, from tran-
sitional B cells, or from marginal zone (MZ) B cells in humans 
and mice  –  besides follicular B or B2 cells by extrafollicular 
reactions in a T-cell-independent mechanism (74–77). Although 
it has been less explored, some reports suggest that IgM-PCs 
could also come from follicular responses through GC reactions 
(78–80). Transitional B cells correspond to the most immature B 
cell type in the peripheral blood (74), while MZ B cells are B cells 
identified in the MZ of the spleen only (76). On the other hand, 
B1 B cells constitute a distinct B cell lineage, are part of the innate 
immune response, and generate effectors rapidly in the first stages 
of a humoral immune response (81). However, these possibilities 
have been barely explored during natural or experimental DENV 
infections.

As mentioned before, very few studies have focused on pri-
mary “natural” Abs during DENV infection, as an example, IgM 
can be found in secondary infections although, commonly, the 
average titers are lower than in primary ones (82). However, it has 
been reported that the human IgM response to DENV could be 
predominantly cross-reactive among DENV serotypes, and this 
IgM response is significantly higher in patients with SD than in 
patients with DF (acute phase) (83–85). Additionally, although 

it has been described that some IgM Abs have the ability to neu-
tralize DENV, the epitopes that they are recognizing seem rather 
discontinuous or conformational (86).

Also, in the sera of DENV patients, it is possible to find IgM 
Abs cross-reacting with platelets, a finding which may contribute 
to explain in part DENV pathogenesis. Due to the polyclonal 
B cell activation that DENV would be causing, this could lead 
to IgM production (56, 83), but the cells producing these IgM 
Abs have not been assessed. In humanized BLT-NSG (NOD-scid 
IL2rγnull mice) immune-deficient mice, the Ab response was 
characterized by the lack of production of DENV-specific IgG 
but by the presence of DENV-specific IgM-secreting B cells, 
perhaps due to an elevated number of immature (transitional) 
B cells in the periphery (87). Research on primary “natural” Ab 
responses to DENV has been overlooked, and further studies are 
needed to elucidate their role during the infection, either in virus 
clearance or in pathogenesis. Despite the cross-reactivity of IgM 
Abs to DENV serotypes, apparently, they are not contributing to 
enhance the infection (88). However, they could be involved in 
the development of pathogenesis, as they can recognize self-Ags 
in platelets. It would seem that the enhancing properties of the 
Abs are restricted to the class-switched (IgG) memory ones.

Efforts to elucidate how is it that putative non-neutralizing 
memory Abs could enhance the disease have described in vitro 
using cell lines that through subneutralizing or non-neutralizing 
Abs, DENV infection suppresses innate cell immunity via FcγRs, 
thus facilitating viral replication (89–91). Similar experiments in 
human primary cell cultures seem to provide different pathways to 
enhance the infection by DENV via FcγRs (92, 93). Nonetheless, 
whether these mechanisms depend on particular FcγRs is still 
unclear (94, 95). Data from in  vitro studies indicate that any 
specificity of monoclonal Abs to dengue might form infectious 
immune complexes (ICs), the major requirement being Ab 
concentration below that needed for neutralization (94, 96). To 
this respect, it has been described that the density of Ag-IgGs 
and FcγRs cross-linked on macrophages might influence phago-
cytosis and IL-10 production (97). Something similar could be 
happening in DENV infection.

LONG-TeRM (MeMORY) B CeLL 
ReSPONSeS AND MeMORY Abs  
DURiNG DeNv iNFeCTiON

Regarding B cell biology, perhaps the most important function 
of B cells is to become Ab-producing cells. There are many good 
studies about Abs during DENV infection and recently about 
the DENV epitopes that induce them. However, the results have 
been somehow puzzling since neutralizing memory Abs make 
up a small fraction of the anti-DENV neutralization activity in 
human immune sera (4, 7, 8, 15, 98). Furthermore, certain Abs 
have been related to enhancing the infection in the mechanism 
called ADE, where memory Abs from a primary infection 
would be enhancing a secondary heterologous DENV infection 
(6). Only very recently were the first findings published over 
DENV epitopes that define the Ab responses in humans, as well 
as the mechanisms that the virus seems to use to infect host 
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cells (7, 8, 15). Non-neutralizing memory Abs could render 
immature DENV particles infectious; thus, non-infectious 
viruses can enter via FcγRs and replicate efficiently, leading to 
more infected cells, potentially contributing to a more severe 
disease (23, 24).

Memory Abs, which are present before a secondary antigenic 
exposure occurs, constitute a very powerful evolutionary (antici-
patory) strategy to cope with potential subsequent infections; this 
may allow the neutralization of a given pathogen before a second 
infection is well established (99). MBCs are the ones implicated 
in the Ag recall response and are rapidly activated during a 
secondary infection. MBC activation is faster, thus providing 
rapid protection against re-exposure to potentially dangerous 
Ags when MBCs differentiate to PCs and generate long-lasting 
B  cell immunity (100). Released memory Abs by these PCs 
should neutralize DENV, as would be the case in homologous 
reinfections. However, during heterologous DENV reinfections, 
some LLPCs and MBCs might be apparently “responsible” for 
producing infection-facilitating Abs (101–103), an important 
issue that still needs to be well clarified. It has not been assessed in 
DENV infection how the affinity maturation develops during the 
first encounter with the virus and whether the affinity of MBCs is 
modified during a secondary heterologous infection.

Memory IgG Abs are generated mainly through T-cell-
dependent reactions. Many of the non-neutralizing class-switched 
memory Abs during DENV infection are directed against epitopes 
found mainly on immature particles, such as the prM and E Ags 
(7, 8, 15, 27, 28, 104). These potentially enhancing-infection 
and non-neutralizing Ab responses are the dominant functional 
activities that are noted for the DENV-specific Abs encoded by 
MBCs, which predominate in the circulation even two or more 
decades following DENV infection (103). In addition, even 
neutralizing Abs may act, at least in vitro, as enhancers when at 
subneutralizing concentrations (7, 15, 102, 103). Furthermore, 
neutralizing class-switched memory Abs make up a small frac-
tion of the anti-DENV binding and neutralization activity in 
human immune sera and are preferentially directed to EDIII (4, 
7, 8, 15, 98). Interestingly, the most potent neutralizing DENV 
serotype-specific Abs bound to complex conformational epitopes 
found only on the intact viral particles (2, 5, 101, 102).

It has been reported that the B cell response detected early 
after primary DENV infection is predominantly serotype-
specific, whereas responses detected early after secondary 
infection are predominantly serotype cross-reactive (56, 59). Abs 
detected during secondary infection recognize multiple serotypes 
of DENV E protein and have higher avidity to heterologous 
epitopes. Even after DENV infection, it is possible to observe in 
post-convalescent patients (6 months after primary infection) B 
cells reactive to heterologous E proteins at late time points, which 
were absent earlier (during the acute phase) (62). Additionally, 
PBs, which were generated from a very diverse, affinity-matured, 
and selected pool of MBCs and that did not proliferate extensively 
before differentiating into PBs, can also lead to the loss of dengue 
specificity because of this limited proliferation (63). Therefore, 
we might ask: is DENV inducing a preferential survival and/or 
generation of cross-reactive MBCs in order to ensure a successful 
infection during secondary encounters?

In the case of the last DENV vaccine (CYD-TDV), although 
few data are available on the generation of long-term immune 
memory, very recently, it was found in individuals after 5 years 
of vaccination, that DENV-specific MBCs are scarce in blood 
and secrete low amounts of Abs when stimulated. The circulating 
Abs showed low titers 5 years after vaccination, and these Abs 
from vaccinated individuals had limited in vivo efficacy against 
DENV2. Although the sample size was too small for definite 
conclusions, immune memory after vaccination with CYD-TDV 
appears relatively low (105).

HOw ARe THe DeNv Ags ReACHiNG  
THe B CeLL FOLLiCLeS iNSiDe THe 
ReGiONAL (DRAiNiNG) LYMPH NODeS?

As mentioned before, cutaneously inoculated DENV does infect 
immune-competent mice and induces a strong GC response (50). 
On the other hand, long-lasting MBCs are generated through 
GCs (69), and DENV Ags inside B cell follicles are likely needed 
to drive these GC responses. However, it is not clear how DENV 
or DENV Ags are reaching first the draining lymph nodes (DLNs) 
regional to the inoculation site and then the B cell follicles inside 
these regional nodes. Indeed, it is still unclear, and under much 
recent scrutiny, how is it that many other Ags reach the follicles 
and initiate the activation of B cells. Some mechanisms have been 
described highlighting where and how follicular B cells encounter 
Ags. First is how Ags are reaching the DLNs; to this respect, it 
is known that Ag size is a major factor, e.g., particulate Ags (for 
instance, vesicular stomatitis virus, inert beads coated with Ag, 
etc.) and large ICs are bound by subcapsular sinus (SCS) mac-
rophages. These macrophages act as sentinels to uptake incoming 
Ags and pathogens entering via the afferent lymph, and in some 
cases, they shuttle these Ags to underlying B cells (106–109). 
Murine macrophages of the LN SCS facilitate B cell activation 
in  vivo by collecting and displaying native Ags (108, 110). By 
contrast, small Ags (under 70  kDa) are rapidly channeled into 
follicles via conduits. LN conduits constitute an effective fluid 
shunt between the SCS and the blood-vessel lumen where low-
molecular-weight substances reach the lumen of high endothelial 
venules (111). It is proposed that either small Ags enter the fol-
licles via small gaps in the floor of the LN sinus where they are 
bound by cognate B cells or that the majority of lymph-borne 
Ag enters the follicles through conduits first (107, 112, 113). 
Results have also demonstrated that cognate B cells could take 
up Ags directly from the conduits, possibly at the gaps between 
the fibroblastic reticular cells and the conduit, as identified by 
electron microscopy (107).

On the other hand, regarding the distribution of Ags inside 
the DLN, it is important if the encounter with that Ag is for the 
first time or if it is a second encounter with the same Ag. Studies 
on early Ag capture showed that while most Ags are trapped and 
degraded in the medullary region during their first encounter, in 
a subsequent challenge, Ag–Ab complexes are initially trapped 
in the floor of the SCS (114, 115). In both cases, small amounts 
of Ag manage to infiltrate the follicle and can be retained there 
on follicular dendritic cells (FDCs) for prolonged periods of 
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time  (115,  116). SCS macrophages capture and present intact 
Ag in the form of ICs, viruses, and virus-like particles, to activate 
follicular B cells (106, 108, 109). However, how is it that naive 
B cells are activated upon the first Ag encounter, and how they 
“decide” to go into the follicles to undergo GC reactions  –  or 
not  –  is still unclear for many Ags and completely unknown 
for DENV.

Moreover, classical studies have been very instructive describ-
ing the uptake of Ags by FDCs (116). FDCs are more prominent 
during GC reactions, and FDC retention of Ags is essential for 
clonal selection of B cells within GC (107). Whether Ag retention 
is also required for maintenance of DENV memory and effector 
B cells is not clear. Some studies support a role for Ag persistence 
in the maintenance of B cell memory (107, 117). However, how 
and whether DENV Ags are localized or persist on FDCs during 
primary or secondary infections is unknown. Are DENV Ags 
retained on FDCs after a primary DENV infection? And  –  if 
so – for how long? Do they participate in the affinity maturation 
and selection of B cells and in the generation of cross-reactive Abs 
during a secondary heterologous infection?

In the immune-deficient murine model (AG129 mice), it 
has been shown that macrophages from the SCS are important 
controlling the spreading of the DENV. These SCS macrophages 
contained NS1 protein, likely implying that they are trapping 
DENV Ags (118). Furthermore, we have shown the presence of 
E, prM, and NS3 DENV proteins inside B cell follicles and GCs, 
indicating that DENV Ags are indeed reaching DLNs and also 
raising the possibility that DENV might be even replicating in 
these lymphoid tissue compartments (50). However, how DENV 
Ags are finally reaching the LNs is not clear. We and others have 
found DENV-infected cutaneous dendritic cells (DC) in human 
cadaveric and non-cadaveric healthy skin explants infected 
ex vivo (119–121). DCs are specialized sentinel cells that uptake 
Ags at peripheral sites and travel to DLNs ferrying them to DC 
areas where B cells migrating toward the follicles are also likely to 
encounter these Ags (122). It is highly likely that DENV might be 
reaching DLNs also through cutaneous DCs or by the lymphatic 
circulation, but this needs to be formally demonstrated as almost 
nothing has been explored on this regard. Very recently, by flow 
cytometry, it was possible to find in intradermally DENV-infected 
immune-deficient mice [IFN-α/β receptor knockout (IFNAR) 
mice], migratory DENV-infected DCs in the skin-draining 
node. This suggests that dermal DCs may be carrying DENV and 
probably initiating the adaptive antiviral immune response (121). 
However, exactly where (and how) is DENV localized inside 
DLNs after cutaneous infection has not been evaluated. It  is 
 possible that DENV-infected DCs localize in the interfollicular 
zone or in the T-cell zone inside the DLNs, which would allow the 
activation of both follicular and extrafollicular B cells.

To explore how DENV (from the skin) might be reaching the 
DLNs, we did preliminary experiments tracking labeled DENV 
or ovalbumin (OVA, as a control) upon cutaneous inoculation. 
As reported by others (123, 124), OVA was found in the SCS of 
DLNs very early (1 h) after inoculation, but not DENV, which 
was only seen later in DLNs (unpublished data). Double labeling 
revealed that macrophages were apparently trapping DENV 
when it arrived into DLNs, either by lymph or in cells that might 

transfer the Ag to macrophages. Conceivable, skin-infected DCs 
might be ferrying DENV directly into DLNs (121). All this would 
suggest that skin-derived DENV enters DLN via lymph and 
that at rather early stages, incoming DENV seems contained 
by macrophages in the subcortical area, a phenomenon also 
described for other Ags such as Salmonella adelaide flagella (114).

CONCLUDiNG ReMARKS

Despite the fact that Ab responses are generated by B cells, we 
know surprisingly little about the (acute, chronic, or memory) 
B cell responses and the cellular mechanisms generating these Abs 
during DENV infections, both in humans and in animal models. 
It is assumed that B and T cells participate in both the protec-
tion and possibly in the putative enhancement of the disease. 
To know which epitopes are driving the different Ab responses 
and how is it that higher or lower Ab affinities are established 
during infection and whether these events influence protection 
or pathogenesis during the disease, could be very useful to design 
more efficient, and particularly in the case of dengue, safer vac-
cines. This might be especially relevant in the current situation 
of concomitant virus infections, such as Zika and Chikungunya, 
where the potential involvement of the immunological memory 
to DENV in the outcome of these infections needs to be clarified. 
Of note, it was described recently that the more advanced DENV 
vaccine (CYD-TDV) “is walking a tightrope” as the short-term 
safety profile was benign [the efficacy reported at the beginning 
of the clinical trials was 30.2% (125)], but upon 25  months of 
disease surveillance, it was difficult to withdraw definite conclu-
sions (126, 127). Besides, prior immunity seems needed to the 
efficacy of this vaccine (125, 126). We need to understand better 
these findings before this vaccine can be declared safe. Thus, a 
major comprehension of the B cell responses in their different 
stages and compartments during natural DENV infections is 
critical to develop strategies to better counteract the upsurging, 
not only of DENV infections but also of other related emerging 
viral diseases.
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