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Microglia are the essential responders to alimentary, pharmacological, and nanotechno-
logical immunomodulators. These neural cells play multiple roles as surveyors, sculptors, 
and guardians of essential parts of complex neural circuitries. Microglia can play dual 
roles in the central nervous system; they can be deleterious and/or protective. The immu-
nomodulatory effects of alimentary components, gut microbiota, and nanotechnological 
products have been investigated in microglia at the single-cell level and in vivo using 
intravital imaging approaches, and different biochemical assays. This review highlights 
some of the emerging questions and topics from studies involving alimentation, micro-
biota, nanotechnological products, and associated problems in this area of research. 
Some of the advantages and limitations of in vitro and in vivo models used to study the 
neuromodulatory effects of these factors, as well as the merits and pitfalls of intravital 
imaging modalities employed are presented.

Keywords: neuroinflammation, microglia, immunomodulation, nutrition, microbiota–gut–brain axis, intravital 
imaging, nanodelivery systems, nanomedicine

iNTRODUCTiON

Neuroinflammation has been considered a detrimental factor in many neurodegenerative diseases 
(e.g., Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis) (1–4). As the resident immune 
cells of the brain, microglia play a central role in neuroinflammatory processes. Traditionally, 
microglia were considered seminal contributors to neurodegeneration associated with neuroinflam-
mation (5, 6). However, this view is gradually changing (7). Under normal conditions, microglia 
survey the brain and perform essential housekeeping functions, ranging from the scavenging of 
cellular debris to synaptic remodeling, but they switch from “surveyors” to “attackers” or “protectors” 
when challenged by pathogens, injurious stimuli, or nanoparticulates (8–10). If excessively and 
chronically activated, microglia exert deleterious effects in the central nervous system (CNS) by 
secreting proinflammatory cytokines and interfering with synaptic integrity and functions (11, 
12). Microglia exhibit at least four different functions: surveillance, phagocytosis, cytotoxicity, 
and neuroprotection. Depending on the nature and structure of the challenger, as well as the 
intensity, duration, and location of the challenge, activated microglia can take on a protective or 
destructive role (13). Signals from healthy and damaged neurons, astrocytes, and factors from the 
periphery also modulate the phenotype of activated microglia (14–16). Neuroprotection is achieved 
through different modes of their action, e.g., (i) synaptic stripping in development and motoneuron 
regeneration (5), (ii) promotion of neurogenesis in the injured CNS (17, 18), (iii) phagocytosis 
of misfolded proteins and damaged organelles (19, 20), and (iv) production of anti-inflammatory 
mediators, such as interleukin-4, interleukin-10, and transforming growth factor beta (15, 21–24). 
Cytokines, chemokines, neurotrophins, reactive oxygen species, and glutamate are endogenous 
signal molecules exchanged between neurons and glia cells (25–28) that can be modulated by 
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pharmacological agents, but the access of these agents to the 
CNS may be limited by the blood–brain barrier (29, 30). More 
recently, it was shown that the microbiome can affect the integrity 
and function of the blood–brain barrier, as well as the maturation 
and phenotype of microglia (31–34). The emergence of drug 
nanocarriers and nanotechnological probes has facilitated the 
entry of therapeutics into the brain, but some of them exerted 
immunogenicity. The present review will focus on key neural 
factors and pharmacological targets in neuroinflammation, and 
discuss the potential of alimentary and nanotechnological agents 
in modulating immune processes in the brain. The merits and 
pitfalls of in vitro and in vivo models of neuroinflammation will 
be summarized, and the use of intravital imaging modalities to 
investigate neuroinflammation will be reviewed.

MODULATORS OF 
NeUROiNFLAMMATiON

Alimentary and environmental 
Neuroimmunomodulators
Numerous genetic, environmental, and alimentary components 
can modulate neuroinflammation (35–37). For example, pol-
luted urban air contains toxins, droplets, and particulates that 
are inhaled and travel though the blood stream, olfactory, and 
lymphatic systems to the brain, where they have been implicated 
in diseases of the CNS (37). Our daily diet can also affect neural 
cells, thereby altering their functions (38, 39). Rats fed high-fat 
diets were shown to have increased pro-inflammatory cytokines, 
such as tumor necrosis factor alpha (TNF-α), interleukin-6 
(IL-6), and interleukin-1 beta (IL-1β), in the hypothalamus, 
compared to controls fed regular chow (40). The arcuate nucleus 
in the mediobasal hypothalamus is particularly sensitive to 
metabolic factors from the periphery, as it is located near the 
median eminence, a circumventricular organ unprotected by 
the blood–brain barrier (41). The activation of microglia in the 
arcuate nucleus of animals on high-fat diets, thus, demonstrates 
the direct impact of nutrition on neuroinflammation. Dietary 
components have also been used for therapeutic purposes as 
neuroprotective agents. For instance, vitamins E, C, and B have 
been shown to reduce oxidative stress in the brain (42, 43). The 
ketogenic diet is an established treatment for childhood epilepsy 
(44–46). It is thought that the increase in circulating polyunsatu-
rated fatty acids can modulate ion channels, and that inflamma-
tion is altered by increasing circulating beta-hydroxybutyrate 
and activating hydroxy-carboxylic acid receptor 2 in immune 
cells (47–49). Ketogenic diets have since been proposed in 
neurological conditions, such as Alzheimer’s disease and brain 
malignancies, but further clinical studies are required to confirm 
these findings and explain the beneficial effects at the molecular 
level (50–53). The polyunsaturated fatty acid docosahexaenoic 
acid (DHA) is a major component of neuronal cell membranes 
that is metabolized into resolvins and protectins, two families of 
neuroprotective lipid-derived mediators (54–56). Dietary DHA 
was shown to attenuate ischemic brain injury and pro-inflamma-
tory markers in animal models (57–59). We have investigated the 
direct effects of DHA on synaptic integrity and indirect effects 

via microglia in the hippocampal CA1 region. Our studies have 
shown that DHA exerts neuroprotective effects in organotypic 
hippocampal tissue slices by preventing post synaptic spine dete-
rioration (59). We also showed that DHA in microglia attenuates 
LPS-induced inflammation through the remodeling of lipid 
bodies and associated organelles (60). Furthermore, Bailey et al. 
provided evidence for the antioxidant role of lipid bodies in glia 
cells and neural stem cells (61, 62).

In addition to polyunsaturated fatty acids, such as DHA, 
numerous endogenous and exogenous fatty acids with different 
degree of saturation and chain lengths have been investigated 
in models of physiological and pathological conditions. The 
gut microbiota is an important source of small chain fatty acids 
(SCFA). Its population is heavily influenced by diet, and in 
turn, it modulates both the intestinal environment and overall 
human health (63–65). Once absorbed, SCFA directly impact 
on energy homeostasis in the liver, muscles, and adipose tissues, 
thereby affecting obesity and insulin resistance (66). SCFA can 
also affect the CNS by modulating neuroendocrine and cogni-
tive responses, particularly when changes in the gut microbiome 
lead to increased intestinal permeability (34, 67, 68). Emerging 
research on the gut–brain axis has shown that there is a tight 
link between the gut microbiota and the function of neural 
cells. The gut microbiota are necessary for the early and normal 
development of the brain, and contribute in programing the 
hypothalamic–pituitary–adrenal axis (69). In germ-free mice, 
microglia were found to have an immature phenotype, resulting 
in altered immune responses (31). Chronic enteric infections 
and antibiotics can also drastically modify the gut microbiome, 
resulting in neuropsychological symptoms (34, 70). The term 
“psychobiotics” has since been coined, referring to probiotics 
benefiting psychiatric illness, but further clinical studies are 
required to demonstrate the therapeutic benefits (71). While the 
composition and function of the gut microbiota can be affected 
by alimentary components, they can also be influenced by food 
contaminants, including nanoparticulate matter.

Nanotechnological immunomodulators
Mammals have been exposed to airborne, waterborne, food-
borne, and other nanomaterials in the environment for millen-
nia and have developed mechanisms to deal with them (72, 73). 
Nevertheless, the explosion of nanoparticles in electronics, medi-
cal devices, paints, clothing, and cosmetics raised the awareness 
of the nanostructured materials in everyday life, requiring careful 
monitoring and analysis of the level and type of nanoparticles 
in soil, water, and air (74). In recent years, many nanomaterials 
have been designed for the development of diagnostics, delivery 
of therapeutic agents, and implants for the replacement of miss-
ing or impaired organ parts (e.g., joints, heart) (75–78). Some of 
these materials are well tolerated and efficiently eliminated, but 
others induce immune reactions and are toxic. Nanostructured 
materials are mainly recognized by cells of the immune system, 
primarily the mononuclear phagocytic system (MPS) (79). For 
example, internalized carbon nanotubes can be partly degraded 
in macrophages and the extent of biodegradation may be a major 
determinant in the severity of the associated inflammatory 
responses (80). Nanomaterial accumulation in macrophages 
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within clearance organs (e.g., liver, kidneys, and spleen) can 
initiate both acute and chronic inflammation (81, 82). Although 
nanomaterials can cause toxic responses in these organs, tech-
nological manipulations of their morphologies, surfaces, sizes, 
charges, and porosities can minimize adverse effects (83–85). The 
structure–activity relationship of several classes of nanoparticles 
and outcome measures in immune and non-immune cells has 
been previously discussed (86, 87).

Our laboratory is particularly interested in investigating 
the effects of nanomaterials on microglia because of increas-
ing evidence that (1) microglia are the major “consumers” 
of nanoparticles in the CNS (10, 88, 89), (2) microglia and 
macrophages contribute to the maintenance and progression 
of glioblastoma, one of the most complex and deadly brain 
tumors (90), and (3) there is a structural and functional link 
between the CNS and lymphatic vessels (91). The discovery that 
lymphatic vessels lining dural sinuses are gateways between the 
systemic lymphatic system and the brain has recently re-defined 
our understanding of the immune system of the brain and is 
seminal in investigating neuroinflammatory and neurodegen-
erative disorders associated with impairments of the immune 
system. The majority of the studies showing either positive or 
negative effects of nanomaterials on the immune system focused 
on peripheral macrophages. This is understandable considering 
that most foreign materials are taken up by these cells. However, 
brain cancers, such as gliomas, are infiltrated mainly by the 
brain macrophages, the microglia. In fact, the proportion of 
microglia in low-grade gliomas can exceed (>35%) the normal 
microglia contribution (10–15%) in non-neoplastic brains. 
The majority of non-neoplastic cells in gliomas are tumor-
associated macrophages (TAM) either originating from the 
periphery or intrinsic to the brain (90, 92). These cells form 
the microenvironment of the brain tumor and play a major role 
in the maintenance and progression of the cancer cells. They can 
contribute to cancer survival, invasiveness, and proliferation. 
Although the mechanisms underlying microglia stimulation 
of low- and high-grade gliomas are not fully understood, the 
existence of a unique tumor microenvironment resulting from 
the infiltration of central and peripheral macrophages provides 
an opportunity to establish more effective chemotherapeutic 
interventions (93). Achieving this goal is not simple because 
of the considerable diversity and plasticity of macrophages 
and microglia. The common classification of M1 polarization, 
deemed pro-inflammatory, and M2, designating alternatively 
activated macrophages (with subclasses M2a, M2b, and M2c), 
seems inadequate for TAM. RNA microarray analyses indicated 
that about 1000 transcripts were found to be differently expressed 
in glioblastoma-associated microglia and macrophages relative 
to control microglia. The expression patterns only partially 
(<50%) overlapped with reported gene signatures for M1 and 
M2 macrophages (94). Therapeutic interventions targeting glio-
blastoma cells alone usually failed because of the contribution of 
the complex environment made of surrounding cells and brain 
tumor stem cells (95, 96). The problem is that macrophages 
and microglia secrete growth- and invasion-promoting factors, 
whereas brain tumor stem cells residing in perivascular niches 
often give raise to the resistance to radiation and chemotherapy 

(97–100). By contrast, some data suggest that the ketogenic diet 
combined with standard cancer treatment could increase the 
sensitivity of cancer cells toward therapies due to their reliance 
on glycolytic metabolism (101). Such a diet could also decrease 
inflammation caused by infiltrating macrophages and microglia. 
Although the results are encouraging, additional clinical trials 
are required to confirm the previous findings, suggesting the 
beneficial effects of the ketogenic diet (102). Immunomodulation 
of the glioma microenvironment by nanoparticles is also an 
attractive therapeutic avenue to reduce tumor invasiveness and 
growth. Data from preclinical and clinical studies are encourag-
ing despite limitations and hurdles, which need to be overcome 
before this strategy becomes more widely applied (103–105).

In inflammation, immunomodulation using nanoparticles 
could provide suitable alternatives to standard treatment strate-
gies because of the versatility of particle surface modifications, 
compositions, and charges. Particles with a negative surface 
charge can bind to monocytes, marking them for sequestration 
by the spleen and preventing their migration and participation 
at the inflammation site (65). Interesting examples of polyanions 
with anti-inflammatory effects are dendritic polyglycerol sulfates 
(dPGS) (106–108). Studies with dPGS suggest that they are 
effective anti-inflammatory agents per  se with strong inhibi-
tory effects on inflammation-induced degenerative changes in 
microglia and the ability to rescue dendritic spine morphology 
(108). Their L-selectin binding in the low nanomolar range, 
limited impact on blood coagulation, and minor activation of the 
complement system render them attractive anti-inflammatory 
agents (106). A simplified molecular mechanism of dPGS bind-
ing to selectins and their intracellular location in microglia is 
illustrated (Figure 1).

Mechanisms for nanoparticle-induced tolerance and reduction 
of inflammation severity have been previously reviewed in Ref. 
(109). Although there are still numerous unanswered questions 
related to the mechanisms of nanoparticle–immune system inter-
actions, it is anticipated that in the next decade, clinical studies 
will show if negatively charged biodegradable nanoparticles (e.g., 
polylactic–polyglycolic acid) will reduce severe inflammations in 
myocardial infarction and acute encephalitis syndrome. If these 
and similar studies show a positive outcome, nanoparticle-based 
therapies could become a valuable addition to existing therapies 
targeting the immune system (110). However, a series of safety 
testing and validation has to be performed in preclinical and 
clinical investigations. A tiered approach for assessing nanopar-
ticle compatibility with the immune system in vitro during the 
early phase of preclinical development, strategies for designing 
early phase preclinical immunotoxicity screening, and challenges 
associated with these investigations have been reviewed in Ref. 
(86). Despite disappointments due to the lack of standards and 
standardized procedures, limited understanding of underlying 
mechanisms involved in nanoparticle–immune cell interac-
tions, inadequate nanoparticle characterization and incomplete 
knowledge about plasma proteins and their interactions with 
nanoparticle surfaces under physiological and pathological 
conditions, results obtained so far have provided a baseline for 
investigations to harness biocompatible and safe nanomaterials 
for immunomodulation.
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FigURe 1 | (A) Molecular mechanism of dPGS binding to L-selectins and P-selectin ligands. (B) Fluorescence micrograph of fluorescently labeled dPGS (red) in 
microglia. Nuclei are labeled with Hoechst 33342 (blue).
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MODeLS OF NeUROiNFLAMMATiON

In Vitro Models
Neuroinflammation involves complex intercellular communica-
tion between different neural cell types organized into intricate 
networks. Thus, suitable primary neural cells in 3D cultures 
(prepared either from dissociated cells or organotypic slices) are 
preferable to cell line models grown in 2D (Figure 2). However, 
both types of in vitro models have important limitations (Table 1). 
Phenotypic traits of primary cells are often lost following in vitro 
culture, particularly in monolayer and monocultures. Microglia 
are ramified in the healthy brain and in astrocyte co-cultures, 
but in the absence of astrocytic support, they take on various 
morphologies (e.g., amoeboid, spindle, and rod like) (111). 
Astrocyte-conditioned media are only partly effective in main-
taining the ramified morphology of microglia, because astrocytes 
provide not only soluble (e.g., granulocyte macrophage colony-
stimulating factor and colony-stimulating factor 1) but also non-
diffusible factors. An astrocyte feeder layer is commonly used to 
support microglia and neuronal cultures alike (112, 113). This can 
be achieved using a two-chamber culture system comprising an 
enriched microglia culture separated from an enriched astrocyte 
culture by an inset with a porous membrane.

Immortalized microglia cell lines were initially established 
from rodents in the 1980s, and the first human cell line was 
reported in 1995 (114). N9 and BV2 are among the oldest and 
best-described murine microglia cell lines, while CHME and 
HMO6 are the main human microglia cell lines. Recently, 
another immortalized microglia cell line was generated from 
the adult murine brain (131). Beside the practical advantages of 
an established cell line, immortalized microglia provide a rela-
tively homogeneous cell population that retains the phagocytic 
and secretory abilities of their primary counterparts. However, 
surface markers vary from cell line to cell line, and as with any 
continuous cell culture, phenotypic traits may change as cells 
differentiate over time (114). The systematic analysis of primary 
mouse and human microglia genes and microRNAs identified 
a unique molecular signature that was distinct from peripheral 

immune cells and immortalized microglia cell lines. This striking 
difference between primary and immortalized cells indicates 
that continuous cell lines are not always suitable to answer some 
questions, such as the role of surface markers highly expressed 
in human or mouse microglia [e.g., purinergic receptor P2Y, 
G-protein coupled, 12 (P2ry12) in human, and Fc receptor-like S 
(FCRLS) in mouse microglia] (132, 133).

Brain slices are 3D, ex vivo models with partial brain architec-
ture and synaptic circuitries. These models are used to investigate 
intercellular communication between neural cells under “physi-
ological” and pathological conditions. Organotypic brain cultures 
are usually prepared from postnatal animals (days 3–9), and slices 
are maintained in culture until the maturation of the synaptic 
networks. Although the structural development of organotypic 
brain slices has been found to be largely comparable to that of 
age-matched animals, it has been reported that these ex vivo cul-
tures had increased dendrite numbers and glutamatergic synaptic 
currents resulting from the rewiring of axons damaged during 
the initial slice preparation (120). Nevertheless, the preservation 
of tissue structure and the presence of microglia in organotypic 
brain slices are major advantages in the study of neuroinflamma-
tion. Acute brain slices are similar to organotypic brain cultures. 
They can be harvested from animals of any age, and experiments 
are typically completed within hours. However, the biomechani-
cal stress caused by tissue slicing, presence of damaged cells, and 
release of soluble factors from these cells must be considered 
when interpreting results from such preparations (134).

Inflammation in neural cells can be induced using pathogen-
derived ligands, pro-inflammatory cytokines, and injurious 
stimuli. Among the most common pro-inflammatory stimuli 
is lipopolysaccharide (LPS), an endotoxin from Gram-negative 
bacteria, which binds to toll-like receptor 4 (TLR4) on micro-
glia, astrocytes, oligodendrocytes, and neurons (14, 135). The 
production of cytokines (e.g., interleukin-1 beta, interleukin-6, 
interleukin-18, interleukin-33) by microglia in response to LPS is 
mediated by the inflammasome, a multiprotein complex typically 
composed of pro-caspase-1, the adaptor molecule apoptosis-
associated speck-like protein containing a caspase recruitment 
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FigURe 2 | Models of different complexity used to study the effects of immunomodulators in neural cells. In vivo models of neuroinflammation are most 
suitable for morphological and functional studies, while in vitro models of neural cells in 2D (primary and immortal dissociated cells) and 3D (neurospheres and brain 
slice cultures) are useful for morphological, mechanistic, and signaling studies. Isolated organelles can be used to investigate mechanisms of inflammation at the 
subcellular level. [*Hippocampus (hippos = horse; campos = sea monster); **neurons, microglia, astrocytes; ***organelles: mitochondria, lipid droplets, lysosomes, 
nucleoli.]
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domain (ASC) and nucleotide-binding oligomerization domain, 
leucine-rich repeat-containing receptor (NLR) family proteins 
(Figure 3) (136). Different types of inflammasomes can assemble 
depending on the nature and intensity of the stimulus, and many 
members of the NLR family can facilitate the assembly (e.g., 
NLRP1, NLRP7, and NLRP12). In particular, the NLR family, 
pyrin domain-containing 3 (NLRP3) inflammasome is common 
in neuroinflammation-associated disorders, and can be regulated 
by a wide variety of factors, such as pathogen-associated molecular 
patterns, damage-associated molecular patterns, COX-2 activity, 
and damaged mitochondria (137–139). In Alzheimer’s disease, 
traumatic brain injuries (TBI), and MS, the NLRP3 inflam-
masome was found to exacerbate inflammatory responses and 
damage mediated by microglia (140–143). Notably, hyperactiva-
tion of microglia characterized by inflammasome activation and 
cytokine release can lead to the programed cell death pyroptosis 
in neural cells (144–146). Pro-inflammatory cytokines are major 
inducers of immune activation, both in the peripheral and central 
immune systems. These include, among others, TNF-α, IFNγ, 
IL-1β, and IL-6 (26, 147, 148). Modulation of IL-6 classical and 
trans-signaling has been exploited for therapeutic interventions 
in several preclinical and clinical trials (149, 150). The evolution-
ary conserved glycoprotein 130 (gp130) system inspired the 
development of sgp130Fc, an effective pharmacological tool to 
distinguish classical from trans-signaling. The results from phase 
III studies with sgp130Fc are awaited  –  it is anticipated that 
blockade of trans-signaling will prove to be superior to the global 
blockade of IL-6 signaling by the neutralizing antibody tocili-
zumab. Recent studies showed that the small molecule LMT-28 
can also block trans-signaling of IL-6 (151). LMT-28 is stable, 
simple to synthesize, and functions by binding directly to gp130. 
Clinical data for its effectiveness in neurological disorders are not 
yet available. Anti-inflammatory cytokines, such as interleukin-4 
and -10, can dampen the effects of pro-inflammatory stimuli. 
The production of these secreted factors can be monitored using 
enzyme-linked immunosorbent assays (ELISA). Inflammation 

induced by ischemic and TBI is difficult to replicate in vitro, but 
some morphological and biochemical changes can be assessed 
in simplified models. For instance, oxygen and glucose depriva-
tion (OGD) is often used to mimic brain ischemia and induce 
the activation of toll-like receptors 2 and 4 in primary cortical 
neurons (135). Transection, compression, hydrostatic pressure, 
and stretch injuries are other examples of brain “injuries in the 
dish” (134).

In Vivo Models
A great number of animal models of neuroinflammation are 
available today, many of which are disease specific (see examples 
in Table 1). Although transgenic animals are popular to examine 
the effects of gene knock-in and knock-out, wild-type animals 
remain necessary to understand the fundamental pathophysiol-
ogy of neuroinflammation. LPS can be injected either systemically 
or intracranially. Circulating LPS rapidly causes an inflammatory 
response in the brain, first at the circumventricular organs, then 
across the CNS (152). Although the choice of LPS serotype has 
little impact on TLR4 stimulation, it can significantly affect 
in vivo studies involving the adaptive immune system. The degree 
of purity of the LPS is also an important factor, as products of 
lesser quality can contain other pathogen-associated molecules 
that will alter the potency of the LPS and the magnitude of the 
inflammatory response. Systemic injection is often administered 
intraperitoneally, intravenously, or by stereotaxic administration 
directly into the brain parenchyma. The stereotaxic apparatus 
holds the head of the animal in place and a stereotaxic atlas is 
used to determine the coordinates for the site at which a small 
hole in the skull should be drilled to access a specific site in the 
brain (153). Until recently, innate recognition of LPS was limited 
to its membrane receptor TLR4/MD-2-stimulated cytokine 
transcription. Therapeutic intervention by Eritoran has achieved 
very moderate success in sepsis (154). This could be in part 
because of the existence of non-canonical LPS signaling induced 
by cytosolic LPS. This non-canonical signaling via intracellular 
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TABLe 1 | Models of immunomodulation: from in vitro to in vivo models.

inflammatory stimuli endpoints Advantages (+) and  
limitations (−)

Reference

In vitro models (2D)

•	 Immortalized 
cells lines

•	 Primary 
dissociated 
cells

 – Bacterial toxins (e.g., LPS)
 – Pro-inflammatory cytokines 

(e.g., TNFα)
 – Protein aggregates 

(e.g., amyloid-β)
 – Environmental pollutants 

(e.g., heavy metals)
 – Organic and inorganic 

nanocrystals (e.g., 
cholesterol, quantum dots)

 – Released soluble factors (e.g., 
cytokines, chemokines)

 – Protein expression and enzyme 
activity (e.g., caspase-1)

 – Phagocytosis
 – Morphology and function of 

organelles (e.g., mitochondria, 
lysosomes)

 – Cell death (e.g., pyroptosis, 
apoptosis)

(+) Homogeneous cell population
(−) Abnormal cell biology

(114–116)

(+) Non-cancerous cells
(+) Cells can be isolated from specific 

brain regions
(−) Finite retention of phenotypic traits

In vitro models (3D)

•	 Organotypic 
brain slices

•	 Acute brain 
preparations

 – Bacterial toxins (e.g., LPS)
 – Pro-inflammatory cytokines 

(e.g., TNFα)
 – Protein aggregates (e.g., 

amyloid-β)
 – Environmental pollutants 

(e.g., heavy metals)
 – Organic and inorganic 

nanocrystals (e.g., 
cholesterol, quantum dots)

 – Physical injuries
 – (e.g., “wound in the dish”)

 – Released soluble factors (e.g., 
cytokines, chemokines)

 – Protein expression and enzyme 
activity (e.g., caspase-1)

 – Morphological and functional 
properties of neurons

 – Cell death (e.g., pyroptosis, 
apoptosis)

(+) Useful to study neurogenesis and 
neural development

(−) Finite retention of neurogenic 
properties 

(117–119)

(+) Preserved brain structure and cell 
population

(−) Damage from slicing can alter the 
maturation of neuronal circuitry

(120–123)

(+) Neuronal circuitry close to in vivo 
conditions

(+) Cultures can be derived from donors 
of any age

(−) Damage from slicing can interfere with 
experiments

(124–126)

In vivo models

Wild-type animals  – Bacterial toxins (e.g., LPS)
 – Pro-inflammatory cytokines 

(e.g., TNFα)
 – Protein aggregates (e.g., 

amyloid-β)
 – Environmental pollutants 

(e.g., heavy metals)
 – Physical injuries (e.g., stroke,
  traumatic brain injury)

 – Released soluble factors (e.g., 
cytokines, chemokines)

 – Protein expression and enzyme 
activity (e.g., caspase-1)

 – Circuit integrity
 – Cognitive and physical performance
 – Clinical signs of pain and distress, 

weight and survival

(+) Complete, normal biological system
(+) Useful to study cognitive and 

physical functions
(−) Variability between animals
(−) Higher cost and logistic  

requirements 

(1, 127–130)

Transgenic 
animals

•	 Knock-in
•	 Knock-out
•	 Optogenetic

 – Released soluble factors (e.g., 
cytokines, chemokines)

 – Protein expression and enzyme 
activity (e.g., caspase-1)

 – Circuit integrity
 – Cognitive and physical performance
 – Clinical signs of pain and distress, 

weight and survival
 – Tracking of bioluminescent or 

fluorescent tags 

(+) Complete, normal biological system
(+) Possible to study cognitive and 

physical functions
(−) Variability between animals
(−) Higher cost and logistic requirements
(−) Off-target effects and mosaicism
(−) Breeding problems and lower survival 

rates
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LPS activates pro-inflammatory caspases – caspase-11 in mice 
and caspase-4/5 in humans  –  and does not depend on TLR4 
(155–157). LPS binding to caspases induces their oligomeriza-
tion, which is a prerequisite for caspase activation. A simplified 
model of canonical and non-canonical signaling by LPS is 
illustrated (Figure  4). Resulting CNS complications, such as 
encephalopathy, are mainly mediated by neuroinflammation and 
oxidative stress (158). Aside from LPS administration, inflam-
mation can be induced more globally by bacterial infections. 
A standard method to induce polymicrobial sepsis is cecal liga-
tion (159). It is easily performed, and the severity of the disease 
can be controlled to a certain extent (160). However, there is a 

high mortality rate, and variable outcomes have been observed 
between animals and laboratories (161).

Inflammatory processes in transgenic models of neuroinflam-
mation often result indirectly from the expression of a disease-
specific mutant gene, and most models were developed for the 
study of neurodegenerative diseases. The APP/PS1 mouse model, 
for instance, is used in the study of Alzheimer’s disease. These 
mice express a chimeric amyloid precursor protein and a mutant 
human presenilin-1, causing the accumulation of amyloid-beta 
plaques by the age of 6  months, extensive neuroinflammation 
and, later on, memory impairment (162). By contrast, it was 
recently suggested that the amyloid beta peptide can protect 

http://www.frontiersin.org/Immunology/
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FigURe 3 | Organellar remodeling in inflammation. Multiple pro-inflammatory stimuli can disrupt redox homeostasis in microglia. Mitochondria are the major 
source of reactive oxygen species (ROS). Excessive ROS induces the formation of lipid bodies and impairs their communication with intracellular organelles. Several 
signal transduction pathways implicated in inflammation converge on the inflammasome. Inflammasome activation leads to the caspase activation and cytokine 
release. Modulation of these pathways can lead to resolution of inflammation or exacerbation with pyroptotic cell death.
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against microbial infection in a mouse model of Alzheimer’s 
disease (163). This is an intriguing proposition, raising the pos-
sibility that amyloid beta may play a protective role in innate 
immunity through its binding to microbial cell walls via heparin-
binding domains. In the adeno-associated virus-alpha-synuclein 
mouse model of Parkinson’s disease, the animal expresses alpha-
synuclein under the control of a viral promoter. This results in 
the loss of dopaminergic neurons, as well as the activation of 
microglia (164). For the study of amyotrophic lateral sclerosis, 
transgenic mice expressing a mutant superoxide dismutase 1 gene 
were observed to show astrocyte and microglia activation, lead-
ing to motoneuron degeneration and muscle atrophy (165, 166). 
Transgenic mouse models used to investigate neuroinflammation 
can provide valuable information on morphological, biochemical, 
and functional changes in neural cells, but they have limitations 
that must be considered in the context of human pathology (1). 
Other knock-out and knock-in animals have also been employed 
to study the role of key mediators of neuroinflammation. 
Caspase-1 knock-out mice, for example, seemed more resistant 
to ischemia-induced neural cell death than wild-type animals 
(167). More recently, the clustered regularly interspaced short 
palindromic repeats (CRISPR) and CRISPR-associated protein-9 
(Cas9) gene editing technique has generated considerable excite-
ment, as it was successful in targeting single or multiple genes 
in the mouse brain (168). The technique allows the generation 

of mutant animals with ease and efficiency compared to the 
traditional transfection of mouse embryonic stem cells. However, 
emerging problems include off-site effects and mosaicism (169).

iNTRAviTAL iMAgiNg OF 
NeUROiNFLAMMATiON

A great variety of reporters and probes are currently available to 
investigate neuroinflammation at the cellular level (170–173). 
Cellular events of interest include the migration and phagocytic 
activity of microglia, the infiltration of peripheral immune cells, as 
well as the production of secreted factors, metabolism, and viabil-
ity of neural cells. Intravital imaging is useful to study the patho-
physiology of neuroinflammation in a non-invasive manner, but 
an important limitation is the scattering and absorbance of light 
entering biological tissues. The availability of strong reporters and 
powerful imaging modalities have allowed for better detection 
and facilitated the generation of quantitative data from inves-
tigated signals while minimizing autofluorescence. The natural 
fluorescence of different tissues can mask signals from fluorescent 
probes. Lipofuscin, which can be excited anywhere in the range 
of 360–647  nm, is commonly found in neurons and glia cells, 
and increases with animal age. The imaging of green fluorescent 
protein, one of the most common and popular fluorescent labels, 
can also be hindered by a subset of green autofluorescent cells 

http://www.frontiersin.org/Immunology/
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FigURe 4 | LPS and iL-6 signaling in microglia. LPS can interact with membrane-bound TLR4 (canonical signaling) or can enter the cytosol independently from TLR4 
(non-canonical signaling). The major cytosolic receptors for LPS are pro-inflammatory caspases. IL-6 binds either to the membrane receptor IL-6R (mIL-6R; classical 
signaling) or to the soluble IL-6 receptor (sIL-6R; trans-signaling). These receptor complexes subsequently bind to gp130 to initiate intracellular signaling cascades.
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in the rat cortex and hippocampus (174). In tissue sections, the 
risk of false positives can be reduced by using autofluorescence 
quenchers, such as copper sulfate (175). The choice of fluoro-
phores emitting in the near-infrared spectrum can be made to 
avoid this issue. Imaging of structural and functional changes in 
the living brain can be performed using open-skull preparations, 
where a small window in the skull is protected by a glass coverslip. 
Following the implantation of the cranial window, a recovery 
time is necessary to avoid inflammation caused by the surgery 
(176, 177). However, long-term imaging using the open-skull 
technique can be obscured by bone re-growth and the thickening 
of the meninges (178). Imaging of the cortex using the thinned-
skull cranial window technique is useful when longer intervals 
are needed in between imaging sessions. However, repeated 
imaging requires the re-thinning of the skull, which has to be 
carefully monitored to avoid cortical trauma and inflammation 
(179, 180). For both imaging techniques, two-photon microscopy 
in the near infrared region is suitable to avoid photobleaching and 
photodamage.

Transgenic animals expressing luciferase in glia cells have 
been employed to track and image processes in neuroinflam-
mation at the cellular level (181–183). Our studies have shown 
marked activation of microglia, pro-inflammatory caspases, and 
astrocytes by nanocrystals (184–186). Data from these studies 
showed that stable nanocrystals injected directly into the paren-
chyma of mice induced transient astrocyte activation, suggesting 
that only nanocrystals adequately coated with polyethylene glycol 
(PEG) are suitable nanotechnological tools. Glia cells were also 

activated by gold nanoparticles, depending on the nanoparticles’ 
morphology (10). Activation of glia cells is often accompanied by 
the activation of inflammatory caspases and caspases implicated 
in apoptosis (187). Nanosensors for caspases have been devel-
oped, and examples of constructs for these sensors are illustrated 
in Figure 5 (170, 188).

A whole palette of fluorescent proteins, mostly mutant 
derivatives of the jellyfish’s green fluorescent protein, have also 
been employed to “illuminate” the brain. The use of cell-type-
specific fluorescent labels allowed to map brain structures and 
to distinguish different cell populations with greater accuracy. 
High-resolution pictures have been recorded in recent years, and 
unprecedented 3D images and videos have been produced from 
fluorescently labeled brain tissues (189, 190). Although the qual-
ity of these imaging techniques remains variable and is dependent 
on the success of the genetic probes and the available imaging 
modalities, these techniques have been instrumental in under-
standing structural and functional aspects of the CNS – includ-
ing glia–neuron interactions. Optogenetics have also been used 
to study light-responsive channels and other proteins in neural 
cells (191–193). For instance, the selective expression of chan-
nelrhodopsin-2, a light-responsive membrane channel, has been 
employed to study calcium signaling in astrocytes in  vitro and 
in  vivo (194). Optogenetic tools could, thus, be used to reveal 
the contribution of microglia in neuroinflammatory processes 
(195). Although optogenetics has generated valuable informa-
tion on macromolecules in cells, this approach cannot be applied 
to investigate small molecules, such as phospholipids. More 
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FigURe 5 | (A) Schematic representation of a quantum dot-based sensor for caspase activity. In the absence of caspase activity, there is fluorescence resonance 
energy transfer (FRET) between the quantum dot (QD) and the rhodamine molecule (Rd), and the fluorescence of the QD is quenched. In the presence of caspase 
activity, FRET is disrupted, and the QD is fluorescent. (B) Schematic representation of a ratiometric biosensor for caspase activity. In the absence of caspase activity, 
the dimerization-dependent green fluorescent protein (GFP) is dimerized with the partner protein B and is retained in the cytoplasm through a nuclear exclusion 
signal (NES). In the presence of caspase activity, the dimerization is disrupted, and B translocated to the nucleus using a nuclear localization signal (NLS), and 
associates with the dimerization-dependent red fluorescent protein (RFP). As a result, green fluorescence in the cytoplasm fades, and red fluorescence in the 
nucleus increases.
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recently, the approach of optolipidomics was used to study the 
processing of mitochondria-specific cardiolipins in apoptosis 
(196). Mitochondrial functions are often impaired in inflam-
matory processes, and the combination of optogenetics and 
optolipidomics could provide complementary information on 
underlying intricacies in neuroinflammation.

CONCLUSiON

Neuroinflammation is considered a significant contributor in 
many neurodegenerative diseases. Microglia are the immune cells 
of the CNS, and are modulated by numerous factors, including 
alimentary products and the gut microbiome. Nanoparticulates 
have emerged as a new group of “xenobiotics” that must be thor-
oughly characterized prior to investigating their immunomodu-
latory effects in the CNS and elsewhere. Nanotechnology offers 
a wide selection of shape- and size-tunable probes, ranging from 
quantum dots to fluorescently labeled polymeric constructs (163). 
Nanoprobes can be brighter and more stable than genetic probes, 
and designed to “activate” in response to a particular stimuli, such 
as light or acidic pH. However, nanotechnological probes are 
often large and cannot reach desirable intracellular locations. In 
addition, these probes are complex and relatively little is known 
about their stability in vivo, as well as their pharmacokinetics and 
pharmacodynamics (186, 187). It is well established that the bio-
logical identity of a nanoparticle is distinct from its well-defined 
chemical identity. Serum protein binding, sensitivity to pH, and 
clearance rates are all factors affecting the immunogenicity and 
fate of a nanoparticle in  vivo (146, 147). On  the other hand, 

nanoparticle-induced immune responses can be exploited for 
improving vaccine efficiency and boost the immune system in 
pathologies with weakened immune responsiveness (197–199). 
Diverse fluorescent nanostructures can provide tools for the 
tracking and imaging of complex networks in different cell types 
in a spatio-temporal manner. The combined use of nanotech-
nological tools and advanced intravital imaging techniques can, 
thus, provide unprecedented insight into the mechanisms of 
neuroinflammation. Exciting data related to brain abnormalities 
implicating glial cells come from gene editing techniques, such as 
CRISPR/Cas9 (168). Animal studies exploiting these approaches 
in mice models of neurodegenerative diseases will help to reveal 
intricacies in neural circuitries under physiological conditions 
and mechanisms involved in multifactorial diseases associated 
with neuroinflammation.
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