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Sphingolipid metabolites are emerging as important signaling molecules in allergic 
diseases specifically asthma. One of the sphingolipid metabolite, sphingosine-1-phos-
phate (S1P), is involved in cell differentiation, proliferation, survival, migration, and 
angiogenesis. In the allergic diseases, alteration of S1P levels influences the differenti-
ation and responsiveness of mast cells (MCs). S1P is synthesized by two sphingosine 
kinases (SphKs), sphingosine kinase 1, and sphingosine kinase 2. Engagement of IgE 
to the FcεRI receptor induces the activation of both the SphKs and generates S1P. 
Furthermore, SphKs are also essential to FcεRI-mediated MC activation. Activated MCs 
export S1P into the extracellular space and causes inflammatory response and tissue 
remodeling. S1P signaling has dual role in allergic responses. Activation of SphKs and 
secretion of S1P are required for MC activation; however, S1P signaling plays a vital role 
in the recovery from anaphylaxis. Several non-coding RNAs have been shown to play a 
crucial role in controlling the MC-associated inflammatory and allergic responses. Thus, 
S1P signaling pathway and its regulation by non-coding RNA could be explored as an 
exciting potential therapeutic target for asthma and other MC-associated diseases.

Keywords: sphingosine-1-phosphate, sphingosine kinases, sphingosine-1-phosphate receptor, mast cells, 
asthma, non-coding RnA

inTRODUCTiOn

Mast cells (MCs) are best known to trigger IgE-dependent/independent allergic diseases. They also 
play a significant role in providing immunity to host in response to various infections (1). MCs 
have enough storage of bioactive molecules and mediators to perform innate and adaptive immune 
responses. However, the same bioactive molecules may damage the surrounding tissues and cause 
inflammation. MCs can be activated by diverse stimuli including allergens, pollens, and toxins and 
may release a spectrum of molecules, including preformed mediators (such as histamine, proteases, 
and other enzymes). They are accountable for numerous symptoms of allergic reactions including 
edema and enhanced vascular permeability (2). MCs release variety of cytokines (e.g., IL-4, IL-5, 
and IL-13) and chemokines that are responsible for recruitment and maturation of different immune 
cells. In addition, MCs synthesize and release variety of lipid mediators such as prostaglandins, leu-
kotrienes, platelet-activating factor, and sphingosine-1-phosphate (S1P) (3). S1P mediates its actions 
both by acting as a ligand for five S1P receptors and also an intracellular second messenger (4). It is 
also known to play an important role in numerous pathophysiological responses including allergic 
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FigURe 2 | ige receptor crosslinking generates intracellular 
sphingosine-1-phosphate (S1P) through activation of sphingosine 
kinases (SphK1/2) in Lyn- and Fyn-dependent pathways. S1P 
generation induces calcium mobilization leading to mast cells (MCs) 
degranulation. After degranulation, MCs release histamine, lipid mediators, 
and cytokines that play an important role in allergy and inflammation. S1P is 
also secreted through ATP-binding cassette (ABC) transporters and activates 
S1PR1 and S1PR2, present on MCs leading to chemotaxis and 
degranulation, respectively.

FigURe 1 | Sphingosine-1-phosphate (S1P) is generated from 
sphingosine, which is catalyzed by sphingosine kinases 1/2. S1P can 
be dephosphorylated by two S1P specific phosphatases, such as S1P 
phosphatase 1/2 and three non-specific lipid phosphatases, such as LPP 
1–3. S1P can also be degraded into hexadecenal and ethanolamine 
phosphate by S1P lyase.
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reactions such as asthma and chronic obstructive pulmonary 
disease (COPD).

BiOSYnTHeSiS AnD MeTABOLiSM  
OF S1P

Two highly homologous sphingosine kinases (SphKs), known as 
sphingosine kinase 1 (SphK1) and sphingosine kinase 2 (SphK2) 
catalyze the synthesis of S1P from its precursor sphingosine 
(Figure 1) (4). SphK1 is mainly localized in the cytosol. Activation 
of SphK1 is regulated by many factors such as its intracellular 
localization, epigenetic, or posttranslational modification. SphK1 
can be activated by a wide variety of growth factors, including 
epidermal growth factor, platelet-derived growth factor (PDGF), 
vascular endothelial growth factor, hepatocyte growth factor, and 
TNF-α (5). Unlike SphK1, SphK2 is localized in the nucleus and 
mitochondria-associated outer membrane (6, 7).

Circulating and tissue S1P levels are also regulated by its 
catabolism. There are six enzymes known to catabolize S1P. 
Two endoplasmic reticulum-bound, S1P-specific phosphatases, 
namely, S1P phosphatase-1 and -2 dephosphorylate S1P back  
to sphingosine. Three lipid phosphate phosphatases-1, -2 and -3  
(LPP1–3) dephosphorylate a broad range of lipid phosphate 
substrates including S1P (8, 9). LPPs are located on the plasma 
membrane. Additionally, S1P lyase irreversibly degrades S1P to 
ethanolamine phosphate and trans-2-hexadecenal (10).

Till date, five S1P receptors (S1PR1–5) that bind to S1P have 
been identified in vertebrates (11). In mammalian cells, S1P recep-
tors are ubiquitous, but their expression patterns vary among the 
different tissues. After coupling to G-proteins, these receptors 
either activate or inhibit downstream signaling pathways, includ-
ing c-Jun N-terminal kinase, extracellular signal-regulated kinase, 
phosphatidylinositol 3-kinase, phospholipase C, phospholipase 
D, STAT3, Rho, Rac, and cyclic AMP (4). By activating these 
receptors, S1P regulates diverse biological processes including 
vascular development, angiogenesis, and immunity.

ROLe OF S1P in MC ACTivATiOn

FcεRi induces S1P generation and its 
export
Antigen-induced aggregation of IgE bound to FcεRI on MCs 
activates both the SphKs with a consequent increase in intracel-
lular S1P levels (12). Activation of SphK1 requires its transloca-
tion to the plasma membrane. Indeed, in bone marrow-derived 
mast cells (BMMCs), within minutes of FcεRI ligation, SphK1 is 
translocated to plasma membrane. Lyn, a src kinase is required 
for the early phase of SphK activation in MCs and promotes 
the recruitment of SphK1 to FcεRI. Lyn-deficient MCs show 
a delay in the activation of SphK by IgE/Ag (13). Likewise, 
Fyn, another src kinase, is also required for the activation of 
SphK1 and SphK2 in MCs. Furthermore, Fyn kinase interacts 
with SphK1 and SphK2 proteins, and Fyn-deficiency causes a 
complete ablation of SphK activation (Figure  2) (13, 14). IgE/
Ag-induced activation of SphK1 occurs through Grb2-associated 
binder 2 (Gab2)-mediated pathway, whereas SphK2 is activated 
in a Gab2-independent manner (14). FcεRI-mediated activation 
of SphKs generates intracellular S1P, which is secreted into the 
extracellular space (14, 15). MCs can release copious amount 
of S1P upon agonist stimulation, which may be an important 
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paracrine component of MCs (16). The ATP-binding cassette 
(ABC) superfamily of transporters has been shown to involve in 
the transport of S1P (17, 18). ABCC1, one of the ABC members, 
has been implicated in the FcεRI-stimulated export of S1P from 
RBL-2H3 and human LAD2 MCs (18).

Role of SphKs in MC Activation
Upon engagement of FcεRI receptor, both the isoforms of SphKs 
get activated in MCs (19, 20). However, SphK1 and SphK2 
might have some redundant functions in MCs, and their relative 
importance depends on the origin of MCs. Although, SphK2 is 
the major producer of S1P in mouse BMMCs (21), however, MC 
degranulation is not affected in SphK2-deficient BMMCs from 
adult mice. On the contrary, MCs-derived from liver progenitors 
of SphK2-deficient embryos consistently show a reduction in the 
degranulation. Surprisingly, MCs derived from liver progenitors 
of SphK1-deficient embryos exhibit no defect in degranulation 
(21). Furthermore, peritoneal-derived MCs (PDMCs) from either 
SphK1- or SphK2-deficient adult mice demonstrate impaired 
degranulation responses (19).

Similar discrepancy regarding the role of SphK1 or SphK2 
in degranulation has been noted with human MCs. In CD34+ 
progenitors-derived human MCs (14) and in cord blood-derived 
human MCs (22), expression of both the SphK isoforms, SphK1 
and SphK2, have been observed. Silencing of SphK1 by RNAi 
in the human MC line LAD2 shows that SphK1 is involved in 
degranulation (22). However, knockdown of SphK2 in LAD2 
does not affect degranulation induced by Ag, ionomycin, or S1P 
but reduces the release of TNF-α and IL-6 (22). Furthermore, 
silencing of SphK1 or SphK2 using lentiviral-based short hairpin 
RNA reveals that SphK2 is required for degranulation, cytokine 
and leukotriene production, and calcium mobilization in murine 
MCs (19). In contrast, human MC response requires SphK1, which 
is more robustly expressed in human MCs (19). Nonetheless, 
all the studies carried out by pharmacological inhibitors, RNAi 
approaches, or genetic deletion models suggest a critical role of 
SphKs in MC function and point out that two isoforms may have 
some redundancy (20).

Calcium influx is a crucial process for FcεRI-mediated MC 
degranulation and cytokine generation (23). Fetal liver-derived 
MCs from SphK2-knockout mice show deficient calcium 
influx, cytokine and leukotriene release, and PKC activation, 
resulting into impaired MC degranulation (21). Role of SphK2 
in calcium influx has also been confirmed in BMMCs and 
PDMCs (19). Addition of S1P to BMMCs does not show any 
effect on FcεRI-induced calcium mobilization, suggesting that 
S1P-induced calcium mobilization occurs through an S1P 
receptor-independent pathway. It has been hypothesized that 
sphingosine and S1P have opposing functions in regulating the 
opening of calcium channels in MCs (21). According to this 
notion, sphingosine inhibits MC degranulation, generation of 
leukotrienes and TNF-α; and S1P reverses these effects (15). 
MCs express low levels of IL-33, which is further induced upon 
IgE-mediated activation through a calcium-dependent mecha-
nism. Inhibition of Sphk activity or short hairpin-mediated 
SphK1-silencing blocks calcium flux and decreases IL-33 
expression induced by IgE/Ag activation (24).

Role of S1P Receptors in MC 
Degranulation
Mast cells have been shown to express S1PR1, S1PR2, and S1PR4 
but not S1PR3 and S1PR5 (20, 25). FcεRI ligation-mediated 
activation of SphKs induces a ligand-dependent trans-activation 
of S1PR1 and S1PR2, resulting in enhanced functions (25). S1PR1 
is involved in the migration of MCs toward low concentrations of 
antigen whereas S1PR2 participates in FcεRI-induced degranula-
tion (25, 26). It has been proposed that S1PR1 participates in the 
recruitment of MCs to their site of action, while S1PR2 deters 
migration and contributes to degranulation once MCs reach at 
the site of action. This also reinforces that SphK activation, S1P 
generation, and S1PR1–2 trans-activation are necessary for MC 
chemotaxis and degranulation (20).

Knockdown of S1PR2 by RNA silencing or its genetic deletion 
in BMMCs significantly reduces FcεRI-induced degranulation 
(25). In a mouse model of anaphylaxis, S1PR2 antagonist JTE-
013 markedly attenuates the severe hypothermia and reduces 
serum histamine levels (26). Further, the severity of anaphylaxis 
in S1PR2-deficient mice was significantly less as compared with 
their wild-type counterparts (26). Vaccinia virus causes degranu-
lation of skin MCs in an S1P–S1PR-dependent pathway that leads 
to antimicrobial peptide discharge and virus inactivation (27). In 
contrast, a study has reported that S1PR2 is dispensable for the 
degranulation of mouse connective tissue type MCs, and it is not 
involved in the onset of IgE/Ag-mediated anaphylaxis (28).

S1P-Mediated Regulation of MC Function
Circulatory S1P levels have been correlated with the degranula-
tion capability of MCs. SphK1 deficiency in mice reduces plasma 
S1P levels, whereas SphK2 deficiency increases its levels (21, 29).  
Elevation of circulating S1P in SphK2-deficient mice may be 
due to a compensatory elevation of SphK1 activity in RBCs, 
which is the main source of plasma S1P. There is discordance 
between in vitro and in vivo data of the degranulation response 
in SphK2-deficient MCs. SphK2-deficient MCs exhibit defective 
degranulation in vitro in response to IgE receptor crosslinking. 
However, passive systemic anaphylactic mice model reveals a 
defect in the anaphylactic response in SphK1-knockout mice but 
not in SphK2-knockout mice (21). In contrast, SphK1-deficient 
MCs show normal degranulation in  vitro; however, decreased 
histamine release upon a systemic challenge has been noted in 
SphK1-knockout mice. Further, SphK1- or SphK2-deficient mice 
show a strong association between the plasma S1P concentration 
and circulating histamine. These studies suggest that elevated 
levels of S1P in SphK2-deficient mice may lead to normal MC 
functions (21). It has been suggested that in systemic anaphylaxis, 
changes in the levels of circulating S1P may influence the respon-
siveness of the MCs and thus may affect the sensitivity and/or 
severity in in vivo response (20). Further, elevation of circulating 
S1P levels in C57BL/6 mice by an S1P lyase inhibitor, 2-acetyl-
4-tetrahydroxybutyl imidazole, results in enhanced MC response 
in the mice following a systemic challenge (30). Furthermore, 
genetic background of experimental mice also influences MC 
response. Mice strain 129Sv, which has higher levels of circulat-
ing S1P, exhibit increased Th2-cell responses and anaphylaxis, 
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compared to C57BL/6 mice that have low Th2-cell responses  
(31, 32). Moreover, chronic treatment of S1P during murine 
BMMC differentiation induces genetic changes leading to hyper-
responsive MCs. In contrast, mice, lacking both the isoforms of 
SphKs, having undetectable levels of circulating S1P, show normal 
MC response to an anaphylactic inducer when challenged with 
strong stimuli (33).

THe ROLe OF S1P SignALing  
in ASTHMA

Asthma may occur due to allergic/non-allergic reactions based 
on production of IgE antibodies to common environmental 
allergens (34). MCs, T  lymphocytes, and eosinophils together 
with the resident airway cells interact with one another to per-
petuate airway inflammation, leading to AHR and remodeling 
(35). A subset of human lung MCs, expressing CD88 receptor 
get activated by C5a ligand (36). Various autocoid mediators are 
released from activated MCs that may induce bronchoconstric-
tion, vascular permeability, recruitment of inflammatory cells, 
mucous secretion, and tissue edema (35). The correlation between 
inflammatory cells and airway smooth muscle (ASM) cells plays 
a fundamental role in the pathophysiology of asthma. MCs from 
asthmatic patients have been shown to localize in the intercellular 
spaces of bronchial epithelium, ASM cells, and airway mucous 
glands. Thus, the disordered airway physiology and wall remod-
eling features of asthma are consequences of inflammation and 
bronchial hyperresponsiveness. In response to allergen challenge, 
activated MCs release inflammatory cytokines and other media-
tors that affect bronchial epithelial functions. Furthermore, it 
has been suggested that the density of MCs within the mucous 
gland influences the degree of mucus obstruction in the airway. 
MC-derived inflammatory cytokines also contribute to several 
features of asthma (35).

Extracellular S1P not only affects eosinophil infiltration of 
the airway wall but also stimulate the contractions of ASM by 
inducing calcium mobilization and augmenting the production 
of inflammatory cytokines. Moreover, S1P disrupts the epithelial 
cell barrier integrity (tight junctions) in the respiratory system 
(37–39). In peripheral airways, activation of cholinergic recep-
tors, particularly muscarinic receptor, is associated with asthma 
and COPD. In mice, SphK1 has been shown to localize in the 
ASM of the peripheral airways. Furthermore, inhibition of SphK 
enzyme activity reduces muscarine-induced peripheral airway 
constriction, implying that the S1P signaling pathway contributes 
to cholinergic constriction of peripheral airways (40). Elevated 
levels of S1P have been observed in bronchoalveolar lavage (BAL) 
fluid of asthmatic patients, suggesting an important role of S1P 
in MC-dependent inflammatory responses in allergic reactions 
(38). S1P also acts as a chemotactic agent for eosinophils through 
RANTES and CCR3, further implying an involvement of S1P in 
the pathophysiology of asthma (41). Moreover, eosinophil num-
bers correlate with S1P levels in BAL of asthmatic patients (38). 
Antigen-stimulated MCs release S1P into interstitium, which may 
significantly modulate inflammatory processes. Interestingly, 
treatment with SphK inhibitor improves immune responses in 
mouse model of asthma (42).

In ovalbumin (OVA)-sensitized mice, S1P/SphK pathway 
triggers airway hyperresponsiveness (43). Furthermore, intratra-
cheal instillation of FTY720 into mice reduces antigen-induced 
airway inflammation and hyperresponsiveness (44). On contrary, 
in asthmatic mouse model, intranasal S1P treatment results 
in exacerbation of antigen-induced airway inflammation and 
increased sensitivity to methacholine (45). Disodium cromogly-
cate (DSCG) treatment inhibits S1P-induced asthma-like features 
in mice. DSCG decreases the recruitment of MCs and B cells in 
the lung and reduces the levels of serum IgE, prostaglandin D2, 
mucus production, and IL-13 (46). S1P-stimulated ASM cells 
release elevated levels of IL-6 and RANTES (47). Furthermore, 
S1P administration to BALB/c mice increases ASM sensitivity, 
mucus production, and release of IgE, PGD2, IL-13 and IL-4, and 
increased recruitment of MCs to the lung (41). In MC-deficient 
mice, S1P does not induce bronchial hyperresponsiveness, 
suggesting that MCs are essential for S1P-induced bronchial 
hyperreactivity. Furthermore, S1P induces lung inflammation 
and ASM hyperreactivity in an IgE-dependent manner (41). 
Interestingly, in nude mice, S1P does not induce bronchial AHR, 
IgE release, and pulmonary infiltration of MCs. These data sug-
gest that S1P-induced ASM hyperreactivity is T-cell dependent. 
Reconstitution of CD4+ T cells, isolated from S1P-treated mice 
to naïve (untreated) mice, recapitulated the ASM reactivity (41). 
Pre-exposure of S1P enhances methacholine-induced contrac-
tion of isolated ASM by Ca2+ sensitization via inactivation of 
RhoA-mediated myosin phosphatase (39). In a murine model of 
chronic asthma, SK1-I, a specific inhibitor of SphK1, significantly 
reduces OVA-induced AHR to methacholine. SK1-I also decreases 
eosinophil numbers and levels of different cytokines such as IL-4, 
IL-5, IL-6, IL-13, IFN-γ, and TNF-α and the chemokines, such  
as eotaxin, and CCL2 in BAL fluid (48).

nOn-CODing RnA in MC ACTivATiOn 
AnD ASTHMA

Recently, non-coding RNAs (miRNAs and long non-coding 
RNAs) emerge as a crucial regulator of MCs development and 
play an important role in allergic diseases and bronchial asthma. 
Loss of dicer function in mouse MC progenitor cells results in 
profound disruption of tissue MC compartments, suggesting 
a critical role for miRNAs in MC differentiation, growth, and 
migration (49). miR-221 has been shown to regulate the cell 
cycle and cytoskeleton development process in MCs, while in 
response to stimulation through IgE-antigen complexes, miR-
221 shows MCs’ specific effect and leads to degranulation and 
cytokine release (50). Higher expression (~3-fold) of miR-221 has 
also been reported in a murine lung asthma model compared to 
control mice (51). A potential increase in expression of miR-221 
was also noted in P815 mouse MCs after lipopolysaccharide 
stimulation (51). In addition, the authors further demonstrated 
that miR-221 overexpression increases total cells and eosinophil 
numbers in the murine asthma model and stimulates IL-4 
secretion in MCs through PTEN, p38, and NF-κB pathways. 
Upregulation of miR-221 and miR-485-3p has been reported in 
the peripheral blood mononuclear cells of pediatric asthmatic 
patients (n = 6), compared to control-group children. Similarly, 
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TABLe 1 | Components of sphingosine-1-phosphate (S1P) signaling 
pathways targeted by miRnAs.

S. 
no.

miRnAs Components of S1P signaling  
pathways affected

Reference

1 miR-124 Sphingosine kinase 1 (SPHK1) (55)
2 miR-506 SPHK1 (59, 60)
3 miR-130a-3p Sphingosine-1-phosphate receptor 2 

(S1PR2)
(61)

4 miR-613 Sphingosine kinase 2 (SPHK2) (62)
5 miR-125b-

1-3p
Sphingosine-1-phosphate receptor 1 
(S1PR1)

(63)

6 miR-133b S1PR1 (64)
7 miR-363 S1PR1 (65)
8 miR-125b Sphingosine-1-phosphate lyase 1 (SGPL1) (66)
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upregulation (~3-fold) of miR-221 and miR-485-3p has been 
noted in the lungs of OVA-induced asthmatic mouse model and 
resulting into decreased levels of their target gene, Spred-2 (52). 
In a separate study, it was shown that inhibition of miRNA-221 
suppresses the airway inflammation in asthmatic mouse model 
(53). These findings suggest that miR-221 might play an impor-
tant role in the onset and development of asthma. Similarly, miR-
21 also been shown to be upregulated in the multiple asthmatic 
mouse models induced by house dust mite, OVA, or Aspergillus 
fumigatus (54). miR-21 also suppresses TLR2 signaling pathways 
in inflammatory lung mouse model (55). In addition, miR-21 is 
also upregulated in IL-13-treated primary normal human airway 
epithelial cells. There are only few dedicated studies investigating 
the role of long non-coding RNA (lncRNA) in asthma. In this 
context, Zhang et al. have detected around 3.5-fold higher expres-
sion of BCYRN1 lncRNA in the ASM cells of the asthmatic rat 
model, compared to control group. In addition, BCYRN1 level 
increases in ASM cells in the presence of PDGF. Furthermore, 
BCYRN1 promotes the proliferation and migration of ASM cells 
via upregulating the expression of transient receptor potential 
1 (TRPC1) protein through increasing the stability of TRPC1 
(56). The overexpression of TRPC1 reversed the function of si-
BCYRN1 in decreasing viability/proliferation and migration of 
ASM cells. Recently, plasmacytoma variant translocation (PVT1), 
another lncRNA, has been shown to decrease in ASM of patients 
with corticosteroid-sensitive non-severe asthma. However, its 
levels are increased in the patients with corticosteroid-insensitive 
severe asthmatic patients (57). Furthermore, the authors have 
shown that PVT1 regulates both IL-6 release and TGF-β-induced 
proliferative response in ASM cell in severe asthmatic patients. 

Similarly, growth arrest specific 5 lncRNA has been demonstrated 
to correlate with the corticosteroid response in severe asthmatic 
patients (58).

Several miRNAs have been demonstrated to target the com-
ponents of the S1P signaling pathway (Table  1). For example, 
miR-124 and miR-506 target SphK1 (55, 59, 60), miR-130a-3p 
and miR-613 target SphK2 (61, 62), and miR-125b-1-3p, miR-
133b, and miR-363 target S1PR1 (63–65), whereas miR-125b 
(66) binds to the S1P lyase mRNA transcript. However, the role 
of above miRNAs has not been elucidated in MC functions and 
need to be further investigated to explore the interaction between 
miRNA and S1P signaling pathway.

COnCLUDing ReMARKS

Sphingosine-1-phosphate is a dual regulator of the systemic aller-
gic responses. It is an essential signaling molecule generated upon 
IgE-FcεRI crosslinking and enhances the activation of MCs in 
allergic diseases such as asthma. On the other hand, S1P signaling 
through its receptors is required for recovery from anaphylactic 
shock. The role of non-coding RNAs is well explored in cancer; 
however, their role in allergy and inflammation is still in infancy, 
and their role needs to be explored as a potential therapeutic 
target and biomarker for asthma.
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