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Alterations in gut microbial colonization during early life have been reported in infants 
that later developed asthma, allergies, type 1 diabetes, as well as in inflammatory bowel 
disease patients, previous to disease flares. Mechanistic studies in animal models have 
established that microbial alterations influence disease pathogenesis via changes in 
immune system maturation. Strong evidence points to the presence of a window of 
opportunity in early life, during which changes in gut microbial colonization can result 
in immune dysregulation that predisposes susceptible hosts to disease. Although the 
ecological patterns of microbial succession in the first year of life have been partly 
defined in specific human cohorts, the taxonomic and functional features, and diversity 
thresholds that characterize these microbial alterations are, for the most part, unknown. 
In this review, we summarize the most important links between the temporal mosaics 
of gut microbial colonization and the age-dependent immune functions that rely on 
them. We also highlight the importance of applying ecology theory to design studies 
that explore the interactions between this complex ecosystem and the host immune 
system. Focusing research efforts on understanding the importance of temporally struc-
tured patterns of diversity, keystone groups, and inter-kingdom microbial interactions for 
ecosystem functions has great potential to enable the development of biologically sound 
interventions aimed at maintaining and/or improving immune system development and 
preventing disease.
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iNTRODUCTiON

Recent advances in immune-mediated disease research have provided a considerable body of proof 
revealing the importance of the early gut microbiome for neonatal immune system development and 
disease pathogenesis [see Ref. (1) for a review]. The drastic increase of allergies and other immune-
mediated diseases in industrialized countries has been hypothesized to be a result of deficiencies 
in the exposure to microbial organisms and their products, resulting in impaired immune system 
development, a concept first introduced as the hygiene hypothesis (2, 3). Pioneer work has identified 
the first 6 months after birth as a “window of opportunity” (4–7) during which contact with specific 
microbe-associated molecular patterns (MAMPs) triggers a cascade of reactions crucial for infant 
gut maturation (8–10). Disrupting early gut community succession may lead to dysbiosis, a state of 
ecological imbalance ensuing when the community loses key taxa, diversity, and/or metabolic capac-
ity. This state can lead to a reduction of colonization resistance, allowing for a subsequent bloom in 
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TAbLe 1 | Definition of selected ecological concepts.

Concept Definition

Complex adaptive 
system

A system composed of a multitude of autonomous and 
interdependent actors that share a variety of interactions, 
and behave as a unified whole in reacting and adjusting 
to changes in the environment (22)

Emergent property A system’s property that its components lack individually

Stochasticity The unpredictable fluctuation of environmental conditions

Temporally structured 
ecosystem

An ecosystem in which emergent properties  
(e.g., taxonomic and functional diversity, resilience) rely 
on a conserved succession of events ordered in time

Richness The number of “species” in a community

Alpha-diversity The number of “species” and their abundance within a 
community or the mean in a collection of communities 
(i.e., Shannon index)

Beta-diversity The absolute turnover in community composition often 
measured as communities’ pair-wise dissimilarity in 
microbial ecology, also defined as the ratio between 
regional and local species diversity

Taxonomic diversity The number and the relative abundance of species or 
taxa in a community

Functional diversity The variety of processes or functions in a community  
that are important to its structure and dynamic stability

Resilience A system’s or community’s capacity to promptly return  
to its initial state after a perturbation

Resistance A system’s or community’s capacity to resist or impede 
changes in its state while withholding a perturbation

Selection A key evolutive process in which genetic and 
environmental pressures determine which organisms 
succeed at survival and reproduction

Keystone species An exceptionally important species whose presence is 
crucial in maintaining the organization and diversity of  
the ecological community (23, 24)

Succession A pattern of changes in specific composition of a 
community after a radical disturbance or after the 
opening of a new patch in the physical environment  
for colonization (25)
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opportunistic pathogens [(11); for a definition of relevant ecologi-
cal concepts refer to Table 1]. Concomitantly, microbial dysbiosis 
during infancy may also lead to health-related consequences in 
the neonatal stage or later in life. Preterm neonates can develop 
necrotizing colitis (NEC), a life-threatening disease strongly 
associated with microbial dysbiosis (12). Infants may also experi-
ence an elevated risk of developing inflammatory diseases such as 
asthma and allergies (13, 14), type 1 diabetes (15, 16), celiac disease 
(17), inflammatory bowel disease (18, 19), and obesity (20, 21) 
when exposed to a microbial dysbiosis early in life. Thus, studying 
the patterns of microbiome assembly and how disturbances to 
this process reflect in the developing immune system is of utmost 
importance to understand the origin of human diseases responsi-
ble for enormous health and economic burden to societies.

The infant gut microbiome is a complex ecosystem involv-
ing a great number and diversity of members (e.g. bacteria, 
phages, fungi, viruses, protozoans) that interact in a spatially 
and temporally structured environment (26–28). The neonatal 

gut microbiota can be considered a complex adaptive system in 
which both low-level local interactions and selection mecha-
nisms combine to create high-level patterns (22). Complex adap-
tive systems are non-linear (output not proportional to the input, 
thus impeding predictability) in that they are heavily influenced 
by stochastic temporal events that result in a plethora of vari-
able outcomes (22). The infant gut microbiome supports a set 
of emergent properties contributing to host physiology, includ-
ing nervous, metabolic, and immune development (29–31), as 
well as tissue differentiation (32, 33). The emergent properties 
of a complex adaptive system are considered to be supported 
by combinations of taxonomic and/or functional diversity, as 
well as key taxonomic and/or functional groups, both of which 
insure community resilience (22), and increase the difficulty 
of attributing a cause–effect relationship to unique features or 
groups. Therefore, including community ecology theory to study 
the temporal dynamics of the infant gut microbiome has the 
potential to provide key information about its influence on the 
host immune system maturation.

Until 2 years of age, the human infant microbiome remains 
highly heterogeneous and lacks stability (34), being influenced by 
temporally structured environmental factors such as (1) mat ernal 
factors (35–37), (2) birth (38–41), (3) neonatal nutrition (27, 42, 43),  
and (4) other non-temporally structured factors, such as 
antibiotic treatments (41, 44, 45). The initial intestinal bacte-
rial community composition of vaginally born infants involves 
higher levels of a multitude of bacterial groups (e.g., Atopobium, 
Bacteroides, Clostridium, Escherichia coli, Streptococcus spp. and 
Prevotella), while the community of infants born by C-section 
is dominated by skin-related taxa including Staphylococcus spp. 
(38). Key bacterial groups are also transferred to the infant by 
breastfeeding: Bifidobacterium and Lactobacillus (46–48). The 
multiple studies that have shown how intestinal dysbiosis can 
lead to detrimental immune-mediated outcomes (e.g., asthma, 
allergies, NEC, etc.) [see Ref. (30) for a review] suggest that the 
human immune system relies on an evolutionary conserved 
temporally structured succession of microbiome assembly. 
Unraveling the links between the temporal mosaics of the gut 
microbiome (structured succession patterns) with the emergent 
properties of this ecosystem (e.g., taxonomic and functional 
diversity, resilience, etc.) is key to improve our understanding  
of the importance of the infant microbiome for the development 
of the immune system.

The successful identification of the mechanisms linking the 
infant gut microbiome and immune development depends 
on our capacity to disentangle the relative effects of multiple 
factors (host genetics, environmental factors), key actors  
(e.g., Bac teroidetes, Bifidobacterium, etc.) and their interactions. 
Resilience, the ability of a system to adjust its activity to retain 
its basic functionality after a disturbance, is a crucial property of 
complex adaptive systems (49) and could be a key characteristic 
protecting the infant gut microbiome from reaching a dysbiotic 
state. Here, we review the recent findings on the links between 
infant gut microbiota and immune system maturation. Our 
review highlights the reliance of the neonate immune system 
development on a complex set of host-specific, environmental, 
temporal, and self-organizing characteristics of the infant gut 
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microbiome. We propose that future studies should consider 
multi-level dynamics of the infant gut microbial community 
by disentangling the ecosystem reliance on (1) temporally 
structured patterns of alpha- and beta-diversity, both taxonomic 
and functional; (2) keystone species or microbial groups; and 
(3) inter-kingdom interactions. This will require a conceptual 
framework based on the understanding that the infant gut har-
bors a complex and diverse set of microbial species interacting 
in a temporally structured, multi-level, and non-linear network. 
Rightfully recognizing these structural characteristics has the 
potential to enable the identification of disturbance thresholds 
threatening the healthy development of the infant gut microbi-
ome and its role in immune system training.

AGe-DePeNDeNT iMMUNe SYSTeM 
DeveLOPMeNT

Multiple studies and comprehensive reviews discuss how the 
maturation of the immune system relies on the exposure to 
MAMPs (50–52). Here, we discuss the recent findings demon-
strating that the efficiency of microbial exposure in immune 
system training can be age dependent, suggesting the importance 
of microbial composition and infant gut microbiome temporal 
succession patterns.

The gastrointestinal tract is already anatomically and func-
tionally developed at birth in full-term infants, yet important 
aspects of its maturation occur postnatally and depend on exog-
enous stimulations with microbial cells, metabolites, hormones, 
growth factors, and antigens (53, 54). Recent studies in murine 
models have revealed that several aspects of immune develop-
ment are more permissive to microbial-mediated changes during 
early life, and that certain microbial taxa are crucial in these 
interactions. For instance, oral administration of Bifidobacterium 
breve was effective in inducing proliferation of FoxP3-positive 
regulatory T cells (FoxP3+ Tregs) only if administered during the 
pre-weaning stage in mice (55). This age-dependent promotion 
of an important tolerogenic immune cell was also shown to be 
species specific, thereby suggesting that the tolerogenic gut 
immune response may have adapted to respond to specific—and 
important—bacterial taxa. Bifidobacterium species and subspe-
cies are dominant members of the infant gut microbiome (56) 
and are strong modulators of the immune response (57). Their 
role as keystone taxa of the infant gut is proposed later in this 
review. Another microbial species that cause an age-dependent 
immune effect is the Helicobacter pylori, which ameliorated 
airway hyperresponsiveness more effectively when administered 
before weaning in two relevant mouse models (58), although it 
remains unclear if and when this bacterium colonizes the infant 
gastrointestinal tract.

While age-dependent modulation of the host’s immune 
response can be attributed to specific microbial taxa, most studies 
point to global changes in the microbial community (diversity 
shifts, and metabolites of poly-microbial origin) as drivers of 
immune development. Cahenzli et al. (59) showed that regula-
tion of IgE responses and amelioration of antigen-induced oral 
anaphylaxis is dependent upon increased microbial diversity 
during early life. Their work thus suggests that there may be a 

diversity threshold necessary for proper maturation of these Th2 
immune mechanisms. Furthermore, several other studies have 
demonstrated the immune consequences of the disruption of the 
early-life gut microbial community using antibiotics. Antibiotics 
induce drastic compositional and diversity shifts that lead to 
changes in crucial immune functions, including Treg prolifera-
tion (60, 61), IgE response (60, 62), Th-17 response (61, 63), and 
basophil-mediated Th2-cell responses (62). Given the influence 
exerted by these immune functions on widespread tissues and 
systems, it is not surprising that antibiotic-induced immune 
alterations during early life in animal models aggravate autoim-
mune diabetes (61, 64), allergic lung inflammation (60, 62, 63), 
inflammatory chronic colitis (65), and obesity (20, 21).

Early-life immune development is also reliant on the actions 
of a group of bacterial metabolites known as short-chain fatty 
acids (SCFAs). These compounds are direct by-products of 
bacterial colonic fermentation and are produced at very high 
rates (66). Acetate, propionate, and butyrate are the SCFAs 
produced in highest concentrations in the human gut, and are 
rapidly taken up by the gut epithelium through passive and active 
transport mechanisms (67). SCFAs are essential energy sources 
for colonocytes cells in the mammalian gut, and are precursors 
for gluconeogenesis, liponeogenesis, and protein and cholesterol 
synthesis (68). Among many of their immune functions [reviewed 
in Ref. (66)], SCFAs have been shown to induce extrathymic pro-
liferation of Foxp3+ T cells (68–70), which orchestrate peripheral 
tolerance in mucosal tissues. This critical immune function of 
SCFA has been shown to be relevant for the offspring even if 
exposure occurred before birth. Oral administration of acetate 
during pregnancy was sufficient for the priming of FoxP3+ Treg 
cells and preventing allergic airway inflammation in the adult 
offspring (36), suggesting that in utero exposure to maternal gut 
microbial metabolites contributes to the development of immune 
functions in the airways of the offspring.

In addition to interactions with the developing immune 
system, a recent study by Kim et al. (71) suggests that the early 
gut microbiome confers colonization resistance through the pro-
duction of bacterial metabolites resulting from age-dependent 
colonization with key bacterial taxa. Clostridial species from 
Clostridium clusters IV and XIVa, which increase in abundance 
with age, induced colonization resistance to intestinal mouse  
pathogens Salmonella enterica subsp. typhimurium and Citro
bacter rodentium. Interestingly, the conferred mechanism of 
resistance is unrelated to immune adaptors MyD88 and TRIF, and 
independent of B and T cell function. The settlement of Clostridia 
in the gut of GF mice was also greatly reduced by the absence  
of neonatal bacteria, which may help explain the increased sus-
ceptibility of newborns and young infants to these GI infections.

Collectively, these studies constitute compelling evidence that 
key taxa, microbial community diversity, and bacterial meta-
bolites constitute modulatory triggers of host immune function 
maturation. Although considerable research effort has been 
made, a great deal of the age-dependent processes through which 
microbial exposure drives immune system development remains 
to be identified. The infant gut microbiome temporal succession 
patterns, driven by birth, weaning, and introduction of solid 
foods, match marked changes in host immune function (72, 73). 
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FiGURe 1 | Influence of temporal succession events and environmental factors on the infant gut bacterial microbiome. Only the most important differences in 
bacterial composition are included for each variable, and the size of the circle is proportional to the relative abundance of the bacterial taxa.
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Therefore, future studies designed during these events, such as 
human longitudinal cohorts, hold great potential to improve  
our understanding of the dynamics at play.

TeMPORALLY STRUCTUReD 
eNviRONMeNTAL FACTORS

Succession in ecology is defined as the pattern of changes in a 
community after a disturbance or after the opening of a new 
patch to colonization (74). Correspondingly, succession in the 
infant gut microbiome starts with the arrival of pioneer species 
that transform the gut habitat and enable the settlement of first 
succession species. The identity of the infant gut pioneer and 
first succession species is influenced by factors such as maternal 
factors (e.g., body weight and stress) (35–37), delivery mode 
(38–41), and type of milk consumption [(27, 42); Figure 1]. The 
temporal structure of these environmental factors contributes  
to the identity and dynamics of the infant gut microbiome and 
plays a role in the immune system training.

Prenatal Life
Even before birth, fetal immune development relies on microbial 
products present in the placenta. In an experimental system in 

which germ-free mice were transiently colonized with genetically 
engineered E. coli HA107, maternal gut colonization influenced 
the offspring’s immune system by increasing the intestinal 
group 3 innate lymphoid cells and F4/80+CD11c+ mononuclear 
cells (iMNCs), and strongly altering the offspring’s intestinal 
transcriptional profiles (37). These early shifts in the offspring 
immune system improved the capacity of the pups to avoid 
inflammatory responses to MAMPs and intestinal microbes’ pen-
etration, thus suggesting that microbial training of the immune 
system starts in utero (37). Despite some reports suggesting that 
fetal colonization may begin in utero (75, 76), lack of appropriate 
contamination controls and failure to show bacterial viability 
in these studies yields this work inconclusive and inadequate to 
disproof the currently accepted view of the placenta as a sterile 
environment (77). More importantly, several studies have shown 
that early colonization of the infant gut is strongly driven by mode 
of birth (39–41, 78), thus suggesting that direct colonization of 
the infant gut most likely begins after membrane rupture, dur-
ing labor and birth. For example, Backhed et al. (39, 40) showed 
that the gut microbiome of vaginally born infants exhibited an 
enrichment in Bifidobacterium, Bacteroides, Escherichia, and 
Parabacteroides. In comparison, the gut microbiome of infants 
born through cesarean sections (C-sections) was enriched in 
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microbes associated with the skin, the mouth, and the surround-
ing environment.

birth
The infant’s gut habitat changes rapidly after birth with facultative 
anaerobes species (e.g., E. coli, Staphylococcus, and Streptococcus) 
colonizing first and consuming the available oxygen (79).  
A longitudinal study following 39 infants from birth demon-
strated that mode of delivery impacts Bacteroides populations in 
the infant’s gut microbiota between 6 and 18 months of age (41). 
Yassour et  al. (41) showed that, in comparison with vaginal-
birth, most infants born by C-section lacked the presence of the 
Bacteroides genus until about 6–18 months of age. Their work 
also showed that a higher abundance of Bifidobacterium species, 
both in C-section and vaginally delivered infants, was detected 
concomitantly with a lower abundance of Bacteroides, suggest-
ing that infant gut microbial communities are also influenced 
by microbe–microbe interactions. Delayed colonization with 
Bacteroides species was also associated with cesarean sections 
in a study of 24 infants (80), a finding that was linked to lower 
levels of Th-1-associated chemokines CXCL10 and CXCL11 
in blood. Bacteroides species are important and extremely 
common members of the human gut microbiome, capable of 
fermenting a variety of fibers in the colon (81) and modulating 
the immune system (their potential as a keystone taxa and role 
in immunomodulation is discussed later in this review). Hence, 
vertical transmission during vaginal birth is likely a structured 
environmental factor that promotes colonization by members  
of this influential bacterial group.

Gut microbiome differences driven by mode of birth have 
been reported in almost all microbiome infant studies that 
recorded this variable (28, 38, 82–87). Although the cumulated 
evidence points to the mode of birth being a major influence in 
the gut pioneer microbiome, one recent study performed on 115 
infants showed no differences in the meconium microbial com-
munities between both mode of birth (C-section and vaginal 
delivery) (88). Unfortunately, key bio-statistical parameters of 
their analyses are missing from the paper, crucial information 
to assess the robustness of their results. What still remains 
unclear is how long these differences last, with only a few reports 
showing differences beyond early childhood (82). Nonetheless, 
changes in important microbial groups, community diversity, or 
functions during this critical and permissive window of immune 
development are likely to induce immune alterations that may 
remain beyond the age at which these taxonomic differences are 
no longer detectable.

Intriguingly, the taxonomic identity of pioneer colonizers not 
only depends on birth but also on gestational age. A 1-month 
longitudinal study of 58 preterm infants in a neonatal intensive 
care unit showed that time post-conception can also impact the 
type of early colonizers in the premature gut yet not the pattern 
of bacterial succession (89). Members of the Bacilli class appear 
as the initial colonizers in premature infants, which contrasts 
with the initial colonization with Enterobacteriaceae members 
in most term babies (Figure 1). In addition, this study showed 
that gut microbiome follows a progression strongly determined 
by host biology factors, suggesting that, during the first month 

after delivery, the genetic and physiologic characteristics of  
the preterm infant gut drive a conserved pattern of succession in 
gut microbiome.

Milk Consumption
In addition to mode of birth and post-conceptional age, diet 
during early infancy strongly impacts community structure 
and diversity. Comparisons between breastfed and formula-fed 
infants have shown that Bifidobacterium spp. and Lactobacillus 
spp. predominate in breastfed infants whereas formula-fed 
infants exhibit higher proportions of Bacteroides spp., Clostridium 
spp., Streptococcus spp., Enterobacter spp., Citrobacter spp., and 
Veillonella spp. (39, 40, 90–93). Breast milk can modulate the 
infant gut microbiome through different mechanisms. First, 
human breast milk contains a significant number of bacteria that 
is passed to the infant constantly during the first months of life 
(46, 47, 94–98). Besides being a direct source of microbes, human 
milk contains a group of unconjugated glycan resistant to human 
enzymatic digestion known as human milk oligosaccharides 
(HMOs). These compounds act as prebiotics for key infant gut 
taxonomic bacterial groups including Bifidobacterium (99–103) 
and Bacteroides species (104). Importantly, fermentation of 
HMOs results in the production of SCFAs (102, 103), increases 
secretory immunoglobulin A (sIgA) production, and improves 
gut microbiome resistance to pathogens (105, 106).

Breastfeeding also influences the training of the infant immune 
system through the presence of antimicrobial compounds in 
the human milk (lactoferrin, lysozyme) and immune effectors 
[sIgA, immune cells, and cytokines; (107)]. Bridgman et al. (108) 
demonstrated that sIgA abundance is associated with breastfeed-
ing status in a cohort of 47 4-month-old infants. sIgA is critical 
for the infant gut mucosal immune defense [see Ref. (109) for a 
review] mainly through a process known as immune exclusion, 
where sIgA adheres to bacterial cells and antigens and prevents 
their access to the gut epithelium (110). Although this antibody 
is initially acquired through breastfeeding, the infant gut micro-
biota will ultimately stimulate its local production through the 
maturation of B cells (111). Notably, the risk of developing atopy 
is increased if B  cells maturation is delayed (112–115), stress-
ing the importance of breastfeeding in infant gut microbiome  
and immune development.

Solid Food introduction and weaning
The introduction of solid foods constitutes the last step in early-life 
microbiome succession events, which leads to the consolidation 
of a gut microbial community that remains largely stable for the 
remainder of childhood and adult life. Due to the availability of 
new fiber sources and other substrates, transition to solid foods 
results in an increase of diversity and the enrichment of Bacteroides 
spp., Clostridium spp., Ruminococcus spp., Faecalibacterium spp., 
Roseburia spp., and Anaerostipes spp., as well as the reduction in 
Bifidobacterium spp. and Enterobacteriaceae (39, 40, 116, 117). 
Functionally, solid food introduction increases SCFA production, 
vitamin biosynthesis, and xenobiotic degradation (34, 39, 40).  
Notably, these changes coincide with important aspects of 
digestive development (e.g., pancreatic function and intestinal 
nutrient absorption) and shifts in immune development, some of 
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which are driven by microbes. For instance, the expression of the 
epithelial antimicrobial granule protein, Angiogenin-4 (Ang4), 
and of epithelial fucosylated glycans is markedly increased 
during weaning in conventional but not in germ-free mice. 
Remarkably, colonization with Bacteroides thetaiotaomicron,  
a bacterial commensal that increases in abundance post-weaning, 
was able to induce both Ang4 expression and fucosylated glycan 
reprogramming [Ang4; (118, 119)], strongly suggesting that 
specific host functions have adapted to rely on microbial signals 
that arrive in a temporally structured manner.

Furthermore, it has been suggested that cessation of breast-
feeding, rather than solid food introduction, drives the main 
compositional shifts that result in an “adult-like” gut microbiome. 
In a longitudinal study of 98 infants, an early weaning age (under 
12 months) was associated with an increase in Bacteroides spp., 
Bilophila spp., Roseburia spp., Clostridium spp., and Anaerostipes 
spp. In comparison, breastmilk supplementation beyond this 
age favored a more “immature” community composition, char-
acterized by Bifidobacterium spp., Lactobacillus spp., Collinsella  
spp., Megasphaera spp., and Veillonella spp. (39, 40).

iNFANT GUT COMMUNiTY DiveRSiTY:  
AN iNDiCATOR OF HeALTH?

The impact of early-life dysbiosis on the risk of developing several 
human diseases has led to the hypothesis that there is a critical 
window during which changes in the gut microbiome are most 
influential in immune development. During this “window of 
opportunity,” the infant gut harbors a highly variable and increas-
ingly diverse microbial community of low resilience, which 
renders it easily disrupted by disturbances such as antibiotic 
treatments (41). During this period of time, a loss of diversity or 
change in community composition has the potential to disrupt 
the development of certain aspects of neonate immune system 
and to promote a bloom of pathogens, thus increasing the risk of 
developing immune-mediated and infectious diseases. However, 
it remains unclear if community diversity per  se represents a 
robust indicator of infant gut microbiome disruption, especially 
since (1) there could a threshold to be crossed for the gut eco-
system to suffer a significant loss of function; and (2) diversity as 
a diagnostic tool provides no information on the gut microbial 
community composition or functional properties.

Many studies have argued that a loss of community diversity 
could indicate a disruption of the natural infant gut microbiome 
community. After birth, both the taxonomic and functional 
diversity of the infant bacterial microbiome have been shown 
to increase (88). Life-threatening diseases such as NEC  
have been suggested to occur as an effect of disruption of the natural 
succession in the infant gut microbiome after antibiotic treatment 
(120, 121), lowering community diversity and creating an oppor-
tunity for other bacterial groups (e.g., Gammaproteobacteria) to 
dominate the normal bacterial community (122, 123). At that 
stage, a loss of community diversity can also hinder the train-
ing of the immune system by reducing its ability to recognize 
commensal bacteria [see Ref. (52) for a review]. Recent studies 
have confirmed that a significant loss in gut microbial diversity 

is indicative of an increased risk of developing autoimmune 
diseases (80, 124). In addition, a loss of diversity can promote 
a long-term increase in IgE levels, which has been suggested to 
trigger immune-mediated disorders in mice (59).

However, it remains to be determined if the link between 
the development of immune diseases and the loss of microbial 
diversity is caused by a reduction of microbial species alone or, 
more precisely, by a loss of key taxonomic or functional micro-
bial groups essential to the development of the infant immune 
system. The work of Arrieta et al. (13) on 319 infants in a longi-
tudinal cohort, showed no significant relationship between fecal  
microbial alpha-diversity and the risk of developing asthma. 
Yet, four bacterial taxa (Faecalibacterium, Lachnospira, Rothia, 
and Veillonella), fecal acetate and deconjugated bile acids were 
significantly altered in babies at risk of asthma. By contrast, 
Kostic et al. (15) identified that a significant reduction in infant 
gut community alpha-diversity is a characteristic condition of the 
T1D state in a cohort of 33 infants predisposed to type 1 diabetes. 
This loss in alpha-diversity was combined with an alteration of 
the metabolic pathways and microbial community phylogenetic 
structure (15). These studies suggest that both subtle and global 
changes in community composition may lead to immune impair-
ment and disease development, and that functional dysbiosis 
can occur independently of significant changes in community 
alpha-diversity.

Community alpha-diversity may also not be a reliable indica-
tor across all human populations given its geographic variability 
(27). In a study comparing European to Burkina Faso children, 
De Filippo et al. (125) showed that the latter group had a greater 
gut microbial diversity and shift in community composition, 
potentially associated with their high fiber diet. However, other 
lifestyle factors and environmental exposures may also explain 
these differences. In addition, bacterial alpha-diversity fluctuates 
significantly during the first year of life, making it an unreliable 
ecosystem measurement unless studies are strictly age- and 
population matched. Further, an opposite relationship between 
alpha-diversity and health status occurs during the first weeks 
of life, where lower alpha-diversity and a predominance of a few 
subspecies of Bifidobacterium longum is associated with better 
growth (126).

Another factor that is rarely taken into account when assess-
ing microbiome alpha-diversity is the impact of other non-
bacterial microbes. In a unique study targeting both infant gut 
bacterial and fungal communities, Fujimura et al. (14) showed 
that infant gut bacterial alpha-diversity increased with time 
while the fungal alpha-diversity decreased in reciprocal correla-
tion. This finding suggests that microbial diversity per se might 
naturally fluctuate depending on the targeted organism and that 
currently unexplored inter-kingdom gut microbial associations 
may influence these dynamics. Most interestingly, their work 
demonstrated that the fungal beta-diversity better predicted 
atopy risk than bacterial beta-diversity. Therefore, fluctuations 
in infant gut fungal community composition could play a role 
in influencing infant’s susceptibility to childhood allergies  
and asthma.

The increase in both taxonomic and functional diversity of 
the infant bacterial gut microbiome in the few months after birth 
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appears to be associated with multiple aspects of the immune 
system development, providing further evidence that the 
immune system relies on a temporally structured succession of 
the gut microbiome. However, the infant gut microbial diversity 
per se might not be an indicator conveying enough information 
to be considered as a diagnostic tool. Notwithstanding, stud-
ies to date do suggest that the training of the immune system 
relies on a particular pattern of microbial diversity increasing 
from birth until 3 years old, and that disrupting this pattern can 
increase the risk of developing immune-mediated disorders. 
Future research disentangling the relative impact of species 
richness, community taxonomic, and functional composition 
on the retention of infant gut ecosystem emergent properties 
(e.g., infant immune system development) will provide key 
information for the development of diagnostic tools.

KeYSTONe GROUPS

In community ecology, the concept of a keystone species or 
group of species is described as an actor of a community that 
is so important to its organization and diversity that losing it 
provokes a massive cascade of extinctions and loss of ecosystem 
function (23, 24, 127). In other words, a keystone species has 
a remarkable impact in relation to its abundance (128). In an 
ecosystem, keystone species can belong to any trophic levels, 
from low-level species providing the resources on which a 
plethora of other species depends, to high-level species applying 
top-down regulation on the community. Keystone taxa of the 
infant gut microbiome contribute significantly to the ecosys-
tem by (1) contributing to the establishment of other species;  
(2) by producing important metabolites including SCFAs  
(e.g., butyrate) that trigger local trophic cascades; (3) by improv-
ing ecosystem resistance against invading pathogenic species; 
and (4) by aiding in sustaining a balanced symbiosis with the 
host, which will in turn favor the stability of the microbial eco-
system. Because of the high inter-individual [i.e., Ref. (7)] and 
temporal (27, 34, 39, 40) variability of the infant gut ecosystem, 
identifying keystone taxa is a great challenge. Here, we discuss 
the potential for Bifidobacterium and Bacteroides to be keystone 
taxa and their role on infant immune system training.

Bifidobacterium
Bifidobacteria are dominant members of the infant gut micro-
biome, have a large repertoire of genes for the digestion of 
HMOs (104, 129), and have been isolated from maternal feces, 
human milk, and infant feces (130, 131), demonstrating how 
well adapted they are to the transmission routes and growth 
conditions in the infant gut. B. longum is the predominant spe-
cies in the human gut, but several B. longum subspecies have 
different levels of adaptability and functionality in the infant gut. 
B. longum subsp. infantis (Bifidobacterium infantis), B. longum 
subsp. longum (B. longum), and B. longum subsp. breve (B. breve) 
are commonly isolated from healthy breastfed infant feces, while 
formula-fed infants are also colonized with Bifidobacterium 
adolescentis (132–134). Of these subspecies, B. infantis has the 
largest gene repertoire to digest all HMO structures in human 
milk (129). In addition, when administered as a probiotic 

to preterm neonates, B. infantis colonizes better than other 
sub s pecies (135), which may explain why clinical trials using  
B. lactis or B. breve as a probiotic strain in the prevention of NEC 
have been unsuccessful (136, 137), while 5 out of 6 trials using  
B. infantis have shown to be effective in decreasing NEC inci-
dence in neonates (138–143).

Bifidobacterium species decrease the intestinal luminal pH 
through the production of lactate and acetate, which is consid-
ered a crucial strategy in increasing intestinal nutrient absorp-
tion (144). Acetate accounts for more than 80% of the SCFA 
production in the infant gut (13) [compared to over 50% in the 
adult gut (145)] and is a key metabolite in the early establish-
ment of colonization resistance, by preventing infections with 
enteropathogens (146, 147).

Through a process known as metabolic cross-feeding, where 
the metabolic products of a species or group of species pro-
vide growth substrates for other populations, Bifidobacterium’s 
production of lactate and acetate sustains the growth of other 
species, such as Roseburia, Eubacterium, Faecalibacterium, and 
Anaeroestipes (148–151). In addition to this strong influence of 
microbe–microbe interactions, the sustained growth of other 
microbial species also enables the subsequent production of 
butyrate (152, 153). Notably, the lower abundance of coloniza-
tion with Bifidobacterium in formula-fed babies is associated 
with a lower concentration of lactate and a higher gut luminal  
pH compared to breastfed babies (93, 154), and likely accounts 
for one of the root causes of the striking microbiome discrepan-
cies observed between breastfed and formula-fed infants.

Bifidobacteria also play an exceptionally important role 
through its direct interactions with the developing immune system. 
Besides preventing enteropathogenic infections, Bifidobacterium 
species also protect the infant gut by modulating mucosal bar-
rier function and promoting immunological and inflammatory 
responses (155, 156). The dominance of the infant gut microbiome 
by Bifidobacterium spp. was associated with an improved T-cell-
mediated response to oral and parenteral vaccines and with lower 
neutrophilia at 15 weeks of age (126). B. breve has also evolved 
a mechanism to be protected from the immune system response 
by synthesizing a specific exopolysaccharide that increases its 
competitive power for space and colonization in the mouse  
gut (157, 158).

Collectively, Bifidobacterium species possess important 
stra tegies that insure their colonization at high abundance in 
the infant gut, prevent the growth of competing species that 
disfavor host fitness, and promote immune development. Due 
to the very high microbial inter-individual variation, and the 
number of subspecies found in the infant gut, it remains unclear 
if Bifidobacterium is a biomarker of infant gut health, yet the 
sub-species B. infantis may be a likely candidate.

Bacteroides
Together with Bifidobacterium, Bacteroides are the only groups 
known to use HMOs as a primary nutrient source (102, 103, 159). 
In addition, Bacteroides species are considered generalists— 
organisms with a great capacity to switch dietary nutrient 
sources or host-derived substrates (151). In an elegant study that 
followed the transcriptional profile of the human and murine 
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symbiont, B. thetaiotaomicron, and the structure of murine 
cecal glycans, it was demonstrated that this bacterium has the 
gene encoding capacity to switch from digesting food sugars 
to foraging host mucus glycans (160). The metabolic plasticity  
of this species likely improves their adaptability to the fluctuat-
ing luminal conditions of the developing infant gut, especially 
after weaning and introduction of solid foods. Importantly, 
colonization with Bacteroides species is heavily reliant on natu-
ral events that drive succession patterns, such as vaginal birth 
and breastfeeding (41, 80), suggesting that Bacteroides spp. 
transmission is advantageous for both the host and members of 
this taxa, and that it is highly coevolved.

Certain symbionts are thought to have evolved mechanisms 
through which they influence the host immune system matura-
tion in a way that is beneficial for them. An example of these 
mechanisms is the development of specific metabolic capacity by 
B. thetaiotaomicron (119), a microbial species previously linked 
with angiogenesis in the postnatal intestine development (161). 
This species influences the gut microbial community by regulat-
ing the epithelial glycan synthesis (162), therefore creating a 
specific niche for itself and for other microorganisms with similar 
nutrient biochemical capacity.

Another species involved in immune system development is 
Bacteroides fragilis. Its production of polysaccharide A has been 
shown to suppress inflammation by downregulating interleukin 
(IL)-17 (163). Monocolonization of germ-free mice by B. fragilis 
has been shown to balance Th1 and Th2 responses (164). In 
addition, these monocolonized mice showed an increase in the 
conversion of CD4+ T  cells into IL-10-producing Foxp3+ Treg 
cells, which induced a strong anti-inflammatory effect during gut 
inflammation (165). B. fragilis was also demonstrated to be nega-
tively associated with the expression of toll-like receptor-4 and 
with lipopolysaccharide (LPS)-induced production of multiple 
inflammatory cytokines and chemokines (166).

Intriguingly, recent findings on the links between Bacteroides 
and immune system training suggest that, although they are impor-
tant members of the early gut microbiome, an overabundance  
of Bacteroides spp. and a corresponding increase of exposure to 
their LPS, result in improper stimulation of the innate immune 
system and in inhibition of LPS tolerance in non-obese diabetic 
mice. This mechanism was proposed to explain the disparity 
in type 1 diabetes incidence in Northern Europe, where Russian 
children have reduced Bacteroides spp. abundance and lower 
disease rates, compared to Finnish and Estonian children (16). 
This study highlights the importance of attaining a balanced 
stimulation of the immune response early in life and how specific 
gut microbes have evolved to do so in a temporally structured 
manner. It also underlines the complexity of disentangling the 
effects of particular bacterial species and higher phylogenetic 
groups on the emergent properties of the infant gut ecosystem 
and host fitness.

FUTURe ReSeARCH

At its beginning, complexity theory suggested that ecosystems 
exhibiting a higher complexity were more stable when sustaining dis-
turbances such as species loss (167, 168). However, mathematical 

model simulations of food webs led to the proposal that instead 
of focusing on the stability of individual populations within an 
ecosystem, a better comprehension of complex systems could be 
gained from studying emergent properties such as productivity, 
resilience, and biomass (169, 170). From this point, studies have 
employed multiple properties to characterize ecosystems includ-
ing species richness, taxonomic composition, functional profile, 
the level of interactions between species of the ecosystem, and 
the strength of these interactions. This transition in community 
ecology theory mirrors the improvement of our comprehension 
of complex ecosystems shifting from a singular to a multi-level 
perspective.

In this review, we advocate that the infant gut microbiome 
should be considered as a complex adaptive system crucial to 
the maintenance of various emergent properties (e.g., infant 
immune system training). These ecosystem properties are 
hardly attributable to a single group, instead they seem to 
rely on a temporally structured pattern of bacterial diversity 
increase after birth and the succession of particular keystone 
groups. The properties of complex adaptive systems highlight 
the great challenges faced by studies of the infant gut micro-
biome: a system far-from equilibrium dynamics, characterized 
by permanent novelty and incessant adaptation, dispersed 
multi-level interactions, and the absence of a global controller 
(171). The emergent properties of this ecosystem highlight the 
necessity of prospective, longitudinal infant gut microbiome 
studies, both taxonomic and functional, which will eventually 
allow us to identify the critical points at which this system 
loses its emergent properties and reaches a state of dysbiosis, 
impeding adequate immune system development. In addition, 
there is a need to disentangle the influence of loss of taxonomic 
and functional diversity, as well as of shifts in keystone taxa on 
immune system training and subsequent disease development. 
From past studies, we now understand that the maturation of 
the immune system relies on a temporally structured dynamic, 
starting in utero with maternal effects, influenced by environ-
mental factors (delivery mode, type of milk consumption, 
and solid foods) and host biology, and depending heavily on 
auto-correlated local interactions between microbial groups. 
Further understanding of this complex adaptive system will also 
require (1) sampling a variety of geographically distinct human 
populations, (2) carrying out longitudinal cohorts that sample 
numerous times during the first 12  months, and (3) combin-
ing amplicon-based surveys with functional assays, such as 
metagenomics and metabolomics.

Another important influence in gut microbiome composi-
tion that remains vastly unexplored is the role of non-bacterial 
microorganisms. The role of the virome, the collection of 
viruses colonizing the host, has been previously explored in 
adult animals. Similarly to the bacteriome, the virome strongly 
interacts with the host immune system, with both positive and 
negative consequences for host health [see Ref. (172–174) for 
reviews]. However, it remains unknown what role the virome 
has during early-life immune development. Further, fungi, 
protozoans, and helminths, which are traditionally excluded 
from culture- and non-culture-based studies, are important and 
immunomodulatory members of the gut microbiome, albeit in 
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smaller proportions than bacteria. Nonetheless, it was recently 
shown that fungi species are present at much higher diversity in 
the first months of life, compared to later months, and that this 
change in diversity inversely correlates with bacterial diversity 
[(14); Figure  2]. Future studies directed at exploring inter-
kingdom gut microbial associations during early life and how 

these associations influence the host will provide a more global 
understanding of the microbial triggers influencing immune 
system development.

Eventually, the identification of the critical events and factors 
that influence microbiome resilience and function will enable 
the development of effective interventions aimed at maintaining 
and/or improving immune system development and disease 
prevention. Although an astounding amount of work has been 
carried out to understand the reliance of the immune system 
on the infant gut microbiome, much remains to be elucidated 
on the particular mechanisms responsible for this training. 
Improvements in our understanding will arise from continuing 
multidisciplinary joint efforts between immunologists, microbi-
ologists, clinicians, bioinformaticians, and ecologists.
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