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Aging is the greatest risk factor for developing chronic diseases. Inflamm-aging, the 
age-related increase in low-grade chronic inflammation, may be a common link  
in age-related diseases. This review summarizes recent published data on potential 
cellular and molecular mechanisms of the age-related increase in inflammation, and how 
these contribute to decreased humoral immune responses in aged mice and humans. 
Briefly, we cover how aging and related inflammation decrease antibody responses in 
mice and humans, and how obesity contributes to the mechanisms for aging through 
increased inflammation. We also report data in the literature showing adipose tissue 
infiltration with immune cells and how these cells are recruited and contribute to local 
and systemic inflammation. We show that several types of immune cells infiltrate the 
adipose tissue and these include macrophages, neutrophils, NK cells, innate lymphoid 
cells, eosinophils, T cells, B1, and B2 cells. Our main focus is how the adipose tissue 
affects immune responses, in particular B cell responses and antibody production. The 
role of leptin in generating inflammation and decreased B cell responses is also dis-
cussed. We report data published by us and by other groups showing that the adipose 
tissue generates pro-inflammatory B cell subsets which induce pro-inflammatory T cells, 
promote insulin resistance, and secrete pathogenic autoimmune antibodies.

Keywords: aging, obesity, inflammation, immunity, antibody responses

AGinG AnD ReLATeD inFLAMMATiOn DeCReASe AnTiBODY 
ReSPOnSeS in MiCe AnD HUMAnS

Aged mice and humans have a poor immune response against infectious agents and vaccines (1). 
The antibody-mediated humoral immune response is qualitatively deficient with the production 
of antibodies of lower affinity (2–5) and with self-reactivity (6–8). Defects in T cells (9–11), B cells  
(12, 13), and antigen-presenting cells (14, 15) have been reported and all contribute to the age-
related decrease in antibody production.

Our laboratory has characterized age-related autonomous B cell defects, which are responsible 
for sub-optimal antibody responses of elderly individuals to infections and vaccines (16–20). These 
include a reduction in activation-induced cytidine deaminase (AID), the enzyme necessary for class 
switch recombination, somatic hypermutation, and IgG production, as well as in E47 (13, 21), a key 
transcription factor regulating AID (22). Because AID correlates with optimal B cell function, it can 
be used as a predictive marker of optimal B cell response in humans (16, 17). The decrease in AID 
(4) leads to a reduced ability to generate higher affinity antibodies, e.g., to the influenza vaccine.
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Aging is characterized by “inflamm-aging” (23), a low-grade 
chronic inflammation, which is a risk factor for morbidity and 
mortality of elderly individuals as it is implicated in the patho-
genesis of several disabling diseases of the elderly such as type-2 
diabetes mellitus (24), osteoporosis (25), Alzheimer’s disease (26), 
rheumatoid arthritis (27), and coronary heart disease (28). Our 
results have shown B cell functional deficiencies with increased 
inflammation with age in both mice (29) and humans (19).  
In particular, we demonstrated that increased TNF-α either in 
serum or in B cells contributes to sub-optimal antibody responses 
and we consider this to be a condition where the B cells have been 
made “refractory” to further stimulation by chronic stimulation 
with inflammatory cytokines.

OBeSiTY AS A MeCHAniSM OF AGinG

Among risk factors associated with disability and frailty, obesity 
seems to be a major contributor. Obesity is an inflammatory 
condition in which the innate immune system is chronically 
activated. Obesity contributes to pathologic conditions such 
as type-2 diabetes mellitus (30–32), cancer (33), psoriasis (34),  
atherosclerosis (35), and inflammatory bowel disease (36). 
Obesity is associated with sub-optimal immune responses in 
mice (37, 38) and humans (39).

The adipose tissue is generally separated into visceral adi-
pose tissue (VAT) and subcutaneous adipose tissue (SAT) (40).  
The SAT accounts for ~80% of human adipose tissue, but the 
VAT is more metabolically active (41), and VAT accumulation is 
a greater predictor of obesity-associated mortality.

Fat mass increases with age in mice (42–44) and humans (45) 
and this is associated with low-grade chronic inflammation which 
contributes to the development of insulin resistance (IR) which also 
increases with age. Aging induces a significant increase in fat mass, 
redistribution of body fat with increased VAT, and decreased SAT, 
as well as ectopic VAT deposition. All these are strongly associated 
with worse health conditions in healthy elderly individuals (46). 
Moreover, aging may significantly affect AT function by changing 
the profile of inflammatory mediators produced by the adipocytes, 
modifying pre-adipocyte number and function and AT infiltration 
of macrophages (46), and other lymphocytes (see below).

It has recently been proposed that increased cellular stress in 
the adipocytes with age induces cellular senescence, which in turn 
leads to impaired removal of lipotoxic fatty acids, and increased 
secretion of pro-inflammatory cytokines and chemokines, due to 
the activation of the innate, and adaptive immune systems (47). 
These pro-inflammatory processes not only amplify each other 
but also have systemic consequences. These results suggest that 
cellular senescence is a stress-induced adaptive response that 
develops through major metabolic and secretory readjustments. 
This can occur at any time during life.

Studies in humans have shown that individuals with higher 
total and abdominal adiposity have shorter telomeres (48), sug-
gesting that obesity may accelerate the aging process. Telomere 
length is inversely associated with body mass index (BMI), waist 
to hip ratio, independently of sex, age, fasting glucose and insulin, 
lipid and lipoprotein concentrations, physical activity, smoking 
status, and other metabolic risk factors.

ADiPOSe TiSSUe inFLAMMATiOn

The AT is a major immunologically active organ that contrib-
utes to systemic inflammation through the secretion of pro-
inflammatory cytokines and chemokines, as well as adipokines 
(49). Immune cells represent two-thirds of the stromal vascular 
fraction, and therefore the expansion of the AT during high-fat 
diet increases its ability to act as an immunological organ able to 
control systemic inflammation and metabolism. Chronic inflam-
mation and immune cell infiltration in the AT are hallmark of 
obesity-associated IR and glucose intolerance.

Increased inflammation in the AT is the result of increased 
intrinsic inflammation in the adipocytes, which operates in a 
positive feedback loop, whereby the accumulation of infiltrat-
ing immune cells secrete pro-inflammatory cytokines and 
chemokines following interaction with the adipocytes. This 
feedback loop explains not only local but also systemic inflamma-
tion via the circulating immune cells. Infiltrating immune cells 
are drawn to the AT and become more inflammatory and these 
cells would generate sub-optimal immune responses in obesity by 
circulating to the peripheral lymphoid organs.

Immune cells infiltrating the AT include macrophages, 
neutrophils, NK cells, innate lymphoid cells (ILCs), eosinophils, 
T  cells, B1, and B2 cells. The cellular composition of AT is 
dynamic and is regulated by acute and chronic stimuli including 
diet, body weight, fasting. In general, neutrophils are the first cells 
that infiltrate the expanding AT during high-fat diet, followed by 
macrophages, B, T, and NK cells (43).

In response to energy increase, adipocytes undergo hypertro-
phy, hyperplasia, and die, releasing in the extracellular space their 
cytoplasmic content including the lipid droplets, which cause the 
release of danger-associated molecular patterns such as free fatty 
acids, excess glucose, ATP, ceramides, cholesterol. All these activate 
macrophages expressing TLRs and NLRs, activate the inflamma-
some and initiate the AT inflammatory response, leading to the 
recruitment of monocytes, and increased polarization of mac-
rophages to an inflammatory M1-like phenotype. Macrophages 
represent the primary source of TNF-α in the AT (50).

Neutrophils promote IR through the release of elastase (51), 
myeloperoxidase, and extracellular traps (ETs) (52). Aberrant 
production and reduced clearance of ETs can lead to accumula-
tion of immunogenic self-antigens and promotion of autoim-
mune diseases (53).

NK cells significantly increase in number in the AT of mice fed 
with a high-fat diet. NK cells regulate the number and the func-
tion of AT macrophages through production of pro-inflammatory 
cytokines, mainly TNF-α, and thereby contribute to the develop-
ment of IR. Depletion of NK cells using neutralizing antibodies 
has been shown to protect from IR (54).

Innate lymphoid cells have also been shown to promote IR, 
in particular ILC1s, which trigger M1 macrophage activation 
and inhibit ILC2 function through IFN-γ, thereby contributing 
to chronic inflammation and possibly perpetuating obesity-
associated IR (55, 56).

In obese individuals, pro-inflammatory Th1 cells infiltrate the 
AT (57) and activate M1 macrophages (58), whereas in lean indi-
viduals Th2 cells, T regulatory, and iNKT cells are predominant 
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FiGURe 1 | Mechanisms by which the visceral adipose tissue (VAT) impairs antibody responses. The adipocytes in the VAT secrete more pro-inflammatory 
chemokines which attract B cells via chemokine receptors, as well as pro-inflammatory cytokines. Age-associated B cells (ABCs) are preferentially induced and we 
hypothesize that these cells make pro-inflammatory cytokines and pathogenic antibodies. Marginal zone B cells are not affected. Immune cells traffic to the spleen 
and periphery where there are more ABC in aged and obese mice. Before antigen stimulation the cells secrete increased amounts of inflammatory cytokines  
(TNF-α/IL-6), making them refractory to further stimulation. Fewer antibody-secreting cells producing less Ig are made after antigen stimulation of “refractory” B cells.
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in the VAT and promote secretion of IL-10 and other anti-
inflammatory cytokines from M2 macrophages which maintain 
insulin sensitivity. The abdominal SAT has been reported to be 
dangerous as well in promoting inflammation (59).

Studies elucidating B  cell function in obesity are limited, 
although B  cells have recently emerged as crucial players in 
regulating inflammation in murine AT, by presenting antigens 
to T cells, secreting pro-inflammatory cytokines, and pathogenic 
antibodies (43). In mice, B2 cells accumulate in the AT before 
T  cells, shortly after the initiation of a high-fat diet (60). We 
have recently shown that the adipocytes in murine VAT make 
several pro-inflammatory chemokines (CXCL10/CCL2/CCL5), 
which may recruit B2 cells as they express the corresponding 
receptors (CXCR3/CCR2/CCR3) (61). We believe that B2 cells 
infiltrating the VAT become more inflammatory and these 
cells would generate sub-optimal immune responses once they 
circulate back to the peripheral lymphoid tissues (Figure 1). B2 
cells may also be recruited to the AT through leukotriene LTB4/
LTB4R1 signaling (62).

B1 cells can also be found in the AT, although at lower per-
centages when compared with B2 cells, with B1a (but not B1b)  
being increased in the AT mice fed high-fat diet (43). These 
cells secrete IgM antibodies which have no effect on metabolic 
parameters in contrast with IgG, but they clear self-antigens and 
therefore have a regulatory role by limiting B2 cell activation and 
by promoting B cell tolerance. B10 producing B1 cells in the AT 
have been shown to have protective effects against diet-induced 
obesity and IR (63).

The early recruitment of B  cells promotes T  cell activation 
and pro-inflammatory cytokine production (43). B  cells are 

activated in the expanding AT by pro-inflammatory stimuli and 
release cytokines or chemokines, thus contributing to local and 
systemic inflammation (64, 65). Antibodies secreted by B  cells 
can also regulate lipid absorption from the gut and Bnull mice 
show reduction in lipid absorption (66). This role of B cells in 
lipid adsorption could also shape mucosal immunity and change 
the gut microbiota (43, 67). Moreover, murine (44) and human 
B cells (39) support T cell inflammation.

The ongoing apoptosis in the AT, due to increases in fat 
mass, and consequent hypoxia, induces the release of “self ” 
antigens, including cell-free DNA, and the release of class 
switched IgG antibodies which form immune complexes with 
“self ” antigens, which in turn activate complement (C1q/
C1qR/C3/C3a) and Fc receptors on immune cells, leading to 
enhanced local inflammation, remodeling of the AT, impair-
ment of adipocyte function and of nutrient metabolism, and 
exacerbation of obesity-associated conditions. This represents 
a novel mechanism by which DNA released from cells dying 
in the AT may attract immune cells expressing TLRs, which 
may propagate the inflammatory response, as recently shown 
in mouse macrophages (68).

Obesity is also associated with altered composition of the 
gut microbiota, increased intestinal permeability, and translo-
cation of gut bacterial products into the blood. These include 
lipopolysaccharide and unmethylated CpG DNA, which 
may exert effects systemically or locally in the AT (69, 70). 
Aberrant production and recognition of nucleic acid antigens 
has been suggested to promote activation of immune cells in 
metabolic tissues, leading to the secretion of pro-inflammatory  
cytokines (71).
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HOw THe ADiPOSe TiSSUe AFFeCTS 
AnTiBODY ReSPOnSeS?

Obesity is associated with increased susceptibility to bacte-
rial, viral, and fungal infections (72, 73) and obese individuals 
develop more post-surgical infections than lean individuals  
(74, 75). Moreover, overweight children have impaired antibody 
responses to tetanus toxin (76). Similarly, high-fat diet has been 
shown to increase mortality in mice infected with influenza (37). 
Contributing mechanisms seem to be defects in the generation 
and maintenance of memory CD8+ T cells (77), as well as impaired 
lung wound healing (78). The response to the influenza vaccine 
(39, 79) and to the Hepatitis B vaccine (80) are also compromised 
in individuals with obesity.

B cell function has been shown to be affected by leptin, the 
adipocyte-derived cytokine, member of the IL-6 superfamily, 
linking nutritional status with neuroendocrine, and immune 
functions, whose plasma levels correlate with the amount of body 
fat and BMI. The role of leptin in inflammation is supported by 
the studies in ob/ob mice which are leptin-deficient and have 
reduced secretion of Th1 cytokines (IL-2/IFN-γ/TNF-α/IL-18), 
and increased production of Th2 cytokines (IL-4/IL-10) (81–84). 
Leptin suppresses appetite in mice and humans (85, 86). High-
serum levels of leptin contribute to the inflammatory state of the 
adipose tissue associated with obesity (87, 88). In individuals with 
obesity, leptin levels are associated with leptin resistance (86). 
Leptin activates human peripheral blood B cells from both young 
and elderly individuals to secrete pro-inflammatory cytokines 
(IL-6/TNF-α) and this occurs through activation of JAK2/
STAT3 and p38MAPK/ERK1/2 signaling pathways (89, 90). In 
our recently published article, we stimulated B  cells from lean 
individuals in vitro with leptin. We found pro-inflammatory sign-
aling pathways upregulated (phospho-STAT3, crucial for TNF-α 
production) and anti-inflammatory pathways down-regulated 
(phospho-AMPK, crucial for antibody production), similar to 
what we observed in B cells from individuals with obesity (39).

We have recently discovered further mechanisms through which 
AT inflammation contributes to decreased B cell responses in old 
mice (61). We found AID in stimulated splenic B cells negatively 
correlated with epididymal fat size, showing for the first time a role 
of AT in the down-regulation of B cell function in aged mice. When 
we measured the percentages of the major peripheral B cell subsets 
[follicular (FO), age-associated B cells (ABCs), and marginal zone] 
in the spleens and epididymal VAT of young and old mice, we 
found reduced percentages of the FO subset in the spleen of old 
versus young mice and concomitant increased percentages of the 
pro-inflammatory ABC subset as previously shown (29, 91–93). 
Importantly, percentages of FO were reduced (and percentages of 
ABC were increased) even more in VAT versus spleen.

We have recently shown that the VAT promotes the differentia-
tion of FO into ABCs (61). We demonstrated this by co-culturing 
in transwells for 72 h adipocytes and splenic B cells, in the absence 
of any additional mitogenic stimulus. Results showed increased 
percentages of ABC, which was similar to what we have observed 
in the VAT. To clarify if this was the result of increased expansion 
and survival of ABC versus FO B cells, death of FO B cells, loss 
of cell markers, or a combination of these, we sorted splenic FO 

and ABC from old mice and measured by qPCR the expression of 
several markers described to be differentially expressed in these 
two subsets by a transcriptome analysis performed previously 
by the Marrack group (92). We selected five markers among 
those most differentially expressed in FO versus ABC: Prdm1  
(Blimp-1), FcεRγ1, Tbx21 (T-bet), Kifc3, Stx3. All these mark-
ers were found expressed at higher levels in ABC versus FO, as 
expected. Then, we cultured sorted splenic FO B cells from old 
mice in the presence of adipocyte-conditioned medium (ACM) 
and we found that the ACM induced significant increased expres-
sion of ABC markers when compared with complete medium, 
suggesting that FO B cells differentiated into ABC. In order to 
evaluate if the ACM contains factors which may be responsible 
for FO differentiation into ABC, as suggested by an article 
recently published by Cancro’s group (94), we measured by qPCR 
production of IL-21/IFN-γ by the adipocytes. Results showed 
that adipocytes express mRNA for both cytokines.

B cells have been shown to promote IR through activation of 
T cells and production of pro-inflammatory, pathogenic, autoim-
mune antibodies (43). We also found production of class switched 
IgG2c antibodies by B cells in the VAT, and these antibodies were 
detected by intracellular staining of VAT ABCs in the absence of 
stimulation, suggesting that ABC in the VAT are already highly pre-
activated, and are refractory to further stimulation (61). IgG2c have 
been noted to be more autoimmune (95). Our results have shown for 
the first time that IgG2c antibodies are made in the VAT by ABCs, 
and the expression of MHC class I and class II on B cells has been 
reported to be crucial (43), suggesting that B cell-mediated antigen 
presentation to T cells is required for their pathogenic effects.

It has been shown that B  cell depletion with an anti-CD20 
antibody ameliorates metabolic disease, and transfer of IgG from 
high-fat diet mice rapidly induces IR (43). T  cells can also be 
necessary for a pathogenic effect, as adoptive transfer of CD4+ 
T cells into high-fat diet RAGnull mice, lacking both B and T cells, 
was able to block weight gain and reverse IR for months, pre-
dominately through anti-inflammatory Th2 cells (96).

In conclusion, we have summarized emerging data on potential 
cellular and molecular mechanisms for the age-related increase 
in inflammation and how these lead to functional decline and 
decreased humoral responses in aged mice and humans. Overall, 
it appears that persistent inflammation is the driver of age-related 
diseases and that down regulation of inflammatory pathways may 
help to reduce onset and severity of age-related chronic diseases. 
Key challenges for the field will be to identify therapeutic strategies 
of intervention to lose weight will reduce body fat, systemic inflam-
mation, and the pathogenic role of immune cells. Importantly, 
immune responses to fight infections will also be improved.
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