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DExD/H-box helicase 36 (DHX36) is known to be an ATP-dependent RNA helicase that 
unwinds the guanine-quadruplexes DNA or RNA, but emerging data suggest that it also 
functions as pattern recognition receptor in innate immunity. Porcine reproductive and 
respiratory syndrome virus (PRRSV) is an Arterivirus that has been devastating the swine 
industry worldwide. Interstitial pneumonia is considered to be one of the most obvious 
clinical signs of PRRSV infection, suggesting that the inflammatory response plays an 
important role in PRRSV pathogenesis. However, whether DHX36 is involved in PRRSV-
induced inflammatory cytokine expression remains unclear. In this study, we found that 
PRRSV infection increased the expression of DHX36. Knockdown of DHX36 and its 
adaptor myeloid differentiation primary response gene 88 (MyD88) by small-interfering 
RNA in MARC-145 cells significantly reduced NF-κB activation and pro-inflammatory 
cytokine expression after PRRSV infection. Further investigation revealed that PRRSV 
nucleocapsid protein interacted with the N-terminal quadruplex binding domain of 
DHX36, which in turn augmented nucleocapsid protein-induced NF-κB activation. Taken 
together, our results suggest that DHX36–MyD88 has a relevant role in the recognition 
of PRRSV nucleocapsid protein and in the subsequent activation of pro-inflammatory 
NF-κB pathway.

Keywords: porcine reproductive and respiratory syndrome virus, DexD/h-box helicase 36, nucleocapsid protein, 
nF-κB, pro-inflammatory cytokine

inTrODUcTiOn

Virus infection induces innate immune responses through the activation of pattern recognition 
receptors (PRRs), which detect pathogen-associated molecular patterns (PAMPs) and are crucial 
for protection against microbial invasion and maintaining homeostasis (1). Previous studies have 
suggested involvement of various DExD/H-box RNA helicases, for example, DExD/H-box helicase 
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58 (also known as RIG-I) in the initiation of innate immune 
responses (2, 3). Recently, the involvement of other DExD/H-box 
RNA helicases, for instance, DExD/H-box helicase 36 (DHX36), 
in innate immunity has also been extensively studied (2–4).

DExD/H-box helicase 36, also termed RNA helicase associ-
ated with AU-rich RNA element, was initially characterized 
as an ATP-dependent RNA helicase that demonstrates high 
affinity for quadruplex (G4) structures in DNA and RNA (5). 
DHX36 contains a core helicase domain responsible for ATP-
binding/helicase activity and is flanked on either side by N- and 
C-terminal extensions (5). Later, DHX36 has been shown to 
function as a myeloid differentiation primary response gene 
88 (MyD88)-dependent sensor for herpes simplex virus 1 in 
the cytosol of plasmacytoid dendritic cells, and a TIR-domain-
containing adapter-inducing IFN-β (TRIF)-dependent sensor in 
response to influenza and reovirus infection in myeloid dendritic 
cells (2, 3). Whether DHX36 can recognize other virus-derived 
PAMPs except nucleic acids has not been elucidated to date.

Porcine reproductive and respiratory syndrome virus 
(PRRSV) is an enveloped, positive-stranded RNA virus, which 
belongs to the family of Arteriviridae that are grouped together 
with the Coronaviruses into the order Nidovirales (6–8). The 
positive-stranded RNA genome of PRRSV is approximately 
15 kb in length and is packaged by the nucleocapsid (N) protein, 
one of the most abundant viral proteins during infection (9, 10).  
Several pro-inflammatory cytokines including IL-6, IL-8, and 
TNF-α are significantly elevated during PRRSV infection and 
correlate with the persistent infection and tissue pathology 
associated with PRRSV (11–13).

Although lipopolysaccharides treatment results in enhanced 
production of pro-inflammatory cytokines during PRRSV 
infection, the intracellular pathogen sensors that recognize 
PRRSV have not been elucidated yet (14–20). The purpose of 
this work is to identify whether the intracellular pathogen sensor 
DHX36 is involved in PRRSV-induced inflammatory response. 
In this study, we found that the expression levels of DHX36 
in cytoplasm increase after PRRSV infection. Knockdown 
and overexpression analyzes showed that DHX36 is involved 
in both PRRSV and N protein-induced NF-κB signal activa-
tion. Furthermore, co-immunoprecipitation confirmed that  
N protein binds to DHX36, both in transfected HEK293T cells 
and in PRRSV-infected MARC-145 cells. Thus, our studies 
have illuminated a cellular mechanism responsible for PRRSV-
associated inflammatory responses that may contribute to a 
deeper understanding of the infection and pathogenesis of 
PRRSV.

MaTerials anD MeThODs

Virus, cells, and reagents
Porcine reproductive and respiratory syndrome virus WUH3 
strain (GenBank accession number: HM853673.2), isolated 
from the brain of pigs suffering from “high fever” syndrome in 
China at the end of 2006 and identified as a highly pathogenic 
North American type PRRSV (type 2), was amplified and 
titrated as described previously (21). UV-inactivated PRRSV 

was irradiated 30  cm under short-wave (254  nm) ultraviolet 
light (40 W) for 1 h. Loss of infectivity was confirmed by the 
inability of the UV light-exposed viruses to produce cytopathic 
effect on monolayers of MARC-145 cells. MARC-145 cells were 
grown and propagated in Dulbecco’s Modified Eagle medium 
(Invitrogen, Carlsbad, CA, USA) supplemented with 10% heat- 
inactivated fetal bovine serum, at 37°C in a humidified 5% 
CO2 incubator. HEK293T  cells were cultured and maintained 
in RPMI-1640 (Invitrogen) supplemented with 10% heat-
inactivated fetal bovine serum. Porcine primary pulmonary 
macrophages (PAMs) used in this study have been described 
previously (22).

Mouse monoclonal anti-hemagglutinin (anti-HA), anti-
FLAG, and anti-β-actin antibodies were purchased from ABclonal 
Biotechnology. Anti-FLAG polyclonal antibody (Macgene, 
China), anti-DHX36 polyclonal antibody (Proteintech, China), 
anti-TRIF polyclonal antibody (Proteintech, China), anti-MyD88 
polyclonal antibody (Proteintech, China), anti-HSP90 polyclonal 
antibody (Proteintech, China), anti-LaminA  +  C polyclonal 
antibody (Proteintech, China), anti-IκBα, anti-NF-κB P65, and 
anti-phosphor-p-P65 polyclonal antibodies (Cell Signaling) were 
purchased and used according to the manufacturers’ recom-
mendations. Horseradish peroxidase-conjugated anti-mouse or  
anti-rabbit IgG antibodies were purchased from Beyotime 
Institute of Biotechnology (Jiangsu, China). PRRSV N protein 
monoclonal antibody was produced from hybridoma cells 
derived from Sp2/0 myeloma cells and spleen cells of BALB/c 
mice immunized with recombinant N protein from PRRSV 
strain WUH3.

Plasmids
The FLAG or HA epitope tag was amplified by PCR and cloned 
into the pCAGGS-MCS vector to generate the pCAGGS-FLAG 
or pCAGGS-HA plasmid, encoding an N-terminal FLAG or 
HA tag. Expression plasmids for FLAG-tagged DHX36 were 
constructed by PCR amplification of the cDNA from PAMs. 
Plasmids encoding truncated DHX36 were constructed by PCR 
amplification using the specific primers listed in Table S1 in 
Supplementary Material. The HA-tagged expression plasmid 
encoding the PRRSV N protein (pCAGGS-HA-N) used in this 
study, and its expression was confirmed with HA-tag immuno-
blotting (23). Reporter plasmids NF-κB reporter plasmid and 
pRL-TK were described elsewhere (21). All constructs were 
confirmed by DNA sequencing.

rna extraction and real-time rT-Pcr
MARC-145 cells grown in 24-well plates were infected with 
PRRSV or mock-infected at an MOI of 1. Total RNA was isolated 
at the indicated time points using TRIzol reagent (Invitrogen). 
Real-time RT-PCR was performed using SYBR Green Real 
Time PCR Master Mix (Toyobo Biologics, Osaka, Japan) in a 
LightCycler 480 (Roche Molecular Biochemicals). Individual 
transcripts in each sample were assayed three times. The PCR 
conditions were as follows: initial denaturation for 10  min at 
95°C, followed by 40 cycles of 15 s at 95°C, 15 s at 58°C, and 40 s 
at 72°C. The fold change in gene expression relative to normal 
was calculated using the delta delta cycles to threshold (ΔΔCT) 
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method (24). Primers (Table S2 in Supplementary Material)  
were designed using the Primer Express software (version 3.0; 
Applied Biosystems, Carlsbad, CA, USA).

Transfection and luciferase  
reporter assay
Transient transfection was carried out using Lipofectamine 2000 
(Invitrogen). MARC-145 cells were seeded on 24-well plates at a 
density of 2–4 × 105 cells/well and cultured until the cells reached 
approximately 70–80% confluence. Cells were then transfected 
with the indicated plasmids or small-interfering RNA (siRNA) 
in triplicate. For each transfection, 0.2 µg of the NF-κB reporter 
plasmid (purchased from Stratagene) along with 0.05  µg pRL-
TK and 80 nM siRNA were used. Firefly and Renilla luciferase 
activities were determined using the dual-luciferase reporter 
assay system (Promega) according to the manufacturer’s instruc-
tions. siRNA sequences used are as follows: si-DHX36, sense 
5′-GGAGCCGGAUUUGUAAGCAGUAGAA-3′, antisense 5′- 
UUCUACUGCUUACAAAUCCGGCUCC-3′; si-MyD88, sense  
5′-CUGGUCCAUUGCUAGUGAATT-3′, antisense 5′-UUCAC 
UAGCAAUGGACCAGTT-3′; si-TRIF, sense 5′-GACACCACCU 
CUCCAAAUATT-3′, antisense 5′-UAUUUGGAGAGGUGGUG 
UCTT-3′; negative control (NC) siRNA, sense 5′-UUCUCCG 
AACGUGUCACGUTT-3′, antisense 5′-ACGUGACACGUUCG 
GAGAATT-3′.

Western Blotting analysis
Cytoplasm and nuclear protein extracts from PRRSV-infected 
PAMs or HEK293T  cells after transfection with N protein 
expression plasmid were prepared with the cytoplasmic and 
nuclear protein extraction kit (Aidlab Biotechnologies Co., Ltd.) 
according to the manufacturer’s protocols. Cells cultured in 
60-mm dishes were prepared by adding 120 µL 2× lysis buffer 
A (65 mM Tris-HCl, pH 6.8, 4% sodium dodecyl sulfate (SDS), 
3% dl-dithiothreitol, and 40% glycerol). The cell extracts were 
boiled for 10  min and then resolved with 8–12% SDS-PAGE. 
The separated proteins were electroblotted (Bio-Rad Transblot 
Cell System, USA) onto a polyvinylidenedifluoride (PVDF) 
membrane (Millipore, Billerica, MA, USA) and run for 3–5 h at 
40 V on ice. The Western blot was probed with specific antibodies, 
and the expression of β-actin was detected with an anti-β-actin 
mouse monoclonal antibody to demonstrate equal protein  
sample loading.

co-immunoprecipitation and 
immunoblotting analyses
To investigate the interactions between proteins, HEK293T cells 
or MARC-145 cells were lysed in immunoprecipitation lysis 
buffer (RIPA). After the lysate was clarified by centrifugation at 
12,000 × g for 10 min, the lysate proteins were incubated over-
night at 4°C with the indicated antibodies. Protein A + G agarose 
beads (30 µl; Beyotime) were then added to each immunopre-
cipitation reaction for another 6 h. The agarose beads were then 
washed three times and the captured proteins resolved on 8–12% 
SDS-PAGE, transferred to PVDF membranes, and analyzed by 
immunoblotting.

indirect immunofluorescence assay
MARC-145 cells seeded on microscope coverslips and placed 
in 24-well dishes were infected with PRRSV (MOI  =  0.5).  
At 24 hpi, the cells were fixed with 4% paraformaldehyde for 
10 min and then permeated with 0.1% Triton X-100 for 10 min 
at room temperature. After three washes with PBS, the cells 
were sealed with PBS containing 5% bovine serum albumin for 
1 h and then incubated separately with rabbit polyclonal anti-
body directed against DHX36 (1:200) and mouse monoclonal 
antibody directed against PRRSV N protein (1:200) for 1 h at 
37°C. The cells were then treated with fluorescein-isothiocy-
anate-labeled goat anti-mouse or Cy3-labeled goat anti-rabbit 
antibodies (Invitrogen) for 1  h, followed by 4′,6-diamidino-
2-phenylindole for 10 min at room temperature. After the sam-
ples were washed with PBS, fluorescent images were acquired 
with a confocal laser scanning microscope (Olympus Fluoview 
ver. 3.1, Japan).

statistical analysis
The statistical analyses (Student’s t test) and generation of  
graphs were performed with the GraphPad Prism® 6 software. 
Data are presented as mean  ±  standard deviation. *P  <  0.05, 
**P < 0.01.

resUlTs

PrrsV infection steadily increases  
the expression of DhX36
To better understand the role of DHX36 in PRRSV infection, 
we first examined the expression levels of endogenous DHX36 
after PRRSV infection. MARC-145 cells were mock-infected 
or infected with PRRSV, and cells were collected at 12, 24, 36, 
and 48 h post-infection (hpi) for Western blotting analyses. As 
shown in Figure 1A, elevated endogenous DHX36 protein was 
first observed at 24 hpi in PRRSV-infected MARC-145 cells and 
achieved stronger intensity at 36  hpi, while stimulation with 
UV-inactivated PRRSV failed to alter DHX36 protein expres-
sion, indicating that the up-regulation of DHX36 depends on 
viral replication.

To substantiate that the expression of DHX36 is induced 
by PRRSV, we then tested the expression of DHX36 in PAMs.  
To this end, PAMs were mock-infected or infected with PRRSV 
or UV-inactivated PRRSV and collected at 12 and 36 hpi before 
subjected to Western blot analyses. As shown in Figure 1B, the 
expression of DHX36 was increased in PRRSV-infected PAMs. 
UV-inactivated PRRSV also failed to alter DHX36 pro tein 
expression. Collectively, above data support the basal presence 
of DHX36 in unstimulated cells and demonstrated that DHX36 
is modulated by PRRSV infection.

DhX36 resided Mainly in the  
cytoplasm after PrrsV infection
The subcellular localization of DExD/H-box helicase protein in 
host cell is consistent with its function. DHX36 is a nucleocy-
toplasmic shuttling protein involved in a wide range of cellular 
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FigUre 2 | Effect of porcine reproductive and respiratory syndrome virus 
(PRRSV) infection on the subcellular distribution of DExD/H-box helicase 36 
(DHX36). (a) MARC-145 cells were mock-infected or infected with PRRSV 
(MOI = 0.5). At 24 hpi, cells were fixed for immunofluorescence analysis of 
DHX36 (red), N protein (green), and nucleus marker diamidino-2-phenylindole 
(blue) localization and merged by confocal microscopy. (B) Nuclear and 
cytoplasmic fractionation of PAMs infected with PRRSV for 24 h. Each 
nuclear and cytosolic fraction was prepared from PAMs and subjected to 
Western blot analysis with an antibody specific for DHX36, LaminA + C as a 
nuclear protein marker, HSP90 as a cytosolic protein marker, or the PRRSV 
N protein.

FigUre 1 | DExD/H-box helicase 36 (DHX36) expression is modulated  
by porcine reproductive and respiratory syndrome virus (PRRSV) but not 
UV-inactivated PRRSV in MARC-145 cells and pulmonary macrophages 
(PAMs). MARC-145 cells (a) and PAMs (B) were mock-infected, infected 
with PRRSV, or UV-inactivated PRRSV at an MOI of 1. Cell lysates were 
collected at the indicated time points and the expression of endogenous 
DHX36 protein was analyzed by Western blot with DHX36-specific antibody. 
Relative levels of DHX36 in comparison with mock-infected cells are 
indicated as fold change below the images. Western blot with a specific 
monoclonal antibody against PRRSV N protein demonstrates PRRSV 
infection. All blots were also incubated with anti-actin antibody to verify 
equal protein loading.
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functions both in the cytoplasm and nucleus (3). To explore 
the subcellular localization of DHX36 after PRRSV infection, 
MARC-145 cells were inoculated with PRRSV for 24  h, and 
indirect immunofluorescence assay was performed with a poly-
clonal antibody against DHX36. The PRRSV-infected cells were 
monitored by monoclonal antibody against viral N protein. As 
shown in Figure 2A, endogenous DHX36 protein was distributed 
diffusely in both cytoplasm and cell nuclei in mock-infected 
cells; in contrast, even though some of the DHX36 still resided 
in the nucleus, PRRSV infection resulted in the accumulation of 
DHX36 in the cytoplasm.

To further reinforce this observation, the nuclear and cyto-
plasmic fractions were separated from PAMs at 24 h after PRRSV 
infection, followed by Western blot analyses. As expected, 
HSP90 and Lamin A + C, the cytoplasmic and nuclear protein 
markers remained unchanged in their fractions, respectively, 
eliminating the possibility of fractions cross-contamination 
and unequal sample loading (Figure  2B). In accord with the 
results in MARC-145 cells, the increased DHX36 mainly located 
in cytoplasmic fraction in PRRSV-infected PAMs (Figure 2B). 
These results suggest a possibility that PRRSV infection might 
provide potential ligand, which redistributes DHX36 into the 
cytoplasm.

The DhX36–MyD88 axis is involved in 
PrrsV-induced nF-κB activation
In cytoplasm, DHX36 plays important roles in sensing poly I:C 
and viral infection (3, 25). Considering that pigs infected with 
PRRSV may develop severe interstitial pneumonia, we focused 
on the relationship between DHX36- and PRRSV-induced 
pro-inflammatory NF-κB signaling activation. First, we utilized 
DHX36-specific siRNA to silence DHX36. The knockdown 
efficiency of the synthesized siRNA-targeting DHX36 (si-
DHX36) was evaluated by real-time RT-PCR and Western 
blotting analyses. Compared with the cells treated with NC 
siRNA, cells transfected with si-DHX36 significantly decreased 
DHX36 expression at protein and mRNA levels (Figure  3A). 
Next, we assessed the impact of DHX36 silencing in response 
to PRRSV stimulation. Poly I:C was used as a positive control.  
As expected, when DHX36 was knocked down in MARC- 
145 cells, the poly I:C-induced activation of NF-κB-promoter-
dependent luciferase activity was less pronounced (Figure 3B). 
Similarly, compared to DHX36-knockdown MARC-145 cells, 
cells transfected with NC siRNA induced high levels of NF-κB 
activation following stimulation with PRRSV, highlighting the 
importance of DHX36 for NF-κB signal activation in response 
to PRRSV infection (Figure 3B).

To further validate the function of DHX36 in PRRSV-induced 
activation of NF-κB, we again stimulated NF-κB promoter 
activity using PRRSV after DHX36 overexpression. Synthetic 
RNA duplex poly I:C was also included for comparison. Under 
the same conditions, overexpression of DHX36 significantly 
augmented the poly I:C- and PRRSV-induced activation of the 
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FigUre 3 | DExD/H-box helicase 36 (DHX36) is involved in porcine 
reproductive and respiratory syndrome virus (PRRSV)-induced NF-κB 
activation in MARC-145 cells. (a) MARC-145 cells were transfected with 
small interfering RNA (siRNA)-targeting DHX36 or control siRNA. Thirty-six 
hours later, real-time RT-PCR and Western blot were performed to analyze 
the mRNA and protein expression of DHX36. (B) MARC-145 cells were 
co-transfected with the NF-κB reporter plasmid, pRL-TK plasmid, along with 
the indicated siRNA. At 24 h after transfection, cells were stimulated by poly 
I:C (1 µg/ml) or infected with PRRSV (MOI = 1) for 24 h. Cells were then 
collected and lysed for dual-luciferase assay. (c) MARC-145 cells were 
transiently transfected with either DHX36 or control plasmid along with NF-κB 
luciferase reporter plasmid. At 36 h post-transfection, cells were stimulated 
with mock, PRRSV (MOI = 1) or poly I:C (1 µg/ml, transfected with 
Lipofectamine) followed by luciferase assay.
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NF-κB promoter as compared with empty vector-transfected  
cells (Figure 3C).

Two adaptor molecules, TRIF and MyD88, have been reported 
to be utilized by DHX36 to mediate downstream signaling (2, 3).  
To further identify which adaptor is utilized by PRRSV to 

induce NF-κB activation, we again used siRNA to knock down 
endogenous MyD88 or TRIF and confirmed the knockdown 
efficiency by real-time RT-PCR and Western blotting analyses 
(Figures  4A,B). As shown in Figure  4C, compared with NC 
siRNA, knockdown of MyD88 significantly reduced PRRSV-
induced NF-κB activation, but no appreciable change was 
detected after knockdown of TRIF. We further validated this 
observation by Western blotting analysis of IκBα expression 
level and P65 phosphorylation. To this end, MARC-145 cells 
were transfected with DHX36-, MyD88-, and TRIF-specific 
siRNA or control scrambled siRNA, after which the cells were 
infected with PRRSV, and cell extracts were prepared and sepa-
rated by SDS-PAGE, followed by immunoblotting. Consistent 
with the results of the dual-luciferase assay, Western blotting 
showed that IκBα protein degradation and P65 phospho-
rylation were strongly impaired in both DHX36- and MyD88-
knockdown cells, whereas these parameters barely changed in 
TRIF-knockdown cells (Figure 4D). These results indicate that 
MyD88 is the key downstream adaptor of DHX36 responsible 
for PRRSV-induced NF-κB activation.

DhX36 and MyD88 silencing impair 
PrrsV-induced expression of nF-κB-
Dependent Pro-inflammatory cytokines
NF-κB is the key transcription factor for pro-inflammatory 
cytokine production following PRRSV infection (26–28). 
DHX36 is involved in PRRSV-induced NF-κB activation, thus 
theoretically, it should be associated with PRRSV-induced 
cytokine production. To test this, MARC-145 cells were trans-
fected with DHX36-specific siRNA to knock down endogenous 
DHX36 expression, and then infected with PRRSV. At 36  hpi, 
cells were collected for real-time RT-PCR to analyze the 
expression of various cytokines. As shown in Figures  5A–D, 
silencing of endogenous DHX36 led to drastic reduction of IL-6 
(Figure 5A), IL-8 (Figure 5B), TNF-α (Figure 5C), and RANTES 
(Figure  5D) mRNA expression in PRRSV-treated MARC-145 
cells. Accordingly, knockdown of MyD88 also resulted in >40% 
loss in cytokine production (Figures  5A–D), indicating that 
DHX36 is critical for PRRSV-induced cytokine transcription 
and that DHX36-driven pro-inflammatory cytokine expression 
is dependent on MyD88.

PrrsV n Protein-induced nF-κB 
activation involves DhX36
Among PRRSV-encoded proteins, the N protein has been 
identified as the key NF-κB activator (23). To further investi-
gate whether DHX36 is involved in N protein-induced NF-κB 
signal activation, pCAGGS-HA-N, pCAGGS-FLAG-DHX36, 
pRL-TK, and an NF-κB reporter plasmid were transiently 
co-transfected into MARC-145 cells. After 36 h transfection, a 
dual-luciferase assay was performed to detect NF-κB reporter 
activation. As shown in Figure 6A, N protein overexpression 
could initiate the transcription of an NF-κB promoter-driven 
luciferase construct and overexpression of DHX36 further 
augmented N protein’s ability to activate NF-κB. We also evalu-
ated the involvement of DHX36 in N protein-induced NF-κB 
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FigUre 4 | Continued   
DExD/H-box helicase 36 (DHX36) utilizes myeloid differentiation primary 
response gene 88 (MyD88) to activate NF-κB signaling in porcine 
reproductive and respiratory syndrome virus (PRRSV)-infected MARC-145 
cells. (a,B) Silencing efficiency of small-interfering RNA (siRNA) targeting 
MyD88 (a) or TIR-domain-containing adapter-inducing IFN-β (TRIF) 
(B). MARC-145 cells were transfected with the indicated siRNA. Thirty-six 
hours later, real-time RT-PCR and Western blot were performed to analyze 
the mRNA and protein expression of MyD88 or TRIF. (c) MARC-145 cells 
were transfected with the indicated siRNA along with the NF-κB reporter 
plasmid and pRL-TK plasmid. At 24 h after transfection, cells were infected 
with PRRSV (MOI = 1) for 24 h before being lysed for dual-luciferase assay. 
(D) MARC-145 cells were transfected with si-DHX36, si-MyD88, or control 
siRNA. At 36 h after transfection, cells were infected with PRRSV (MOI = 1). 
Cytoplasmic and nuclear extracts were prepared at 36 h post-infection. The 
levels of IκBα, phosphorylated P65, total P65, and β-actin were evaluated by 
Western blotting at 36 hpi, and the blot was probed with a specific 
monoclonal antibody directed against PRRSV N protein to confirm PRRSV 
infection.

FigUre 4 | Continued
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To further confirm NF-κB activation, we examined the 
phosphorylation and nuclear translocation of NF-κB subunit 
P65 in cells co-expression of N protein and DHX36. As shown 
in Figure  6C, the amount of phosphorylated P65 and nuclear 
P65 protein increased, while total P65 was unaltered in cells co-
expressing N protein and DHX36, compared to cells expressing 
only N protein. These results indicate that forced expression 
of N  protein in MARC-145 cells significantly activates NF-κB 
signaling and this effect involves DHX36.

DhX36 interacts with n Protein via 
n-Terminal Domain
To test whether PRRSV N protein might function as a ligand 
of the intracellular sensor DHX36 to initiate NF-κB signaling 
activation in mammalian cells, we transfected HEK293T cells 
with FLAG-tagged DHX36 and HA-tagged N protein then 
examined their interaction. As shown in Figure  7A, DHX36 
was detected in anti-HA co-immunoprecipitates from N pro-
tein co-transfectants but not from cells co-transfected with the 
control plasmid, indicating that FLAG-tagged DHX36 forms a 
complex with HA-tagged N protein in co-immunoprecipitation 
assays.

Full-length porcine DHX36 cDNA comprises 1012 amino 
acid residues, containing a helicase core domain and is flanked 
on either side by N- and C-terminal extensions (Figure  7B). 
To examine which domain of DHX36 might be involved in  
N protein binding, five mutants with deletion of different domains 
of DHX36 were constructed by mutagenesis (Figure  7B). 
HEK293T cells were co-transfected with various combinations 
of FLAG-tagged full length or deleted versions of DHX36 and 
HA-tagged N protein. As shown in Figure 7C, the CO-IP experi-
ments indicated that mutants with deletion of the N-terminal 
domain of DHX36 were incapable of interacting with PRRSV 
N protein.

Finally, we examined whether N protein interacted with endog-
enous DHX36 after PRRSV infection. To address this, MARC-145 
cells were mock infected or infected with PRRSV (MOI = 0.5) 
for 24 h before cells were harvested. The endogenous DHX36 

activation by knockdown of endogenous DHX36. As shown in 
Figure 6B, we observed that loss of DHX36 led to a significant 
decrease in the ability of N protein to activate luciferase under 
control of the NF-κB promoter.

http://www.frontiersin.org/Immunology/
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FigUre 5 | The DExD/H-box helicase 36 (DHX36)–MyD88 axis is involved in porcine reproductive and respiratory syndrome virus (PRRSV)-induced production of 
pro-inflammatory cytokines. (a–D) MARC-145 cells were transfected with si-DHX36, si-MyD88 or negative control small interfering RNA for 24 h prior to PRRSV 
(MOI = 1) infection for 36 h. The mRNA expression of IL-6 (a), IL-8 (B), TNF-α (c), and RANTES (D) was evaluated by real-time RT-PCR.

FigUre 6 | DExD/H-box helicase 36 (DHX36) is involved in N protein-
induced NF-κB activation. (a) MARC-145 cells were transfected with the  
N protein and/or DHX36 along with NF-κB reporter plasmid and the  
pRL-TK plasmid. Cells were collected for dual-luciferase assay at 36 h 
post-transfection. (B) MARC-145 cells were transfected with either DHX36 
small-interfering RNA (siRNA) or negative control siRNA. At 24 h post-
transfection, cells were transfected with NF-κB reporter plasmid and pRL-TK 
plasmid along with N protein. After a further 36 h, cells were collected and 
lysed for dual-luciferase assay. (c) HEK293T cells were co-transfected with 
expression vectors encoding FLAG-DHX36 and/or HA-N. Cytoplasmic and 
nuclear extracts were prepared at 28 h post-transfection and subjected to 
Western blot analysis with antibodies specific for P65 or p-P65.
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was then precipitated, and immunoblotting was performed 
with an anti-N monoclonal antibody. As shown in Figure 7D, 
CO-IP analysis indicated that N protein associated with DHX36 
in PRRSV-infected MARC-145 cells. Besides, cytoplasmic 
fractions contained both DHX36 and N protein in PRRSV-
infected cells, which provided evidence of their colocalization 
(Figures  2A,B). Collectively, the above results indicate that 
DHX36 recognizes N protein and contributes to both PRRSV- 
and N protein-induced NF-κB pathway activation.

DiscUssiOn

Modulation of the inflammatory response in the respiratory 
tract contributes significantly to PRRSV pathogenesis as well 
as lung disease severity, but the mechanism is poorly under-
stood (6, 15, 29, 30). In this study, we demonstrate that PRRSV 
infection significantly increases NF-κB-driven inflammatory 
cytokine production by activating the DHX36–MyD88-P65 
signaling cascade. Knockdown of DHX36 inhibits both 
PRRSV- and N protein-induced activations of the NF-κB 
signaling. Our findings suggest a new mechanism through 
which PRRSV employs a viral nucleocapsid protein to initiate 
DHX36-dependent innate responses to promote activation of 
NF-κB pathway (Figure 8).

Nucleocapsid protein has been identified as the key NF-κB 
activator among PRRSV-encoded proteins in previous studies 
(23, 31); however, it remains unclear, which PRRs recognize this 
protein and contributes to NF-κB pathway activation. In fact, 
host cells possess a number of PRRs to detect invading virus (28). 
Viral proteins in some cases can serve as PAMPs to be recognized 
by certain PRRs such as TLR2 and TLR4, to trigger the innate 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


8

Jing et al. PRRSV Activates DHX36–NF-κB Pathway

Frontiers in Immunology | www.frontiersin.org October 2017 | Volume 8 | Article 1365

FigUre 7 | Porcine reproductive and respiratory syndrome virus (PRRSV) N protein interacts with DExD/H-box helicase 36 (DHX36). (a) HEK293T cells were 
co-transfected with expression vectors encoding FLAG-DHX36 and/or HA-N. Cell lysates were co-immunoprecipitated with an anti-hemagglutinin antibody and 
immunoblotted with an anti-FLAG antibody to assess the interaction between DHX36 and N protein. (B) Schematic representation of DHX36 mutants. Structurally, 
DHX36 consists of a highly conserved catalytic core (214–618 aa) flanked by ancillary N-terminal region (1–110 aa) and C-terminal region (674–1012 aa), which have 
been shown to provide substantial substrate specificity through interaction with RNA or proteins. (c) CO-IP and immunoblot analysis of HEK293T cells transfected 
with deletion mutants of FLAG-DHX36 along with vector for HA-N. (D) Anti-DHX36 immunoprecipitation and immunoblot analysis of extracts from MARC-145 cells 
infected with PRRSV for 24 h. Cell lysates were also immunoprecipitated with rabbit normal IgG as control.

immune response (32, 33). In this study, we demonstrate that 
the N protein of PRRSV binds to DHX36 in both transfected 
HEK293T  cells and PRRSV-infected MARC-145 cells. The 
interactome map of the PRRSV N protein has been examined 
using a proteomics approach, and several DExD/H-box helicase 
superfamily proteins, including DDX3X, DDX5, DDX17, DHX9, 
DHX30, and DHX36, were identified (34, 35). Consistent with 
this observation, our work not only validated the interaction 
between N protein and DHX36 but further showed that the 
N-terminal domain of DHX36 was responsible for mediating 
binding of PRRSV N protein. In addition, inhibition of DHX36 
expression by specific siRNA impaired N protein-mediated 

NF-κB activation. Our study therefore provides evidence that a 
virus-derived protein can bind to the cytoplasmic PRR DHX36 
and can subsequently stimulate NF-κB activation.

During the last decade, several reports have illustrated dif-
ferential functions of DExD/H-box helicase superfamily proteins 
in PRRSV infection. For example, overexpression of DDX3X 
 was found to significantly inhibit PRRSV replication in MARC-
145 cells (36). In addition, it has been shown that DDX5 plays 
a positive role in the replication of PRRSV via its interaction 
with viral nsp9 in PRRSV-infected MARC-145 and PAM cells 
(37). More recently, DHX9 was reported to be recruited by 
the N protein during PRRSV infection to aid the synthesis of 
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FigUre 8 | Proposed model illustrating the DExD/H-box helicase 36 
(DHX36)–MyD88 axis involvement in PRRSV N protein-induced NF-κB 
signaling. PRRSV infection induces the up-regulation and relocalization  
of DHX36 from the nucleolus to the cytoplasm. DHX36 in the cytoplasm 
senses the N protein of PRRSV and then recruits MyD88 to facilitate P65 
phosphorylation, which in turn initiates NF-κB-dependent IL-6, IL-8,  
TNF-α and RANTES transcription.

viral genomic RNA (38). Although the roles of DExD/H-box 
family proteins in viral replication are well documented, their 
importance in detecting invading virus is just becoming evident. 
In this regard, DDX19a was discovered to be an RNA sensor that 
triggers NLRP3 inflammasome activation and IL-1β production 
by detecting PRRSV genomic RNA (4). Thus, both DDX19a-
NLRP3-related viral RNA sensing and DHX36-mediated viral 
N protein recognition might contribute collaboratively to 
uncontrolled progression of virus-induced inflammation, which 
culminates in exacerbated pathogenesis and development of 
pneumonia.

DExD/H-box helicase 36 was originally identified as cru-
cial for the maintenance of genomic integrity, prevention of 
abortive transcription, and translation initiation (5, 39, 40). 
As an evolutionarily conserved DEAH-box ATP-dependent 
helicase, DHX36 is highly specific for DNA and RNA G4s with 
N-terminal extension motifs required for quadruplex recogni-
tion (5). This N-terminal domain was also found to be both 
essential and sufficient for its localization in stress granules, 
the membraneless RNA- and RNA-binding protein-containing 
complexes that are transiently assembled in stressful conditions 
to promote cell survival (41). Recently, biochemical data have 
shown that DHX36 and double-stranded RNA-activated protein 
kinase (PKR) form a complex in a dsRNA-dependent manner 
and facilitate dsRNA binding, phosphorylation, and activation 
of PKR, processes which are essential for the formation of stress 
granules (25). It is noteworthy that stress granule formation is 

also triggered by PRRSV infection, which in turn facilitates pro-
inflammatory cytokine production (unpublished data). These 
observations imply that there is some unidentified relationship 
between PRRSV-triggered stress granule formation and the 
activation of DHX36 signaling. In addition, Western blots were 
performed to detect the expression of P65 and p-P65 by co-
expression of N protein and the wild-type DHX36 or individual 
DHX36 mutant. We found that, except the wild-type DHX36, all 
DHX36 mutants (mutants a, b, c, d, and e) cannot up-regulate 
the phosphorylation level of P65 when co-expressed with N 
protein (data not shown). This is possibly because DHX36 
mutants a, b, and c lack the C-terminal MyD88-binding domain 
responsible for downstream signaling activation, while mutants 
d and e lose the N-terminal domain responsible for binding with 
PRRSV N protein.

Viral-derived proteins are frequently documented as negative 
regulators of innate immunity (42–49). Consistent with this, it 
has been shown that the PRRSV N protein can suppress IFN 
production by inhibiting IRF3 phosphorylation and nuclear 
translocation (43). Among the viral-derived proteins that are 
involved in PRRSV-induced pathogenesis, identification of 
the major contributor to severely impaired IFN responses and 
the massive inflammation in the respiratory tract associated 
with PRRSV infection, along with dissection of the underly-
ing molecular mechanism, is of critical importance. Although 
recent studies have revealed that several proteins encoded by 
the PRRSV genome independently antagonize IFN signaling, 
only N protein has been widely accepted to possess the ability 
of activating NF-κB signaling (23). Thus, the current study 
sought to identify the mechanisms by which PRRSV N protein 
activates NF-κB-driven inflammatory responses and identified 
that DHX36 is involved in N protein-mediated NF-κB activa-
tion. In fact, the N protein of PRRSV is a multifunctional protein 
in addition to its role in packaging viral genomic RNA (9, 50). 
Several amino acid motifs on the N protein have been identified 
not only to be involved in virus replication but are also associated 
with cellular proteins and signaling pathways (51, 52), such as 
translation initiation and RNA post-transcriptional modifica-
tion (53–55). These studies, together with our work, demonstrate 
the importance of the N protein in the life cycle of Arteriviruses.

In summary, our present study confirms that the expression 
of DHX36 is markedly induced in PRRSV-infected MARC-145 
cells. Knockdown of DHX36 significantly suppresses the NF-κB-
driven pro-inflammatory cytokine production by PRRSV infec-
tion. Moreover, DHX36 interacts with the N protein of PRRSV 
and is involved in N protein-induced activation of NF-κB sign-
aling. This work provides a new understanding of the ability of 
type 2 PRRSV to induce NF-κB activation, but whether DHX36 
is also associated with the pathogenesis of PRRSV EU strain 
(type 1) deserves further investigation.
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