
November 2017 | Volume 8 | Article 16631

Review
published: 28 November 2017

doi: 10.3389/fimmu.2017.01663

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Larry J. Dishaw,  

University of South Florida St. 
Petersburg, United States

Reviewed by: 
Junji Xing,  

Houston Methodist Research 
Institute, United States  

Leticia A. Carneiro,  
Universidade Federal do Rio de 

Janeiro, Brazil

*Correspondence:
Hua-Ji Qiu 

huajiqiu@hvri.ac.cn, 
qiuhuaji@163.com

Specialty section: 
This article was submitted to 

Molecular Innate Immunity,  
a section of the journal  

Frontiers in Immunology

Received: 20 July 2017
Accepted: 13 November 2017
Published: 28 November 2017

Citation: 
Meng X-Y, Luo Y, Anwar MN, Sun Y, 

Gao Y, Zhang H, Munir M and 
Qiu H-J (2017) Long Non-Coding 

RNAs: Emerging and Versatile 
Regulators in Host–Virus Interactions. 

Front. Immunol. 8:1663. 
doi: 10.3389/fimmu.2017.01663

Long Non-Coding RNAs: emerging 
and versatile Regulators in  
Host–virus interactions
Xing-Yu Meng1, Yuzi Luo1, Muhammad Naveed Anwar1, Yuan Sun1, Yao Gao1,  
Huawei Zhang1, Muhammad Munir2 and Hua-Ji Qiu1*

1 State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural 
Sciences, Harbin, China, 2 The Pirbright Institute, Woking, United Kingdom

Long non-coding RNAs (lncRNAs) are a class of non-protein-coding RNA molecules, 
which are involved in various biological processes, including chromatin modification, 
cell differentiation, pre-mRNA transcription and splicing, protein translation, etc. During 
the last decade, increasing evidence has suggested the involvement of lncRNAs in 
both immune and antiviral responses as positive or negative regulators. The immu-
nity-associated lncRNAs modulate diverse and multilayered immune checkpoints, 
including activation or repression of innate immune signaling components, such as 
interleukin (IL)-8, IL-10, retinoic acid inducible gene I, toll-like receptors 1, 3, and 8, and 
interferon (IFN) regulatory factor 7, transcriptional regulation of various IFN-stimulated 
genes, and initiation of the cell apoptosis pathways. Additionally, some virus-encoded 
lncRNAs facilitate viral replication through individually or synergistically inhibiting the 
host antiviral responses or regulating multiple steps of the virus life cycle. Moreover, 
some viruses are reported to hijack host-encoded lncRNAs to establish persistent 
infections. Based on these amazing discoveries, lncRNAs are an emerging hotspot in 
host–virus interactions. In this review, we summarized the current findings of the host- 
or virus-encoded lncRNAs and the underlying mechanisms, discussed their impacts on 
immune responses and viral replication, and highlighted their critical roles in host–virus 
interactions.

Keywords: long non-coding RNAs, viral replication, antiviral response, virus–host interactions, regulatory 
mechanisms

iNTRODUCTiON

With the rapid development of DNA sequencing technologies, the whole genomes of several 
species have been mapped and annotated. The first transcriptome analysis performed a decade 
ago came to a surprising conclusion that only about 2% of the genomic DNA harbors protein-
coding genes (1). In the beginning of the 21st century, Okazaki et al. have analyzed the mouse 
transcriptome based on a cDNA library and identified a mass of non-coding RNAs (ncRNAs), 
which are defined as a class of RNA molecules without protein-coding capacity (2). In addition, 
the Encyclopedia of DNA Elements (ENCODE) project has widely been applied to identify the 
functional DNA elements in the human genome, and showed that approximately 62% of the 
transcriptome is ncRNAs (3, 4), indicating ncRNAs as major components of the transcriptome 
(5). In comparison with mRNAs, less is known about the functions and underlying mechanisms 
of ncRNAs in different biological processes. Based on the sequence length, ncRNAs are usually 
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FiGURe 1 | Classification of ncRNAs. mRNA, messenger RNA; ncRNA, non-coding RNA; miRNA, microRNA; siRNA, small interfering RNA; piRNA, piwi RNA; 
tiRNA, transcription initiation RNA; tRNA, transfer RNA; telsRNA, telomere-specific small RNA; crasiRNA, centromere repeat-associated small interacting RNA; 
snoRNA, small nucleolar RNA; scRNA, small cytoplasmic RNA; snRNA, small nuclear RNA; trans-lncRNA, trans-acting long non-coding RNA; cis-lncRNA, cis-acting 
long non-coding RNA; ceRNA, competing endogenous RNA.
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divided into long ncRNAs (lncRNAs, more than 200  nt) and 
short ncRNAs (sncRNAs, less than 200 nt) (6) (Figure 1).

In recent years, lncRNAs have been found to be critical 
regulators in various biological processes such as cell differ-
entiation, chromatin modification, pre-mRNA transcription 
and splicing, and protein translation and translocation (7–9). 
Under a natural physiological state, lncRNAs usually function 
through enhancing or inhibiting the expression of neighbor-
ing protein-encoding genes (10). However, the investigation 
of potential roles of lncRNAs in virus–host interactions is 
still in the infancy stage. As a wide range of immunity-related 
lncRNAs has been identified based on differential expression 
analysis in response to viral infections, the host lncRNAs 
have been shown to act as regulators in the innate or adaptive 
immune signaling pathways (11, 12). Furthermore, emerging 
evidence demonstrates that viral genomes can transcribe their 
own lncRNAs by using the host transcription machinery, 
and these lncRNAs may be involved in the virus life cycle to 
regulate host or viral gene expression. Meanwhile, viruses can 
also regulate the expression of host lncRNAs to establish and 
maintain persistent infections.

For decades, studies on virus-related host immune responses 
have been focused mainly on genes or proteins. However, recent 
studies have shown that lncRNAs may also participate in these 
biological processes. This review will focus on the lncRNAs 
involved in host–virus interactions and underlying regulatory 
mechanisms.

SOURCeS AND FUNCTiONS OF lncRNAs

Most of eukaryotic lncRNAs are transcribed by RNA polymerase 
II, whereas a limited number of lncRNAs are transcribed by 

cellular RNA polymerase III (13). After transcription and modi-
fication processes, some mature lncRNAs have a similar structure 
to that of mRNA, including methylguanosine at 5′-terminus 
and a polyadenylated [poly(A)] tail at the 3′-terminus (13, 14). 
Indeed, broader analysis has suggested that 39% of lncRNAs 
transcripts contain one or more of the six most common poly(A) 
motifs, compared with 51% observed for coding transcripts (13). 
These properties indicate that there are few particular structural 
features that allow differentiation of lncRNAs from mRNAs. 
Nevertheless, compared with mRNAs, lncRNAs are more specific 
in spatial expression and poorly conserved (15, 16). To date, 
five possible sources of lncRNAs have been verified: (1) DNA 
fragments can be assembled and transformed into a functional 
lncRNA; (2) due to chromosomal rearrangement, two or more 
mutually independent sequences link together to generate a 
lncRNA; (3) due to retrotransposition, duplication of non-coding 
genes can generate functional or non-functional lncRNAs;  
(4) duplication events from two neighboring tandems give rise  
to a sequence repeat lncRNA; (5) insertion of a transposable ele-
ment in a gene generates a lncRNA (17).

In recent years, lncRNAs have been confirmed as a novel 
group of regulatory molecules in a wide range of biological or 
cellular processes (17–21). In the nucleus, lncRNAs participate 
in regulating the expression of nearby and overlapping genes in 
either RNA-independent or transcription-initiation manner after 
epigenetic modification (22). The lncRNA HOTAIR has been 
proved to repress gene expression by recruiting the histone protein 
(20). lncRNAs may function as enhancers to promote the expres-
sion of nearby genes (23–25). At the promoter regions, lncRNAs 
overlap with DNA sequence and assist the gene to maintain the 
transcriptional condition, which may be a common function in 
cis-regulation (26). In addition, lncRNAs can competitively bind to 
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FiGURe 2 | The relative positions of functional long non-coding RNAs 
(lncRNAs) and target protein-coding messenger RNAs (mRNAs).
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miRNAs to prevent the degradation or repression of target mRNA 
(27, 28). Based on transcriptional directions and relative positions 
with target mRNAs, lncRNAs are usually classified into five major 
categories, i.e., sense lncRNAs, antisense lncRNAs, bidirectional 
lncRNAs, intrinsic lncRNAs and intragenic lncRNAs (29) 
(Figure 2). The antisense lncRNAs comprise a significant propor-
tion (almost 20%) of the total lncRNAs in mammalian genomes 
and 75% antisense lncRNAs are able to upregulate the expression 
of adjacent genes (30). In addition, more than 50% of protein-
coding genes carry a complementary lncRNAs in mammals (31).

ANTiviRAL ACTiviTieS OF HOST lncRNAs

lncRNAs Are involved in the innate 
immune Responses against viral 
infections
As mentioned above, diverse biological processes in eukaryotic 
cells are regulated by lncRNAs. However, it is noteworthy 
that viral infections may lead to the differential expression 
of host lncRNAs and this change seems to exist as a common 
pathological phenomenon (32–36). Some differentially expressed 
host lncRNAs may exert antiviral actions involved in differ-
ent immune signaling pathways. Guttman et  al. reported the 
modulation of lncRNAs transcription by regulatory proteins for 
the first time and uncovered over 100 lncRNAs with potential 
functions in four mouse cell types, i.e., mouse embryonic stem 
cells, mouse embryonic fibroblasts, mouse lung fibroblasts, and 
neural precursor cells, by using chromatin immunoprecipitation 
and massive parallel sequencing (37). Furthermore, it has also 
been confirmed that the transcription of lncRNAs is associated 
with immunity-related factors, such as nuclear factor κB (NF-κB) 
(39 lncRNAs), sex-determining region of Y chromosome-related 
high-mobility-group box 2 (Sox2) (20 lncRNAs), and p53 (118 

lncRNAs). With the widespread applications of microarray and 
RNA sequencing technologies, differentially expressed lncRNAs 
have been identified to be involved in innate immune responses 
(32, 38–43).

lncRNAs Regulate the Interferon (IFN) Pathway  
of the Innate Immune Response
The lncRNA nuclear enriched abundant transcript 1 (NEAT1) is a 
well-defined positive regulatory component in interleukin (IL)-8 
signaling pathway, which can activate the antiviral response. 
Influenza virus, human immunodeficiency virus (HIV), and 
other viral infections induce the expression of NEAT1, leading to 
the formation of nuclear body paraspeckles (44, 45). Splicing fac-
tor proline/glutamine-rich (SFPQ) is a negative regulatory factor 
of IL-8. NEAT1 mediates the relocation of SFPQ from the IL-8 
promoter region to paraspeckles and activates the transcription 
of IL-8 (46). Although the exact antiviral mechanism of IL-8 is 
not clear, the concentration of IL-8 is proportional to the resist-
ance against HIV infection in a macaque model (47). Moreover, 
NEAT1, as a binding scaffold, maintains integrity of paraspeckles 
and prevents the export of spliced pre-mRNA to the cytoplasm 
for translation. During HIV infection, the upregulated NEAT1 
sequesters HIV mRNAs within the nucleus and inhibits viral 
replication (34). Another study shows that NEAT1 is signifi-
cantly upregulated postinfection with Hantaan virus (HTNV), 
whereas inhibiting the expression of NEAT1 delays host innate 
immune responses and promotes viral replication (48). Further 
investigations indicate that NEAT1 removes and relocates SFPQ 
to paraspeckles, inducing the expressions of retinoic acid induc-
ible gene I (RIG-I) and DEXDH box helicase (DDX60). Increased 
expression of DDX60 and RIG-I enhances IFN-β production and 
subsequently suppresses HTNV infection.

The lncRNA Cox2, located at 50 kb downstream of the Cox2 
protein coding gene, regulates the activation and repression 
of hundreds of genes (36). It has been revealed that 787 genes 
are repressed by the lncRNA Cox2 in non-stimulated bone 
marrow-derived macrophages and 713 genes are expressed fol-
lowing exposure to toll-like receptor (TLR) 1/2 agonist palmitoy-
3-cysteinyl-seryl-(lysyl)4 (Pam3CSK4) (41). The subsequent 
gene ontology (GO) analysis has revealed that the differentially 
expressed genes are involved in the regulation of immune 
responses. The whole transcriptome profiling has proven that 
Cox2 is in charge of activating and inducing interferon regulatory 
factor 7 (IRF7) and IL-10 and repressing TLR1, 3, and 8, which 
regulates the expression of various genes in both positive and 
negative regulatory manners (41). Although the exact regulatory 
mechanisms remain unknown, researchers speculated that the 
inhibitory actions of Cox2 could be mediated through binding 
to heterogeneous nuclear ribonucleoprotein (hnRNP)-A/B and 
hnRNP-A2/B1. Collectively, lncRNA Cox2 is a key regulatory 
factor of the circuit adjusting the TLR signaling pathway.

lncRNAs Mediate Other Pathways of the Innate 
Immune Response
Tumor necrosis factor-alpha (TNF-α) is a significant activator of 
host immune responses to viral infections (49–51). Recently, it 
has been shown that TNF-α is regulated by a lncRNA, TNF-α 
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and hnRNPL- immunoregulatory lncRNA (THRIL) (38). The 
THRIL is located downstream of BRI3-binding protein (BRI3BP) 
and partially overlapped with the 3′-terminus of BRI3BP. This 
lncRNA THRIL is an essential factor for the induction of TNF-
α gene expression by forming a complex with hnRNPL at the 
promoter/enhancer region of TNF, resulting in the activation 
of immune response genes (38). On the other hand, THRIL can 
also be downregulated by the activated TNF through a negative 
feedback mechanism. These findings highlight a wider spectrum 
of lncRNA roles in several cellular processes and warrant future 
investigations.

lncRNAs Participate in the Regulation of the 
Expression of Interferon-Stimulated Genes (ISGs)
ISGs are induced through the IFN signaling pathway and criti-
cal for antagonizing viral infections (52). To date, new antiviral 
ISGs are discovered as antiviral effectors in the innate antiviral 
responses (53, 54). In addition, ISGs have been confirmed to 
have numerous antiviral functions, such as interfering with and 
inhibiting viral infections, and limiting viral replication within 
the cells (52). However, molecular mechanisms of regulation of 
the ISGs expression are complicated (53, 55). Currently, several 
studies demonstrate that lncRNAs are the key regulators of ISGs.

Some viruses can induce the expression of the lncRNA 
BISPR (BST2 IFN-stimulated positive regulator) through the 
JAK-STAT pathway, such as influenza virus, vesicular stomatitis 
virus or hepatitis C virus (HCV) (56–59). BISPR is located head-
to-head with the ISG BST2 gene, the BST2 protein can attach 
viruses to the cells and inhibit viral release (60, 61). Knockdown 
or overexpression of BISPR results in a decrease or increase of 
BST2 expression, respectively, suggesting that BISPR is critically 
responsible for the transcription of BST2. BISPR exists mainly 
in the nucleus and possibly facilitates the transcription initiation 
of protein-coding genes. As mentioned above, some lncRNAs 
regulate the chromatin state through recruiting and binding to 
various chromatin-modifying factors. Likewise, BISPR performs 
its regulatory function by counteracting the repressive action of 
polycomb repression complex 2 (PRC2) at the promoter of BST2, 
and the methyltransferase component of EZH2 is also involved 
in this mechanism (56). In addition, BISPR overlaps with an 
enhancer region, indicating that BISPR acts as enhancer-asso-
ciated RNAs (eRNAs) to promote the formation of enhancer-
promoter complex.

A functional lncRNA, called negative regulator of antiviral 
response (NRAV), is downregulated dramatically during influ-
enza A virus (IAV) infection (62). Overexpression of NRAV in 
human cells or transgenic mice significantly increases IAV repli-
cation and virulence, whereas knockdown of NRAV suppresses 
IAV replication, indicating that NRAV is involved in antiviral 
immune responses. A cDNA microarray analysis reveals that 
many ISGs are downregulated in NRAV-overexpressing cells, 
such as IFIT2, IFIT3, IFITM3, OASL, and MxA, and these ISGs 
exert antiviral effects through multiple mechanisms (63–66). 
A subsequent study indicates that NRAV negatively regulates 
the initial transcription rates of IFITM3 and MxA through 
altering histone modifications (active H3K4me3 and repressive 

H3K27me3) on the promoters, and the spatial structure of NRAV 
is necessary for its regulatory function (62).

The lncRNA CMPK2 is located proximally to the ISGs 
CMPK2, which is mapped to chr2p25.2 (chr2:6,968,644-
6,980,595). The lncRNA CMPK2 can be upregulated sig-
nificantly by IFN-α or IFN-γ (25, 67). Knockdown of lncRNA 
CMPK2 in hepatocytes results in remarkable reduction in HCV 
replication and increases expression of some antiviral ISGs, 
suggesting that the lncRNA CMPK2 is a critical repressor of 
ISGs and a lncRNA-mediated negatively regulatory mechanism 
may exist. In addition, the level of the lncRNA CMPK2 is dra-
matically higher in the liver of HCV-infected patients compared 
with healthy donors, indicating that the lncRNA CMPK2 also 
plays a regulatory role in viral infections in vivo (25), whereas 
overexpression of the lncRNA CMPK2 inhibits the transcrip-
tion of ISGs, such as CMPK2 and viperin. Interestingly, some 
ISGs located far from the lncRNA CMPK2 in the genome can 
also be repressed, such as ISG15, IFIT1, IFIT3, CXCL10, MxA, 
and IFITM1. Nevertheless, a few of ISGs seem to inhibit the 
transcription of the lncRNA CMPK2, including IFIT1 and 
Mx1. However, the impact of silencing of the lncRNA CMPK2 
on ISG levels is not consistent with other IFN-stimulated nega-
tive regulatory factors, such as activating signal cointegrator 
1 complex subunit 3. Thus, it is considered that the regula-
tory mechanism of lncRNA CMPK2 may be similar to other 
lncRNAs, such as NRAV. Similarly, lncRNA CMPK2 interacts 
with transcription factors or chromatin to form complexes to 
regulate the gene expression.

The lncRNA#32 is located on human chromosome 7p13 and 
overlaps the 3′-terminus of the HECT, C3, and WW domain 
containing E3 ubiquitin protein ligase 1 (HECW1) (68). Silencing 
lncRNA#32 significantly reduces the expression level of some 
ISGs and chemokines, including IRF7, chemokine (C-C motif) 
ligand 5 (CCL5), CXCL11, OASL, RSAD2, and IP-10, resulting in 
susceptibility to encephalomyocarditis virus (EMCV) infection. 
In contrast, the overexpression of lncRNA#32 dramatically sup-
pressed EMCV replication, indicating that lncRNA#32 positively 
regulates the host antiviral response (68). The expression of OASL 
is induced by IFN-β, whereas the expression of lncRNA#32 is 
repressed by IFN-β in a dose-dependent manner. lncRNA#32 
positively regulates the expression of ISGs through its interaction 
with activating transcription factor 2 (ATF2). The ATF2-binding 
region deletion mutant of lncRNA#32 does not induce IP-10 
expression. The research also finds that heterogeneous nuclear 
ribonucleoprotein U (hnRNPU) maintains the expression of 
these ISGs by binding to and stabilizing lncRNA#32. These 
findings highlight the possibility that the hnRNPU-lncRNA#32 
complex may target promoters of ISGs to promote the transcrip-
tion (Figure 3).

Taken together, current understandings propose the nature 
and breadth of lncRNAs in the regulation of ISGs, which 
define the first line of defense against pathogens. While a sig-
nificant baseline has been made, extensive future studies are 
required to underpin this important aspect of host-pathogen 
interactions along with their impacts on virus biology and host 
responses.
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FiGURe 3 | lncRNAs regulate the immune responses. Proteins and lncRNAs 
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Inhibition is shown with a T-shaped line. Activation is depicted with an arrow. 
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lncRNAs Are involved in the Adaptive 
immune Response
Although the existence of lncRNAs in T cells has been known 
for years, such as growth-arrest-specific transcript 5 (Gas5) and 
non-coding transcript in CD4+ T cells, the lncRNA screening has 
recently been conducted in CD8+ T cells (69). A total of 1,524 
lncRNAs were identified from 42 mouse T cell subsets using a 
microarray assay and some of them were lymphoid-specific 
lncRNAs, which were increased during CD8+ T  cell activation 
and differentiation into effector T cells (70). At the differentiation 
state of CD4+ T cells to TH1 or TH2 subsets, TH1-related transcrip-
tion factors, such as STAT4 and T-box transcription factor, can 

induce the expression of some TH1-specific lncRNAs. Likewise, 
TH2 transcription factor STAT6 regulates TH2-specific lncRNAs 
expression. In addition, lncRNA Gas5 represses T cell prolifera-
tion. Overexpression of Gas5 inhibits cell-cycle progression and 
initiates the cell apoptosis signaling pathways (71). Limited stud-
ies have been conducted to investigate the roles of lncRNAs in 
adaptive immune responses; however, current evidences propose 
crucial roles of lncRNAs in regulation of adaptive immunity and 
thus warrant future investigations.

HOST lncRNAs ARe HiJACKeD BY 
vARiOUS viRUSeS

Host lncRNAs have been confirmed as positive or negative 
antiviral regulators in the immune response; surprisingly, a few 
of host lncRNAs can be induced and hijacked by certain viruses 
to establish persistent infections. This is likely due to the mutual 
adaptability of hosts and viruses for millions of years.

The lncRNA NeST, also known as Tmevpg1 or IfngAS1, is 
located adjacent to the IFN-γ gene in both humans and mice that 
can positively regulate the expression of IFN-γ (72). NeST can 
bind to WD repeat-containing protein 5 (WDR5), a component of 
histone H3 lysine 4 (H3K4) methyltransferase complex, and alter 
histone 3 methylation at the IFN-γ locus, resulting in the IFN-γ 
expression (72). In addition, the transcription of both mouse 
and human NeST gene is dependent on NF-κB and transcription 
factors STAT4 and T-bet (73, 74). An earlier study has shown that 
NeST is specially expressed in TH1 CD4+ T cells and is considered 
to be associated with immune response (73). Another similar 
study has indicated that NeST facilitates Theiler’s virus infection 
(75), which is verified using B10.S and SJL/L mouse models. The 
SJL/L mice with NeST gene show increased IFN-γ expression in 
activated CD8+ T cells, leading to persistent infection of Theiler’s 
virus, and the NeST gene-knockout B10.S mice can clear the virus 
by its own immune system. The transgenic B10.S mice carrying 
the allele of NeST are unable to resist the viral infection either. 
Thus, Theiler’s virus establishes persistent infections by hijacking 
the host lncRNA NeST.

The lncRNA NRON is required to regulate the activity of 
nuclear factor of activated T cells (NFAT) by forming a ribonu-
cleoprotein complex with NFAT kinases and expression of this 
lncRNA is significantly altered following HIV-1 infection (45, 
76–79). The regulation of NRON expression during the HIV-1 
life cycle is complex. The level of NRON is reduced by the HIV-1 
early accessory protein Nef and the dephosphorylated NFAT can 
be translocated to the nucleus and activates the expression of 
several genes of HIV (78). Knockdown of NRON enhances virus 
replication through increasing the activity of NFAT. However, 
high-level expression of NRON is induced by the HIV-1 acces-
sory protein Vpu at the late stages of HIV infection, resulting 
in viral release and apoptosis. It has been demonstrated that the 
expression level of NRON is modulated by the HIV-1 Nef and Vpu 
proteins at different times postinfection to fit the virus life cycle. 
This finding explains how HIV regulates the host lncRNA NRON 
to facilitate viral infection.

lncRNA-ACOD1, located near the ACOD1 protein-coding 
gene, can be induced by various viruses, including Sendai virus 
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(SeV), vesicular stomatitis virus (VSV), herpes simplex virus 
(HSV), and vaccinia virus (VACV) (80). In addition, lncRNA-
ACOD1 is an IFN-α-independent lncRNA, of which expression 
is regardless of IFN-α receptor deficiency and IFN-α stimulation. 
Knockdown of lncRNA-ACOD1 significantly reduces viral load 
of VSV in macrophages and VSV replication is remarkably 
reduced in the lncRNA-ACOD1-deficient mice, indicating that 
the lncRNA promotes virus replication (80). Microarray tran-
scriptome analysis shows that the lncRNA-ACOD1 deficiency 
leads to changes in the expressions of many metabolism-related 
genes, indicating the potential role of the lncRNA in regulation 
of metabolism upon viral infection. RNA immunoprecipita-
tion assay suggests that lncRNA-ACOD1 directly binds to the 
metabolic enzyme glutamic-oxaloacetic transaminase 2 (GOT2) 
near the substrate niche, enhancing its catalytic activity. It has 
been shown that lncRNA-ACOD1 overexpression promotes 
viral replication in control cells, while has no effect in GOT2-
knockdown cells. Taken together, these results demonstrate that 
lncRNA-ACOD1 facilitates viral replication through promoting 
GOT2 activity.

viRALLY eNCODeD lncRNAs iNHiBiT 
ANTiviRAL ReSPONSeS

The existence of virus-encoded lncRNAs has been identified 
for years (81, 82). However, only recently, their roles in virus 
pathobiology and host responses have been explored. The viral 
lncRNAs are generally transcribed from RNA polymerase II or 
III, and some of lncRNAs can even be polyadenylated, similar 
to host mRNA (11, 83). Interestingly, some viral lncRNAs even 
need unique maturation steps using host cell transcription 
machineries.

A polyadenylated nuclear RNA (lncRNA PAN) expressed by 
Kaposi’s sarcoma-associated herpesvirus is localized within the 
cell nucleus and accumulated largely during lytic infection. Several 
studies demonstrate that PAN represses host gene transcription 
through a variety of mechanisms. Interferon regulatory factor 4 
(IRF4) is a transcription factor that can bind to and transactivate 
the IL-4 promoter along with PU.1 (84). However, the expression 
of PAN interferes with the transcription of IL-4 through prevent-
ing PU.1 binding to IL-4 promoter (85). In addition, the results 
also suggest that PAN decreases the expression of several immune 
regulators, including IL-18, RNase L, IFN-16, and IFN-γ. This 
mechanism is closely connected to the extensive binding capacity 
of PAN and host transcriptional proteins, such as histones H1 and 
H2A, and mitochondrial and cellular single-stranded binding 
proteins. Another similar study indicates that PAN suppresses the 
expression of host antiviral genes by activating the PRC2 (83). 
Besides broadly inhibiting actions of immunity-related genes, 
PAN also participates in regulating the virus life cycle. In this 
context, it has been shown that PAN is able to bind to ubiquitously 
transcribed tetratricopeptide repeat X chromosome (UTX) and 
jumonji domain containing 3 (JMJD3) to remove the H3K23me3 
from the viral genome, resulting in the change of virus life cycle 
from latent to lytic infection (86, 87). In addition, PAN interacts 
with the latency-associated nuclear antigen protein (LANA) to 

maintain latent infection. Collectively, the viral lncRNA PAN 
regulates both host and viral gene expression to inhibit antiviral 
responses and regulate virus life cycle.

Another lncRNA Beta2.7, transcribed from the human cyto-
megalovirus genome, exists at the early stages of viral infection 
(88, 89). Beta2.7 and GRIM19 (gene associated with retinoid/
IFN-induced mortality-19) are combined together to form a 
subunit of mitochondrial complex I, which is key for stabilizing 
the mitochondrial membrane potential, leading to continued 
production of adenosine triphosphate, which is critical for the 
completion of the virus life cycle (90–92). Beta2.7 may also 
protect mitochondrial complex I against stress-induced apoptosis 
and prevent neuron death.

The 5′-3′ exonuclease Xrn1 functions in mRNA decay as well 
as degradation of flavivirus genomic RNA (84, 93). Most of the 
RNAs, even the ones with strong secondary or tertiary structures, 
cannot resist Xrn1 degradation. Surprisingly, the subgenomic 
flavivirus RNAs (sfRNAs), generated from viral genome, accu-
mulate to a high level in cells and repress the activation of Xrn1 
(94–96). A further study demonstrates that the lncRNA sfRNAs 
are transcribed at the 3′-terminus of flavivirus genome. Based on 
the special stem-loop structure, the lncRNA sfRNAs bind to the 
Xrn1 and inhibit its cascade function. Moreover, Xrn1 can also 
be used to form new 5′-terminus of transcripts to improve viral 
gene expression via the generation of the lncRNA sfRNAs (95). 
The lncRNAs from hepaciviruses (e.g., HCV) and pestiviruses 
(e.g., bovine viral diarrhea virus) are shorter than those from 
arthropod-borne flaviviruses, which implies that they may play 
unique roles in the virus life cycle. The transcription and func-
tion of the lncRNA sfRNAs indicate that flaviviruses repress host 
immune system with virus-encoded lncRNAs (Table 1).

CONCLUDiNG ReMARKS AND 
PROSPeCTS

Formerly, lncRNAs were considered as non-functional gene 
transcripts in cells and the studies on host–virus interactions 
were mainly focus on the genomic DNA and proteins of hosts 
or viruses. However, in the past few years, powerful evidence 
supports that some lncRNAs from hosts or viruses are actively 
involved in host–virus interactions. On one hand, host-encoded 
lncRNAs are supposed to exert antiviral functions via different 
immune response processes, including innate and adaptive 
immune responses and ISG expression through completely differ-
ent mechanisms. On the other hand, viruses seem to hijack host 
lncRNAs or to exploit viral lncRNAs for inhibition of antiviral 
responses and virus persistence. Thus, besides DNA and proteins, 
lncRNAs are a new kind of actors in host immune defense and 
virus survival.

Here, we raise a question: how to identify functional lncRNAs? 
To obtain the potential lncRNAs, conventionally researchers 
analyze the transcriptome and screen the differential expression 
of mRNAs and lncRNAs induced by viral infections. However, 
a leading challenge is how to separate lncRNAs from mRNAs 
in large-scale transcriptome data, since hundreds or even thou-
sands of differentially expressed lncRNAs will be obtained using 
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TABLe 1 | Characteristics of lncRNAs involved in host–virus interactions.

Functions 
of lncRNAs

Names Mechanisms Sources References

Antiviral 
responses

NeST NeST interacts with WDR5 to alter histone 3 methylation at the IFN-γ locus to induce the IFN-γ expression Host (72)

NRAV NRAV inhibits the initial transcription of IFITM3 and MxA by regulating the histone modifications of these ISG genes Host (62)

lncRNA#32 lncRNA#32 significantly increases the expression of IRF7, CCL5, CXCL11, OASL, RSAD2, and IP-10 through its 
interaction with ATF2 and hnRNPU

Host (68)

BISPR BISPR induces the transcription of BST2 gene in trans by counteracting the repressive action of PRC2 Host (56)

Cox2 Cox2, induced by TLR, can interact with hnRNP-A/B and hnRNP-A2/B1 to mediate the immune responses in both 
positive and negative regulatory signaling pathways

Host (41)

THRIL THRIL binds to hnRNPL and TNF promoter/enhancer region to induce TNF-α expression and is downregulated  
by TNF activation through a negative feedback mechanism

Host (38)

NEAT1 NEAT1 activates the transcription of IL-8, RIG-I, and DDX60 through removal of the transcriptional inhibitory effects 
of SFPQ from promoter region by relocating SFPQ to paraspeckles

Host (34, 44, 46)

CMPK2 lncRNA CMPK2, as a negative regulatory factor in ISGs response, is involved in the regulation of ISGs transcription 
by forming RNA-protein complexes with chromatin remodeling or transcription factors

Host (25)

Virus 
infections

NRON The HIV-1 Nef and Vpu proteins reduce or increase the expression of NRON at different times postinfection to 
regulate the virus life cycle, resulting in persistent infection

Host (77)

NeST Overexpression of NeST has been shown to increase the persistence of Theiler’s virus and reduce the host 
resistance

Host (75)

lncRNA-
ACOD1

lncRNA-ACOD1 is induced during viral infection and facilitates viral replication through promoting the catalytic 
activity of GOT2

Host (80)

PAN PAN is a key regulator in controlling gene expression by multiple mechanisms. Many immunity-related genes, 
such as IL-4, IFN-γ, IL-18, and IFN-α, are regulated by lncRNA PAN. In addition, PAN participates in regulating the 
virus life cycle through removing the suppressive H3K23me3 from the viral genome and interacting with LANA to 
maintain latent infection

Virus (83–87)

Beta2.7 Beta2.7 and GRIM19 are combined together to form a subunit of mitochondrial complex I, leading to continued 
production of adenosine triphosphate

Virus (92)

sfRNAs Based on the special secondary structure, sfRNAs bind to Xrn1 and inhibit its degradation of flaviviral genomic RNA Virus (94, 95)

lncRNAs, long non-coding RNAs; WDR5, WD repeat-containing protein 5; IFN-γ, interferon-γ; NRAV, negative regulator of antiviral response; ISG, interferon-stimulated gene; IRF7, 
interferon regulatory factor 7; BISPR, BST2 IFN-stimulated positive regulator; hnRNPU, heterogeneous nuclear ribonucleoprotein U; ATF2, activating transcription factor 2; PRC2, 
polycomb repression complex 2; TLR, toll-like receptor; hnRNP, heterogeneous nuclear ribonucleoprotein; THRIL, TNF-α and hnRNPL-related immunoregulatory lncRNA; NEAT1, 
nuclear enriched abundant transcript 1; HIV, human immunodeficiency virus; GOT2, glutamic-oxaloacetic transaminase 2; sfRNAs, subgenomic flavivirus RNAs.
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RNA-seq data, making it laborious to identify functional lncRNAs. 
Indeed, unlike mRNAs, the sequences of lncRNAs usually display 
poor evolutionary conservation among different species, thus it is 
difficult to use conventional bioinformatic tools to predict their 
functions. In addition, the sequences of lncRNAs are yet to be 
determined in most species. In spite of these limitations, many 
lncRNAs from viruses or hosts have been disclosed in recent years. 
We propose to establish bioinformatics pipelines to genetically 
annotate lncRNAs by incorporating our current understandings 
on the functions of lncRNAs in the future.

Since lncRNAs are associated with DNA, mRNA or proteins, 
it is worth thinking about the possible existence of potential links 
between lncRNAs and miRNAs. This speculation is supported by 
some studies that lncRNAs can act as efficient miRNA “sponges” 
to reduce miRNA levels or through binding to primary miRNAs 
to repress miRNA maturation (97, 98). However, the discovery 
about the functions of sncRNAs is scarcely reported in viral 
infections or host–virus interactions. Up to now, the interactions 
between miRNA and lncRNAs are a freshly new frontier research 
area.

Currently, relatively complete lncRNA databases have been 
established only for human and model animal species (mouse 

and rat). However, based on the current findings, we believe that 
lncRNA databases for broader species will facilitate the study on 
natures and dynamics of lncRNAs-mediated antiviral responses 
and regulation of the virus life cycle.

In conclusion, growing evidence suggests that additional 
hosts- or viral-origin lncRNAs remain undiscovered, and system-
atic and novel probing approaches are required to characterize 
functional lncRNAs and identify clinically relevant lncRNAs with 
broader antiviral characteristics.
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