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B  cell-derived interleukin-10 (IL-10) production has been described as a hallmark 
for regulatory function in B lymphocytes. However, there is an ongoing debate on 
the origin of IL-10-secreting B cells and lack of specific surface markers has turned 
into an important obstacle for studying human B regulatory cells. In this study, we 
propose that tumor necrosis factor receptor 2 (TNFR2) expression can be used for 
enrichment of IL-10-secreting B cells. Our data confirm that IL-10 production can be 
induced by TLR9 stimulation with CpG ODN and that IL-10 secretion accompanies 
differentiation of peripheral blood B cells into plasma blasts. We further show that CpG 
ODN stimulation induces TNFR2 expression, which correlates with IL-10 secretion and 
terminal differentiation. Indeed, flow cytometric sorting of TNFR2+ B cells revealed that 
TNFR2+ and TNFR2− fractions correspond to IL-10+ and IL-10− fractions, respectively. 
Furthermore, CpG-induced TNFR2+ B  cells were predominantly found in the IgM+ 
CD27+ B  cell subset and spontaneously released immunoglobulin. Finally, our data 
corroborate the functional impact of TNFR2 by demonstrating that stimulation with a 
TNFR2 agonist significantly augments IL-10 and IL-6 production in B cells. Altogether, 
our data highlight a new role for TNFR2 in IL-10-secreting human B lymphocytes along 
with the potential to exploit this finding for sorting and isolation of this currently ill- 
defined B cell subset.
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inTrODUcTiOn

The first observation of regulatory function of B  cells producing interleukin-10 (IL-10) was 
demonstrated in mice with experimental autoimmune encephalomyelitis in 1996 by Janeway and 
colleagues (1). In the recent years, different subpopulations of IL-10-secreting B cells have been 
described in the mouse and their regulatory capacity has been demonstrated in models of infection 
and autoimmune diseases (2–5). However, in the human, very little is known on the role of sup-
pressive B cells and their cellular origin. It was previously shown that a distinct subpopulation 
of B lymphocytes producing anti-inflammatory cytokines such as IL-10 could be differentiated 
from peripheral blood B cells via TLR9 stimulation with CpG DNA (6, 7). Furthermore, IL-10-
secreting B cells were described in different types of infection including polyclonal B cell expan-
sion triggered by Staphylococcus aureus (8), HIV patients (9, 10), and murine schistosomiasis  
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models (11, 12). Various studies also indicated their reduced 
representation in peripheral blood of patients with autoimmune 
diseases and immune deficiencies (13–15).

Earlier, it was proposed that calcium-dependent signal-
ing and vitamin D metabolism enhance or even enable IL-10 
production in human peripheral blood B cells (7, 16–18). These 
molecular mechanisms seem well compatible with the finding 
that IL-10 production characterizes activated B cells undergo-
ing differentiation to plasma blasts (19, 20). Notably, this find-
ing also confirms earlier studies demonstrating that autocrine 
production of IL-10 increases plasma blast formation and Ig 
production (19, 21–23).

While IL-10 is a hallmark cytokine for immune suppression 
tumor necrosis factor (TNF) is a pleiotropic cytokine, which 
exists in two biologically active forms: cell-bound as a type II 
transmembrane protein and in a soluble variant derived thereof 
by proteolytic processing. TNF is primarily viewed as a cytokine 
enhancing immune defense against invading pathogens and 
mediating inflammation. As a consequence, TNF expression 
is tightly regulated (24–26) and its secretion can be selectively 
blocked in the context of endotoxin tolerance, which was recently 
proposed to impair microbial recognition and progression of 
periodontitis (27). Excessive and deregulated expression of TNF 
not only plays a crucial role in various autoimmune diseases 
including rheumatoid arthritis and Crohn’s disease but is also 
efficiently targeted in the clinic with various TNF-neutralizing 
drugs.

Tumor necrosis factor elicits its activities by stimulating two 
structurally related types of receptors, TNF receptor 1 (TNFR1) 
and tumor necrosis factor receptor 2 (TNFR2). TNFR1 (CD120a) 
is constitutively expressed on nearly all nucleated cell types, 
while expression of TNFR2 (CD120b) is limited to a subset of 
cell types of different origin including certain T  lymphocyte 
subsets, thymocytes, cells of the myeloid lineage, specific neu-
ronal subpopulations, endothelial cells, cardiac myocytes, and 
human mesenchymal stem cells (25, 28). TNFR1 is efficiently 
activated by both the soluble and the membrane-bound form 
of TNF, while TNFR2—despite high-affinity binding of soluble 
TNF—is only efficiently activated by membrane-bound TNF 
(29, 30).

The two TNF receptors play different roles in the context 
of an immune response and TNFR2 might contribute to later 
stages of the immune response and resolve inflammation rather 
than potentiating it. Indeed, signaling via TNFR2 has mainly 
been associated with proliferation, cytokine production, cell 
survival, differentiation, tissue repair, and angiogenesis, while 
TNFR1 contains an intracellular death domain that mediates 
strong activation of the highly proinflammatory classical NFκB 
pathway but also caspase activation and cell death (31–34). 
TNFR2 upregulation occurs under inflammatory conditions 
and could, thus, serve as a negative feedback mechanism to 
reduce cellular damage and danger signals generated by TNFR1 
signaling. Indeed, soluble TNFR2 can capture TNF and prevent 
engagement of the proinflammatory receptor TNFR1 (35). 
Moreover, TNFR2 is highly expressed on T  regulatory cells 
(Treg) and promotes the expansion and suppressive activity of 
this suppressive cell type (36–38). Additionally, TNF derived 

from conventional T cells supports Treg function in autoimmune 
diabetes and graft-versus-host disease (39, 40). Notably, these 
effects were found to be dependent on TNFR2 expression on Treg 
(41). For oncologists, TNFR2 has become an attractive target for 
dual suppression of TNFR2+ tumor cells and tumor-infiltrating 
Tregs, thus facilitating anti-tumor T cell responses and killing of 
malignant cells (42, 43). In this context, therapeutic inhibition 
of TNFR2 bears further potential since TNFR2 was identified 
as a myeloid-derived suppressor cell-promoting factor (44–47).  
In sum, these findings prompted us to ask whether TNFR2 might 
exert a similar role in regulatory B cells.

Considering the fact that TNFR2 expression has repeatedly 
been linked to IL-10 production (48, 49), this seemed an attrac-
tive hypothesis. However, while data from mice demonstrated a 
role of TNFR2 in B cell activation (50), in human B cells only 
scarce information was available. The published data suggested 
redundant roles of TNFR2 and CD40 in B  cell activation 
based on the common signaling pathway involving TRAF2 
(51). Moreover, in patients, TNF-targeting therapies have been 
associated with increased development of autoantibodies and 
lupus-like syndromes (52–54). Albeit these clinical observations 
are not well understood, they indicate that TNF possesses a so far 
not acknowledged regulatory role in B cell differentiation. Since 
expression patterns and function of TNFR2 in B  cells remain 
largely unexplored, we opted to investigate a possible association 
of TNFR2 with development and function of IL-10-secreting 
B  cells. Here, we present original data showing that TNFR2 
expression in B cells is stimulated via TLR9 and coincides with 
IL-10 release and terminal B cell differentiation.

MaTerials anD MeThODs

cells
Peripheral blood mononuclear cells (PBMC) were isolated from 
buffy coats from healthy donors obtained from German Red Cross 
South institute for transfusion medicine and immune hematology 
(Frankfurt am Main, Germany). The use was approved by the ethics 
committee from the medical faculty of the University of Frankfurt, 
Germany (Approval #154/15). PBMC were isolated by Pancoll gra-
dient centrifugation (PAN-Biotech, Aidenbach, Germany) followed 
by B cell positive selection with anti-CD19 microbeads (Miltenyi 
Biotech, Bergisch-Gladbach, Germany) according to the manufac-
turer’s protocol. For plasmablast enrichment, CD138 MicroBeads 
(Miltenyi Biotech) were applied. Purity was controlled by flow 
cytometry and was ≥97%. Isolated cells were cultivated in RPMI 
1640 (Gibco, Life Science, Darmstadt, Germany) supplemented 
with 10% FCS (Sigma-Aldrich Chemie GmbH, Munich, Germany), 
1% penicillin/streptomycin, 1% l–glutamine, and 1% HEPES buffer 
(all from Biochrom, Berlin, Germany). Cells were seeded at a con-
centration 106 cells/ml (if not stated differently) and cultivated in 
96-well plates (Greiner CELLSTAR® round bottom 96-well plates; 
Greiner Bio-One, Kremsmünster, Austria). All cells were cultivated 
in a 5% CO2 incubator at 37°C. For stimulation, 1 µM full-length 
PTO modified CpG 2006 (5′-tcgtcgttttgtcgttttgtcgtt-3′) purchased 
from Eurofins MWG Biotech (Munich, Germany) was applied. 
TNC-scTNF(143N/145R), a highly active nonameric human TNF 
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mutant with specificity for TNFR2 as described elsewhere (30). It 
was used at a concentration of 100 ng/ml. All experiments were 
performed in technical duplicates.

cell sorting
B cell subpopulations were sorted on a FACSAria™ Fusion (BD 
Biosciences, Heidelberg, Germany) using the version 8.0.1 of the 
BD FACS Diva software. Purity of sorted subpopulations was 
confirmed by remeasuring of samples. Sorted cells were washed, 
counted, and checked for viability using trypan blue (Applichem 
Panreac, Darmstadt, Germany). TNFR2-positive and -negative 
B cells were sorted from total B cells stimulated for 2 days by 1 µM 
CpG ODN 2006, if not stated otherwise.

Flow cytometry
Phenotypic analysis of human B  cell subsets was performed 
with the following antibodies: anti-CD19-PE-Cy7 (Beckman 
Coulter, Marseille, France), anti-CD27-BV421 (BD Biosciences, 
Heidelberg, Germany), anti-IgM-PerCP/Cy5.5 (BioLegend, 
CA, USA), anti-IgM-BV605 (BioLegend), anti-CD38-PE (BD 
Biosciences), anti-TNFR1(CD120a)-FITC (Miltenyi Biotech), 
anti-TNFR2(CD120b)-APC (R&D Systems, Inc., Minneapolis, 
MN, USA), and murine IgG2A-APC (R&D Systems, Inc.) as iso-
type control where indicated. Cells were incubated in the dark for 
30 min at 4°C in PBS with 0.5% FCS. Samples were acquired using 
a FACS LSRII SORP (BD Biosciences, Heidelberg, Germany), and 
cytometry data (LMD files) were analyzed with Kaluza software 
(Beckman Coulter). The aqua fluorescent reactive dye (LIVE/
DEAD Fixable dead Cell stain Kit, Invitrogen, CA, USA) was 
used for definition of live and dead cells.

For staining of IL-10-producing B  cells we used the IL-10 
Secretion Assay (Miltenyi Biotech, Bergisch-Gladbach, Germany).  
B cells were stimulated for 40 h in culture medium with 1 µM CpG 
ODN 2006. Staining with anti-IL-10 was performed according 
to the protocol provided by the manufacturer with a prolonged 
incubation of cells labeled with IL-10 catch reagent (6 h) in pres-
ence of 0.25 µM CpG for restimulation. Cells were subsequently 
stained for expression of other surface markers before measure-
ment on a flow cytometer.

elisa
Supernatants were collected from cells at the indicated time points. 
IL-10 and IL-6 were quantified by ELISA (human IL-10 and IL-6 
ELISA OptEIA Sets, BD Bioscience, Heidelberg, Germany). 
Human immunoglobulins were quantified using Human IgG/
IgM/IgA ELISA Quantitation Sets (all from Bethyl Laboratories, 
TX, USA).

elispot and Fluorospot assays
For ELISPOT assays, experiments were performed in 96-well 
MultiScreen HTS IP plates (0.45  µm, clear, Merck Chemicals 
GmbH, Darmstadt, Germany), coated with capture antibody 
(monoclonal antibody to human IgG MT91/145; MabTech, 
Stockholm, Sweden) in DPBS overnight at 4°C. On the follow-
ing day, the ELISpot plate was washed three times with PBS and 
blocked for 2 h at room temperature with culture medium before 
cells were seeded. After 20 h, incubation cells were discarded and 

plates washed with PBS. Biotinylated anti-human IgG detection 
antibody (MT78/145; MabTech) was added in PBS with 10% FCS 
and plates incubated for 2 h at room temperature. After washing 
in PBS with 0.05% Tween20 (Sigma-Aldrich Chemie GmbH, 
Munich, Germany), alkaline phosphatase (AP)-conjugated 
Streptavidin (BD Biosciences) was added 1:1,000 in PBS with 10% 
FCS followed by incubation for 1  h. Development of the plate 
was performed with the AP conjugate substrate kit (Bio-Rad 
Laboratories GmbH, München, Germany) and the reaction was 
stopped with water and the plate dried overnight.

Human IL-10 FluoroSpotBASIC (550) (MabTech) was used for 
enumeration of IL-10-secreting B cells. The plate was coated with 
capture antibody in PBS overnight at 4°C, washed three times, 
and blocked for 2 h before seeding of cells with culture medium 
supplemented with 10% FCS. After 4  days of cultivation, cells 
were removed, the plate was washed five times with PBS, and 
the development of the assay was performed according to the 
manufacturer’s protocol. Spots from enzymatic and fluorescence 
assays were quantified with an iSpot FluoroSpot Reader System 
(AID, Strassberg, Germany).

Proliferation assay
Proliferation was assessed using CFSE staining. CD19+ isolated 
B cells were stained in 1 µM solution of CFSE (eBioscience, San 
Diego, CA, USA) for 10 min at room temperature, staining was 
stopped with FCS, and cells were washed three times with cold 
RPMI containing 10% FCS in a pre-cooled centrifuge to remove 
unbound CFSE. Stained cells were seeded 1 × 106/ml and stimu-
lated for 4 days before quantification of CFSE dilution by flow 
cytometry.

statistical analysis
Statistical analysis of results was carried out using GraphPad 
Prism 7.01 (Graphpad Software Inc., San Diego, CA, USA). Data 
were analyzed using paired two-tailed Student’s t-test. A standard 
level of statistical significance α = 0.05 was used. Symbols repre-
senting p values are used as follows: *p < 0.05, **p < 0.01.

resUlTs

stimulation with cpg ODn induces 
expression of TnFr2 on human  
Peripheral Blood B cells
As previously described IL-10 release from human peripheral 
blood B cells can be elicited by stimulation of TLR9 with CpG 
ODN. When compared to release of IL-6, secretion of IL-10 
was previously found to be delayed, indicating that B cell dif-
ferentiation might represent a prerequisite for IL-10 synthesis 
(6, 7). Here, we confirm that stimulation of human B cells with 
CpG ODN enables high release of IL-10 when compared to 
unstimulated B cells where IL-10 levels lay below the detection 
threshold of the ELISA (Figure 1A). Concomitant analysis of 
B cell expression of TNFR2 revealed that—similarly to IL-10—
TNFR2 surface expression gradually increased after stimula-
tion (Figure  1B). Albeit TNFR2 was detectable on surviving 
unstimulated cells expression levels were significantly lower 
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FigUre 1 | Interleukin-10 (IL-10) production, tumor necrosis factor receptor 2 (TNFR2), and tumor necrosis factor receptor 1 (TNFR1) expression after CpG ODN 
stimulation of B cells. Freshly isolated B cells (d0) and on days 3 and 5 after stimulation with CpG ODN were studied for (a) IL-10 production in supernatants  
(n = 5 independent donors) and (B) TNFR2 expression on unstimulated and stimulated B cells (n = 5 independent donors). The histograms for TNFR2 expression 
are shown as an overlay on days 3 and 5 with marker placed based on level of isotype control fluorescence. The graph summarizes the results from n = 5 
independent donors (*p < 0.05, **p < 0.01, n.s., not significant). (c) TNFR1 and TNFR2 expression on total CD19+ B cells was analyzed by flow cytometry in freshly 
isolated B cells (d0) and on days 3 and 5 after stimulation with CpG ODN. CD38high CD27high plasma blasts are highlighted in red. The lower panel shows the 
phenotype profile of CpG-stimulated B cells based on IgM and CD27 markers. Results from one representative of four independent donors are depicted.
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(Figure  1B). These observations prompted us to ask whether 
TNFR2 expression is associated with cell survival and IL-10 
secretion and could, possibly, serve as a marker characterizing 

IL-10-producing B cells. To this end, we used TLR9 ligand CpG 
ODN 2006 as a tool to study proliferation and the differentiation 
process into plasmablasts.
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FigUre 2 | Tumor necrosis factor receptor 2 (TNFR2) expression on proliferating B cells and plasma cells. (a) On day 4 after stimulation with CpG ODN, TNFR2 
expression was analyzed on proliferating B cells and plasma blasts (CD38high CD27high highlighted in red). B cell proliferation was visualized by CFSE dilution. Data 
from one representative donor of four are shown. FSC: Forward scatter; SSC: Side scatter. (B) Plasma cells were enriched by isolation of CD138+ cells from 
peripheral blood and stained for TNFR2 expression. The results obtained from one representative of four independent donors are provided.
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Analysis of expression of TNFR1 and TNFR2 in freshly 
isolated human B cells revealed that surface expression of both 
receptors is nearly absent or low, respectively (Figure  1C). 
However, stimulation of B cells with TLR9 ligand CpG ODN 
induced the expression of TNFR2, while expression of TNFR1 
remained low and contained to a small and circumscribed 
B cell population (Figure 1C). Of note, only few B cells highly 
positive for both TNF receptors were detected. Interestingly 
TNFR2 expression on B  cell surface was reduced on arising 
CD38high CD27high B  cells corresponding to plasma blasts on 
day 5 (Figure 1C).

Further analysis revealed that CpG-induced TNFR2 expres-
sion was high in proliferating B cells stained by CFSE (Figure 2A). 
Again, loss of TNFR2 expression was observed in developing 
plasma blasts (CD27high CD38high) (Figure 2A). Notably, TNFR2 
expression was absent on CD138+ plasma cells freshly isolated 
from PBMC (Figure 2B).

Next, we sought to identify the B cell subsets expressing TNFR2. 
To this end, we sorted TNFR2+ and TNFR2− B  cells on day 2 
after stimulation with CpG ODN and analyzed the composition 
of B cell subpopulations in the CpG ODN-responsive fractions 
(see Figure 3A for sorting scheme). Notably, expression of CD19 
was higher in the TNFR2+ subpopulation, most likely reflecting a 
higher activation status of these cells (Figure 3B). Furthermore, 
IgM+ and class-switched memory B  cells were predominantly 
found in the TNFR2+ fraction while CD27− B  cells (naïve and 
transitional B cells) were detectable in both fractions, the TNFR2− 
fraction consisting of >80% CD27− B cells (Figure 3C).

TnFr2-expressing B cells Develop  
into antibody-secreting cells
Phenotypical analysis of day 2-sorted TNFR2+ and TNFR2− 
B  cells was repeated after 3  days of cell culture in the absence 
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FigUre 3 | Representation of B cell subsets in sorted TNFR2+ and TNFR2− B cell fractions. (a) Gating and sorting strategy for obtaining TNFR2+ and TNFR2− 
B cells. FSC: Forward scatter; SSC: side scatter. (B) Left: mean fluorescence intensity (MFI) for CD19 expression is compared on TNFR2− and TNFR2+ B cells. 
Results from n = 5 donors are shown (**p < 0.01). (c) Distribution of B cell subpopulations in TNFR2− and TNFR2+ sorted B cell fractions. The percentage of cells in 
CD27−, CD27+ IgM+, and CD27+ IgM− subpopulations from total B cells is shown as mean values ± SD of n = 4 donors. B cells subpopulation’s distribution in 
TNFR2+ and TNFR2− sorted population is statistically different (two-way ANOVA p < 0.0001).
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of restimulation. The results showed that TNFR2− B cells mainly 
consisted of IgM+ CD38+ CD27− naïve B cells (Figure 4A, left 
panel). This population remained unchanged over the culture 
period. On the contrary, the TNFR2+ fraction contained class-
switched and IgM+ memory B cells next to naïve (IgM+ CD27− 
CD38+/−) B  cells (Figure  4A, right panel). The proportional 
representation was unaltered after the 3-day culture. However, 
when supernatants of sorted TNFR2+ and TNFR2− B cells were 

probed for Ig secretion, we found that TNFR2+ B  cells secrete 
large quantities of IgM (143–1584 ng/ml) and IgG (31–364 ng/ml)  
(Figure 4B). These findings supported the concept that TNFR2+ 
B  cells contain developing plasmablasts. Confirming this, 
Figure  4C visualizes the formation of antibody-secreting cells 
via IgG ELISPOT. Notably, TNFR2+ B cells released IgG without 
restimulation but restimulation with CpG ODN further increased 
the number of IgG-secreting cells (Figure 4C).
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FigUre 4 | Differentiation and immunoglobulin production of CpG ODN-induced TNFR2+ B cells. (a) Flow cytometric analysis of B cell phenotypes in TNFR2− and 
TNFR2+ B cells was performed immediately after sort and after three additional days in culture without restimulation. Cells were stained for TNFR2, IgM, CD27, and 
CD38. Results from one representative donor are shown. FSC: forward scatter. (B) IgG and IgM production was quantified in supernatants from TNFR2− and 
TNFR2+ B cells on day 4 after sort without restimulation. The graphs depict results from n = 8 donors and n = 7 donors, respectively (*p < 0.05, **p < 0.01). (c) For 
visualization of IgG-secreting cells by ELISPOT sorted TNFR2− and TNFR2+ B cell fractions were cultured for 4 days with and without restimulation with CpG ODN. 
On day 4, B cells were washed, seeded at 15 × 103 B cells/well on the ELISPOT membrane, and incubated overnight. One representative experiment is shown in 
the left panel; the results obtained from n = 8 donors are shown in the graph on the right (*p < 0.05, **p < 0.01).
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TnFr2 expression correlates  
with il-10 Production
Next, we asked whether TNFR2 expression correlates with IL-10 
secretion. Flow cytometric analysis showed that B cells secreting 
IL-10 are, indeed, TNFR2 positive (Figure 5A). Using this type of 
analysis they form a subpopulation of the TNFR2+ B cells. Sorting 
of TNFR2+ and TNFR2− fractions further showed that IL-10 
secreting cells are located in the TNFR2+ fraction and nearly 
absent in the TNFR2− fraction (Figure 5B). Upon restimulation 
of both fractions with CpG ODN, IL-10 secretion became detect-
able in the supernatants of TNFR2− B cells but the increase was 
significantly higher in TNFR2+ B cells (Figure 5C). Altogether, 
these data indicate that TNFR2-negative B cells are less prone to 
secrete IL-10 on a per cell basis.

igM Memory B cells represent  
the Major source of il-10
Next, we wanted to investigate whether there is a B cell subset spe-
cifically characterized by IL-10 production. To this end, we sorted 

CD27+ and CD27− B cell fractions (see Figure 6A, left panel for 
sorting scheme). As previously described, CpG ODN stimulation 
triggered IgM, IgG, and IgA secretion in CD27+ B cells but not 
in CD27− B  cells (Figure  6A, right panel) (55, 56). IL-10 was 
induced in both fractions but levels were significantly higher in the  
CD27+ fraction (Figure 6A, right panel). Further sorting of the 
memory B cell population, e.g., IgM+ versus class-switched (IgM−) 
memory B cells (see Figure 6B, left panel for sorting scheme), 
revealed that albeit CpG ODN-induced IL-10 was detectable in 
both fractions significantly higher levels were obtained in the 
IgM+ CD27+ B cell fraction (Figure 6B, right panel). Finally, we 
sorted three more CpG ODN-responsive fractions: (1) TNFR2+ 
IgM+ CD27+, (2) residual TNFR2+, and (3) TNFR2− B cells. The 
results confirmed that TNFR2+ IgM+ memory B cells represent 
the major source of IL-10 (Figure 7).

TnFr2 is Functionally active on B cells
Finally, we asked whether TNFR2 expressed on B  cells 
is functional. To selectively stimulate TNFR2, we used 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 5 | Correlation of tumor necrosis factor receptor 2 (TNFR2) expression with interleukin-10 (IL-10) secretion. (a) Flow cytometric detection of TNFR2 on the 
surface of IL-10-secreting cells on day 2 after CpG ODN stimulation. One representative experiment of n = 3 independent experiments is shown. FSC: forward 
scatter; SSC: side scatter. (B) Quantification of IL-10-producing B cells in TNFR2− and TNFR2+ B cell fractions (30 × 103 cells/well) was achieved by FluoroSpot 
analysis after 4 days of culture in the absence of restimulation. The results of n = 5 independent donors are shown (**p < 0.01). (c) IL-10 production was measured 
in 4 day supernatants of sorted TNFR2− and TNFR2+ B cells. Sorted B cells were either left unstimulated or restimulated with CpG ODN. The graph depicts the 
results obtained in n = 10 independent donors (*p < 0.05, **p < 0.01).
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TNC-scTNF(143N/145R), a nonameric variant of the TNFR2-
specific TNF mutant TNF(143N/145R) (57), which mimics 
the membrane-bound trimeric form of TNF (30, 58). TNC-
scTNF(143N/145R) was added to the TNFR2+ B cells stimulated 
with CpG ODN for 2  days. B  cells were kept in culture for 
additional 4  days and supernatants collected and analyzed for 
cytokine and Ig production. The results obtained showed that 
IL-10 production is significantly increased in the presence of 
TNC-scTNF(143N/145R), which was even more accentuated 
if B  cells were restimulated with CpG ODN (Figure  8A). No 
relevant effect was observed when the TNFR2 agonist was 
added to TNFR2− B cell cultures, thus confirming its specificity. 
Similarly, in TNFR2+ B  cells, IL-6 secretion was increased by 

TNC-scTNF(143N/145R), independent of the restimulation with 
CpG ODN (Figure 8B). Analysis of IgM and IgG secretion in the 
presence and absence of TNC-scTNF(143N/145R) revealed high 
donor variability; no statistically significant alteration could be 
attributed to TNFR2 stimulation (Figure 8C).

DiscUssiOn

In this study, we investigated whether expression of TNFR2  
could be used to characterize and purify human IL-10-secreting 
B cells. Our results show that in human B lymphocytes, upregu-
lation of TNFR2 expression coincides with IL-10 production. 
Reasoning that sorting of IL-10-positive B cells cannot be based 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
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FigUre 6 | TLR9-dependent interleukin-10 (IL-10) and Ig release in sorted B cell subpopulations. Gating and sorting strategies used for obtaining CD27− and 
CD27+ (a) or IgM+ memory versus class-switched memory B cells (B) are shown in the left panels. IL-10 and IgM, IgA, and IgG production were quantified in B cell 
supernatants on day 3 from (a) 2 × 105 cells/well CD27− (dotted frames) and CD27+ B cells (full frames) from n = 5 donors; and from (B) 1 × 105 cells/well IgM 
memory B cells (M+ = IgM+ CD27+; dotted frames) and switched memory B cells (M− = IgM− CD27+; full frames) isolated from n = 6 (IL-10) and n = 5 donors (Ig).
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on IL-10 secretion and that stimulation of the BCR with anti-IgM 
should be avoided TNFR2 might represent an option for identi-
fication and sorting of IgM+ CD27+ IL-10+ B cells, thus avoiding 
unnecessary manipulation the BCR.

A previous study reported that expression of TNFR1 and 
TNFR2 is limited to 3 or 10%, respectively, of peripheral CD19+ 
human B cells (59). In this study, we confirmed that TNF receptor 
expression is nearly absent in unstimulated B cells (Figure 1C). 
However, we found that in analogy to other cell types, TNFR2 
expression is inducible while TNFR1 expression is constitutive 
but weak and only altered on a small B cell subset upon TLR9 
stimulation (Figure 1C). Notably, the presence of both receptors 
on stimulated human B cells was described in an early study using 
anti-μ or S. aureus Cowan strain I for B cell activation (60).

In this study, we investigated whether expression of TNFR2 
would be confined to defined B cell subpopulations. Previous stud-
ies demonstrated that CpG ODN induce vigorous proliferation of 
IgM+ B cells that were found to belong to the memory (CD27+) 
B cell fraction (56, 61–63). In our experiments, the B cells remain-
ing negative for TNFR2 expression upon CpG ODN stimulation 
belonged to the naïve B cell fraction (Figure 3C), while induction 
of TNFR2 expression was observed on both naïve and memory 

B cell subsets (Figure 3C). Nevertheless, we found that TNFR2 
expression correlates with B cell proliferation and initial differ-
entiation (Figure 2). It is, however, reduced and finally lost upon 
terminal differentiation into plasma blasts (Figures 1C and 2A). 
In accordance, TNFR2 is not expressed on plasma cells isolated 
from human peripheral blood (Figure 2B).

The expression kinetic of TNFR2 coincided with CpG ODN-
induced IL-10 production, which reaches a maximum after 
approximately 48 h (7). This observation is well in line with the 
concept that IL-10-secreting B cells arise as an intermediate dif-
ferentiation stage during terminal B cell differentiation (19, 20) 
and it was further supported by the finding that the amount of 
IgM and IgG measured in the supernatants of TNFR2+ B  cells 
was significantly higher than that detected in TNFR2− B  cells 
(Figure  4B). Similarly, Ig-secreting cells were predominantly 
detected in the TNFR2+ B cell fraction (Figure 4C).

In macrophages, inducibility of TNFR2 expression by TLR9 
stimulation was suggested to be mediated by PKB/Akt signaling 
(64). Previous work from our group and others highlighted the 
central role of the PKB/Akt pathway in both induction of TLR-
dependent IL-10 release (27, 49) and in mediating TLR9-induced 
B cell effector function including survival, proliferation, cytokine 

http://www.frontiersin.org/Immunology/
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FigUre 7 | Identification of interleukin-10 (IL-10)-producing B cell subsets in the TNFR2+ B cell fraction. (a) Gating and sorting strategies used after 1-day 
stimulation of total B cells with CpG ODN for obtaining TNFR2+ IgM+ CD27+ , residual TNFR2+, and TNFR2− B cells subpopulations. FSC: forward scatter; SSC: side 
scatter. (B) After four additional days at 25 × 103 cells/well, IL-10-producing cells were enumerated using FluoroSpot. The graph summarizes the results from n = 4 
independent donors (*p < 0.05).

secretion, and differentiation (7, 56). Due to its key role in CpG 
ODN-triggered B cell proliferation and differentiation, it is, thus, 
very likely that PKB/Akt signaling also represents a prerequisite 
for induction of TNFR2 expression in human B cells.

Not surprisingly, origin and development of B regulatory cells 
are subjects of intense debate. According to the literature, IL-10 
is produced in a wide range of B  cell subpopulations defined 
by numerous markers but, to date, no common surface marker 
has been discovered (65). In this study, we demonstrated that 
TNFR2 can be used as a cell surface marker for sorting of human 
IL-10-secreting B cells (Figure 5B). Interestingly, TNFR2− B cells 
remain responsive to CpG ODN stimulation and secrete IL-10 in 

response to restimulation of TLR9 (Figure 5C). However, IL-10 
secretion levels are markedly higher in unstimulated TNFR2+ 
B  cells and increase further upon restimulation (Figure  5C). 
Altogether, these data reveal that the IL-10 response is character-
ized by a certain degree of plasticity, a finding well compatible 
with an intermediate stage in a process of cellular differentiation.

To date, it is well accepted that B cells producing IL-10 are 
involved in the regulation and termination of immune responses 
and that the suppressive effect of IL-10 inhibits antigen pres-
entation and cytokine production by myeloid cells as well as 
Th1 and Th2 polarization (66–68). It was, therefore, important 
to prove that TNFR2 is functional on human B cells. Here, we 
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used the TNFR2 agonist TNC-scTNF(143N/145R) (30, 58) 
to assess the functional impact of TNFR2 on TLR9-mediated 
B cell activation. Our data revealed that stimulation of TNFR2 
augmented IL-10 and IL-6 secretion (Figure 8), two cytokines 
vital for plasma cell differentiation (19, 21, 69, 70). This effect 
was accentuated after restimulation of TNFR2+ B  cells with 
CpG ODN (Figure  8). These findings also corroborated the 
observations by Hostager et al. who described a role of TNFR2 
in human B cells stimulated through CD40 (50). However, in 
contrast to this earlier report, we did not observe a relevant 
effect on Ig production (Figure 8). Nevertheless, the increased 
cytokine concentrations could enhance terminal differentiation 
via autocrine feedback.

In Tregs, TNFR2 was shown to enhance survival and prolif-
eration (71–73). Additionally, signaling via TNFR2 induces an 
NFκB-dependent transcriptional program that promotes sup-
pressive activity of Treg via enhancement of FoxP3 expression 
(37, 74, 75). However, the only additional information published 
on B cells is that interaction of human B cells with membrane-
bound TNF presented on activated CD4+ T  cells serves as a 
costimulatory signal for B cell activation in IL-4-mediated IgG4 
and IgE production (76). Thus, it can be only speculated that 

FigUre 8 | Functional impact of TNFR2. Sorted TNFR2− and TNFR2+ B cell fraction were either left unstimulated or restimulated with CpG ODN for 4 days. For 
stimulation of TNFR2, experiments were carried out in the presence or absence of agonist TNC-scTNF(143N/145R) (scTNF). Cytokine [interleukin-10 (a), IL-6 (B)] 
and Ig [(c); IgM left panel, IgG right panel] secretion were measured in the supernatants with ELISA. Results from individual donors are depicted by the lines 
connecting the single values obtained (*p < 0.05, **p < 0.01, n.s., not significant).

co-stimulation of TNFR2 by T  cells or monocytes carrying 
membrane-bound TNF (26) could influence other B cell func-
tions including suppressive capacity. Follow-up studies will need 
to explore the activated signaling pathways and the emerging 
functional properties.

It has further been described that TNFR2+ Tregs are elevated 
in the blood of asymptomatic malaria patients (77, 78). In this 
disease state, they might play a role in control of disease manifesta-
tion. Interestingly, polyclonal B cell activation accompanies many 
types of infections and results in the expansion of IL-10-releasing 
B cells (8). At present, this is thought to represent an immune 
evasion mechanism that prevents pathogen recognition by T- and 
B  cells (79). However, similarly to Treg in malaria, the role of 
IL-10-secreting B cells in infection could also consist in limiting 
the inflammatory reaction to the infecting microbe. Future work 
will have to prove this hypothesis and confirm TNFR2 expression 
on pathogen-activated B cells.

Despite the limitations of the experimental system used, 
e.g., T  cell-independent and antigen-independent stimulation 
of B cells with CpG ODN, the results of this study highlight the 
potential of TNFR2 to serve as a marker identifying human IL-10-
secreting B  cells in infection and autoimmune disease. Future 
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studies in different patient populations are needed to define the 
role of TNFR2-expressing B  cells in onset and progression of 
immune-mediated diseases and infection.
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