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Cerebral small vessel disease (CSVD) is one of the main causes of vascular dementia 
in older individuals. Apart from risk containment, efforts to prevent or treat CSVD are 
ineffective due to the unknown pathogenesis of the disease. CSVD, a subtype of stroke, 
is characterized by recurrent strokes and neurodegeneration. Blood–brain barrier (BBB) 
impairment, chronic inflammatory responses, and leukocyte infiltration are classical 
pathological features of CSVD. Understanding how BBB disruption instigates inflamma-
tory and degenerative processes may be informative for CSVD therapy. Antigens derived 
from the brain are found in the peripheral blood of lacunar stroke patients, and antibodies 
and sensitized T cells against brain antigens are also detected in patients with leuko-
araiosis. These findings suggest that antigen-specific immune responses could occur 
in CSVD. This review describes the neurovascular unit features of CSVD, the immune 
responses to specific neuronal and glial processes that may be involved in a distinct 
mechanism of CSVD, and the current evidence of the association between mechanisms 
of inflammation and interventions in CSVD. We suggest that autoimmune activity should 
be assessed in future studies; this knowledge would benefit the development of effective 
therapeutic interventions in CSVD.
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inTRODUCTiOn

Cerebral small vessel disease (CSVD) represents a diverse range of pathological changes that affect 
capillaries, small arteries and small veins in the brain. This disease is related to lacunar infarct, 
microbleeds, enlarged perivascular spaces, leukoaraiosis, and cortical atrophy. As such, CSVD causes 
20% of strokes and constitutes a main source of cognitive decline, particularly in the elderly (1–4). 
However, apart from risk containment, efforts to prevent or to treat CSVD are ineffective (5, 6). The 
burdens of dementia and the cost to society imposed by CSVD are overwhelming and have incited 
efforts to explore new therapeutic resources (7, 8).

Immune responses have recently emerged as important elements contributing to the progression 
of stroke. Recent reviews in the literature have discussed the contribution of inflammatory media-
tors and lymphocytes to the development of brain lesions and neurological deficits that occur in 
acute ischemic stroke with large artery occlusion or acute cerebral hemorrhage (9–15). Recurrent 
minor stroke attacks in CSVD lead to blood–brain barrier (BBB) leakage (16–19), central nerv-
ous system (CNS) antigen release into the peripheral circulation and lymphocyte infiltration into 
brain tissue, which allow for the possibility of novel antigens deprived from the CNS to encounter 
the lymphocytes (20, 21). In addition to BBB disruption, blood proteins at the neurovascular unit 
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activate microglia to produce chemokines, which cause periph-
eral inflammatory cells to migrate to the CNS, create a chronic 
inflammatory microenvironment and encourage activated lym-
phocytes to encounter CNS antigens (22–28). Immune responses 
in CSVD are not well characterized and may contribute to the 
pathogenesis of CSVD injury just as to those of multiple sclerosis 
(MS) and neuromyelitis optica (NMO), classic autoimmune 
disorders of the CNS. Therefore, we will focus on identifying spe-
cific characteristics of the role of the immune system in CSVD. 
We will compare imaging, pathology and immune features with 
MS. Such comparisons will be considered in relation to the use 
of disease-modifying drugs and their abilities to control the 
progression of CSVD. We believe that the identification of the 
differences and similarities in the immune mechanisms involved 
in CSVD and MS may potentially provide valuable hints to har-
ness the use of disease-modifying drugs for the attenuation of 
inflammation and to improve clinical outcomes of patients with 
CSVD just as those in MS. The results from proof-of-concept 
clinical trials with fingolimod in both acute ischemic stroke and 
intracerebral hemorrhage (29–32), together with natalizumab in 
acute ischemic stroke (33), suggest that this concept is not only 
reasonable but also feasible (33).

CSvD AnD STROKe

Stroke comprises the following pathological types: intracerebral 
hemorrhage, subarachnoid hemorrhage and ischemic stroke. 
Lacunar-type strokes account for 20–30% of ischemic strokes 
(34). Moreover, small hemorrhages and microbleeds can occur 
in lacunar stroke (35). Although lacunas and small hemorrhages 
may appear after clinical attacks, most of these types of stroke 
develop “silently.” Experiencing numerous strokes is associated 
with diffuse white matter hyperintensities, cerebral atrophy, and 
enlarged perivascular space and thus doubles the risk of dementia 
(1, 36, 37). This triggering of both small ischemic and hemor-
rhagic consequences by pathological small vessels and cerebral 
degeneration is collectively known as CSVD (4).

BLOOD PROTeinS AT THe 
neUROvASCULAR UniT PROMOTe 
iMMUne ACTiOn in THe BRAin

Fibrin is a result of thrombin-mediated conversion of fibrinogen 
to an insoluble fibrin network, as the final product of the coagula-
tion cascade. Human studies and experimental animal models 
provided evidence for the critical role of fibrin in inflammation 
(38, 39). Interactions between fibrin and microglia via TLR4 
and CD11b/CD18 receptors were identified as direct activation 
pathways of the innate immune response (23, 40). Fibrin-induced 
activation of microglia triggers chemokine and cytokine secre-
tion and stimulates leukocyte recruitment, thus leading to an 
inflammatory environment in the neurovascular unit (39). 
Importantly, Ryu et  al. found that fibrin in the neurovascular 
unit of MS models was sufficient to induce the activation of 
myelin-specific T  cells and infiltration into the CNS, demon-
strating that a fibrin-induced innate immune response triggers 

CNS autoimmunity (23, 40). Under normal conditions, blood 
proteins such as plasmin and fibrinogen are not detected in the 
parenchyma of the brain shielded by the intact BBB. In response 
to BBB disruption and components from the blood entering the 
brain milieu, blood proteins-associated inflammation occurs in 
the CNS parenchyma.

Cerebral small vessel disease models, including chronic cer-
ebral hypoperfusion and spontaneously hypertensive rats, have 
identified deficits in BBB integrity, which suggests a close spatial 
and temporal relationship between the extravasation of plasma 
constituents, brain tissue injury and subsequent inflammatory 
processes (41–45). BBB permeability has also been reported in 
CSVD patients. Albumin increases in the cerebrospinal fluid 
(CSF) of stroke patients (46, 47). Intrinsic small vessel disease 
results in vessel wall thickening, focal arteriolar dilatation, strik-
ing loss of normal vessel wall architecture, and extravasation of 
blood components into and through the wall; these findings were 
observed in post-mortem examinations (48–50). Neuroimaging 
provides considerable insights into the earliest stages of CSVD. 
Imaging studies revealed that BBB leakage is very subtle, persistent, 
and more spatially extensive in patients with CSVD (16, 18, 19);  
it even occurs prior to development of brain lesions (19).

Inflammatory cell infiltrations in the arteriolar wall and 
perivascular tissue have been noted in CSVD patients since 1902 
(51–53). Moreover, clinical pathological data also demonstrated 
that the activation and proliferation of microglia induced the 
expression of MHC II and costimulatory molecules CD40 and 
B7-2, and the appearance of these cells in the parenchyma 
was accompanied by the disruption of the BBB and fibrinogen 
deposition, indicating that immune activation results from BBB 
disruption (54, 55). However, the mechanism of immune cell 
infiltration and activation is poorly understood in CSVD. More 
importantly, the contribution of immune cells to the development 
and progression of CSVD is also unclear.

A number of experimental studies were conducted to reveal 
the inflammatory pathogenesis mechanisms in CSVD (21, 56). 
Rosenberg et al. found that BBB disruption and MMP-9-mediated 
migration of T lymphocytes was related to extensive white mat-
ter abnormalities and behavioral impairments in chronically 
hypertensive rats. Minocycline, which has anti-inflammatory 
actions, including MMP-9 inhibition, effectively restored white 
matter integrity in SHR-SP (45). Weise et  al. also showed that 
SHR-SP developed brain atrophy, white matter loss, BBB leak-
age, microglial activation with IL-1β secretion, and lymphocyte 
migration, suggesting a role for NK and T cells in cerebrovascular 
inflammation and hypertension-related cognitive decline (21).

iMMUniTY in STROKe

Acute insults to the brain in cerebral ischemic stroke or cer-
ebral hemorrhage cause neuronal cell death and elicit local and 
diffuse inflammation. Damage-associated molecular patterns 
trigger resident cells and initiate cellular and humoral cascades 
(57, 58). Such inflammatory cascades induce the overexpres-
sion of adhesion molecules and increase BBB permeability, 
thus favoring cumulative inflammatory cell infiltration and 
contributing to an increase in local and global brain damage 
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(13, 14, 59). Furthermore, the continuous cytokine release starts 
a chronic inflammatory process that allows the dynamic shift of 
the macrophage and microglial canonical phenotype between 
M1 (classical activation) and M2 (alternative activation that 
is presumably the result of antigen-presenting cells migrating 
from the periphery) (10, 60).

The presence of autoimmune responses to brain antigens in 
stroke patients has been reported since the early 1970s (61–64). 
Shortly after stroke onset, brain-derived antigens (e.g., MBP, 
GFAP, CK-BB, NSE, and S100) were present within the peripheral 
circulation (65, 66) and cervical lymph nodes (67, 68). In addi-
tion, lymphocytes traffic into the infarcted brain tissue within 
days after stroke (69–72), allowing for the possibility of a novel 
antigen to encounter the CNS (7). Concerning the systemic 
immune system, these antigens are essentially novel, indicating 
that lymphocytes encountering such an antigen could lead to the 
development of an autoimmune response (6).

In recent years, Becker et al. conducted a series of studies about 
autoimmunity in stroke, mainly the cellular immune response. 
Similar to other clinical studies, they found that cellular immune 
responses (Th1 type) to brain antigens occurred in patients with 
acute stroke (73–76). Furthermore, they found that the Th1 
response to MBP was an independent predictor of stroke outcome, 
and more robust cellular responses to MBP were associated with 
a decreased likelihood of a good outcome (76). The same results 
were also found in stroke models (77, 78). At the time of stroke, 
animal models subjected to infections or systemic inflammatory 
stimuli are predisposed to develop an autoimmune response to 
the brain, and this response is related to poor outcomes (79–81). 
Accordingly, the induction of MBP-induced or MOG-induced 
tolerance was found to prevent CNS autoimmunity and improve 
outcomes in experimental stroke (82–86). Offner et al. also found 
that MOG-reactive cells invaded the CNS and exacerbated stoke 
severity, further substantiating the idea that the cellular immune 
response might affect stroke outcomes (87). In contrast, Meisel 
et  al. showed that stroke-induced immunodepression might 
represent an adaptive mechanism that inhibited long-lasting 
antigen-derived brain cellular immune responses (88, 89).

The presence of antibodies to brain antigens has been 
described in stroke. Immunoglobulins are present in the CSF of 
approximately 25% of survivors in the chronic phase of stroke 
(90–92). Some autoantibodies to brain antigens (e.g., MBP, PLP, 
NF, and NR2A/2B) have been documented in individuals after 
stroke (93–97). In a study with 40 patients, anti-MBP antibody 
titers were associated with cognitive decline during the first year 
after stroke (98), but we still do not completely understand the 
pathological consequences of this humoral response. In a stroke 
model study, researchers found that mice with B lymphocyte 
infiltrates in their infarct cores developed late cognitive decline 
and that blocking the B cell response using a mouse analog of 
rituximab, an FDA-approved anti-CD20 antibody, prevented this 
cognitive decline. This result provides evidence that autoanti-
bodies can interfere with neuronal function and could mediate 
cognitive impairment after stroke (99).

The type of immune response that develops to a particular 
antigen is dependent upon the microenvironment at the site of 
antigen encounter (100). Th1-type response, which is associated 

with the cellular immune response, is favored by an inflammatory 
microenvironment where IFN-γ is present, such as what might 
occur during a systemic infection; Th2-type response, which 
is classically associated with humoral immunity and antibody 
secretion, is favored by the presence of cytokines such as IL-4 
(101–105). However, the cellular immune response or humoral 
immune response depends on the local microenvironment and 
the presence of costimulatory molecules. CSVD is a cerebral 
vascular disorder characterized by recurrent strokes with sustain-
able BBB disruption as well as a chronic inflammatory response 
at the neurovascular unit. Therefore, it is possible that immune 
tolerance could be damaged in stroke under certain chronic 
inflammatory circumstances in CSVD. As mentioned previously, 
blood proteins at the neurovascular unit play an important role 
in the communication between the brain and the immune system 
(Figure 1). However, it is still unknown whether fibrin triggers 
and sustains antigen-specific lymphocytes in the CNS of patients 
with acute brain injury in chronic phase.

UnDeRSTAnDinG THe UniQUe iMMUne 
MeCHAniSMS in CSvD iS 
inSTRUMenTAL FOR iMMUne 
inTeRvenTiOnAL THeRAPieS

Stroke does not systematically trigger autoimmunity; however, 
under certain circumstances such as pronounced microenvi-
ronment inflammation, autoreactive T  cells could escape the 
tolerance controls and induce antigen-specific immune responses 
(Figure  1). CSVD is characterized by recurrent strokes with 
cumulative disabilities and vascular dementia (Table 1). At the 
onset of ischemic and hemorrhagic stroke (attack phase), emerg-
ing evidence has revealed that stroke induced a local inflammatory 
reaction and a plethora of innate immune responses in the brain 
where antigen-presenting cells became prominent; following the 
onset of stroke, inflammatory components (IL-4 or IFN-γ), which 
are produced by innate immune cells (e.g., microglia, NK cell) 
with the stimulation of blood proteins at the neurovascular 
unite, promote detrimental cellular or humoral responses and 
lead to diffuse neuron and oligodendrocyte damage (101–105). 
In chronic stages (remitting phase), the chronic inflammatory 
activity that is triggered by blood proteins at neurovascular 
units might also participate in post-stroke cognitive decline and 
neurodegeneration (39, 40).

The slow developments of CSVD suggest that exploring the 
mechanisms and interventions for its prevention or treatment will 
need long-term study for recurrent acute minor stroke and chronic 
progress neurodegeneration. A disease-modifying strategy aimed 
at changing the natural course of an illness is primarily applied 
to treat chronic diseases. In the field of neurological disorders, 
this concept has been used for neuroinflammatory diseases such 
as MS. Given the similarities in the inflammatory mechanisms 
and clinical characters of MS and CSVD (Table 1), one would 
ideally expect that CSVD requires a similar immunotherapeutic 
and preventive approach to that used for MS.

Fingolimod became the first oral drug to be FDA-approved 
for the treatment of relapsing-remitting MS. This drug can act 
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FiGURe 1 | Proposed autoimmunity mechanism in the development of neurodegeneration in CSVD. CSVD is a cerebral vascular disorder characterized by recurrent 
strokes with sustainable BBB disruption as well as a chronic inflammatory response at the neurovascular unit. Autoimmunity could be generated in acute stroke 
under certain brain chronic inflammatory circumstances with damaged immune tolerance in CSVD. Blood proteins at the neurovascular unit play an important role in 
the communication between the brain and the immune system. During BBB disruption, fibrinogen extravagates into the CNS and is converted to fibrin upon 
activation of coagulation. Fibrin, the high-affinity plasma-derived ligand for CD11b/CD18, activates CNS-resident innate immune cells (microglia and perivascular 
macrophages) to stimulate cytokine release, thus sustaining antigen-presenting properties by providing instructive signals (such asIL-12, IL-1, and TNFα) to promote 
antigen-specific (neuron or oligodendrocyte) Th1-cell or Th2-cell differentiation following a stroke. The cellular immune response or humoral immune response leads 
to neuron and oligodendrocyte injury. APC, antigen-presenting cells; LI, lacunar infarct; CH, cerebral hemorrhage; EPVS, enlarged perivascular space; MBs, 
microbleeds; CSVD, cerebral small vessel disease; BBB, blood–brain barrier. The original data were acquired in the YPY group.
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on four of the five known S1P receptor subtypes (S1PR1, S1PR3, 
S1PR4, S1PR5) and exerts its immunomodulatory actions by 
affecting lymphocyte numbers, trafficking and apoptosis through 
S1P receptors. Specifically, fingolimod reduces circulating lym-
phocytes by preventing their egress from lymph nodes during 
stroke, and fingolimod might contribute to the prevention of the 
early infiltration of lymphocytes into the brain, thus reducing 
thromboinflammation (106–108). In our three open-label trials, 
patients with acute ischemic or hemorrhagic stroke were treated 
with oral fingolimod for 3 days after the onset of symptoms, and 
consequently, microvascular permeability and secondary injury 
were reduced in these patients (29–32). However, the action of 
fingolimod in acute stages involved in diffuse brain injury and 
cerebral degeneration is still poorly understood and needs to 
be elucidated (109, 110). A recent study found that fingolimod 
could induce VEGF expression of astrocytes by stimulating 

S1PR3, which plays a role in the breakdown of the BBB, a step 
critical to the entry of pathogenic lymphocytes into the brain 
(111). Of note, BBB leakage induced by fingolimod due to the 
activation of S1PR3 in astrocytes may limit its use, and selective 
S1PR1 agonist (e.g., LASW1238, RP101075) treatment should be 
further optimized (112, 113).

Natalizumab blocks α4-integrin, which mediates the invasion 
of lymphocytes (mainly T cells) into the CNS, and currently rep-
resents one of the most effective therapies for relapsing-remitting 
MS. The ACTION study, a randomized controlled phase IIa 
trial comparing the effect of a single injection of 300  mg of 
intravenous natalizumab and placebo within a 9-h time window 
after symptom onset, found no effect of natalizumab on infarct 
growth, but patients receiving natalizumab were more likely to 
have an excellent cognition outcome at 90 days. This outcome 
was particularly evident in subgroups of patients with smaller 
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TABLe 1 | Contrasting features of clinical, imaging, pathology and inflammation between CSVD and MS.

CSvD MS

Clinical features
Course of disease A chronic disease A chronic disease
Attack events Lacunar infarct and cerebral hemorrhage Inflammatory demyelination activation
Disability Accumulation Accumulation
Neurodegeneration Cognition, gait, neuropsychology and sleep disturbance Cognition, gait, neuropsychology and sleep disturbance

Brain MRi
T2/FLAIR white matter hyperintensities Focal and diffuse Focal and diffuse
T1 hypointensities Transient and persistent Transient and persistent
Microbleeds Common Rare
Contrast enhancing lesions Common at stroke recurrent stage, rare at remitting stage Common at relapse phase, rare at remitting stage
Enlarged perivascular space Centrum semiovale and basal ganglion region Centrum semiovale region
Cerebral atrophy Gray matter reduced and ventricles gradually expanded Gray matter reduced and ventricles gradually expanded

Pathology features
Demyelinating region Arterial watershed areas High venule density and arterial watershed areas
Myelin Selective loss of phospholipids and MAG with PLP preservation Myelin loss with selective reduction of phospholipids
Axonal Loss Loss
Blood–brain barrier Increased permeability and fibrin leakage Increased permeability and fibrin leakage
Perivascular Perivascular collagenases and inflammatory Perivascular collagenases and inflammatory cuffs
Inflammatory cell Microglia and astrocyte activation and lymphocytic infiltration Microglia and astrocyte activation and lymphocytic 

infiltration

inflammation features
Triggering events for immune activation Cell death products, microglia activation Mostly unidentified
Location of activation signals Brain and periphery Periphery
Antigen specificity Mostly antigen-specific cells and antigen-specific antibody Mostly antigen-specific cells
Immune effector cells Combined effects of many cells, no dominant cell type Coordinated events dominated by T cells
Role of inflammatory mediators Presumably many, including IFN-γ, IL-17, IL-4 Presumably many, including TNF-a, IFN-γ, IL-17
Efficacy of immune modulation Under investigation 13 FDA-approved, disease-modifying drugs, moderate 

to high efficacy
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infarcts. This result suggests that mitigating diffuse neuroin-
flammation triggered by acute stroke may additionally mitigate 
cerebral degeneration, especially in minor stroke. Considering 
the safety and efficacy of fingolimod and natalizumab in acute 
stroke, future preclinical animal experiments and translational 
clinical trials involving fingolimod and natalizumab treatment 
for CSVD are expected.

Dimethyl fumarate (DMF) is utilized as an oral drug to treat 
MS and has been demonstrated to be as potent as several other 
drugs but with fewer side effects (114, 115). The beneficial effects 
of this medication were consistent with regulation of CD4+ 
Th1 cell differentiation. More importantly, DMF was discovered 
to impact the anti-oxidative stress cell machinery to promote 
the transcription of genes downstream of the activation of the 
nuclear factor Nrf2 (116, 117). It was reported that DMF might 
be useful for treating acute stroke. In acute stroke models, DMF 
prevented cerebral edema progression at the acute stage and 
promoted recovery at the chronic stage (118–120). Recently, an 
experiment using mice with bilateral common carotid artery 
stenosis revealed that DMF decreased microglia/macrophage 
activation, protected against white matter injury and improved 
cognition impairment (121). Multiple immunomodulatory 
and anti-oxidative stress actions support DMF as an appealing 
medication; however, its potential for impacting the degenerative 
aspects of CSVD remains to be explored.

Rituximab is FDA approved as a B-cell-depleting drug 
for rheumatoid arthritis, non-Hodgkin’s lymphoma, chronic 

lymphocytic leukemia, and microscopic polyangiitis. Rituximab 
was also found to be effective in decreasing the autoantigen-
specific humoral immune response or inhibiting inflammatory 
responses orchestrated by pathogenic B cells in patients with MS 
and NMO (122–127). Although both deleterious and protective 
regulatory roles of B lymphocytes have been increasingly recog-
nized, translation of these roles of B lymphocytes into clinical 
trials in stroke has not yet occurred. However, pharmacological 
ablation of B lymphocytes using rituximab after 5 days of stroke 
prevents the appearance of delayed cognitive deficits in an animal 
stroke model with large vessel occlusion (99). Nevertheless, this 
finding suggests that rituximab treatment could be a promising 
therapy for CSVD, given the production of brain-reactive anti-
bodies associated with cognitive decline in stroke patients (98).

Minocycline is a tetracycline antibiotic agent that has multiple 
immune-modulating properties; clinical data have shown the 
activity of minocycline in patients with MS or clinically isolated 
syndrome with a good safety profile (128–132). Minocycline 
also reduces infarct size in acute stroke clinical trials (132, 133). 
More recently, Rosenberg et al. found that minocycline decreased 
hypoxia-induced infiltration of leukocytes, reduced white matter 
damage, improved behavior, and prolonged life in CSVD models 
(44, 45). Since minocycline is used as an antibiotic in the clinical 
setting, its safety for human use has been extensively evaluated. 
Moreover, the multiple neuroprotective effects of minocycline in 
vascular injury models support its use as a potential therapeutic 
treatment for CSVD (134–138).
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COnCLUSiOn AnD FUTURe DiReCTiOnS

Brain proteins are detected in the blood of stroke/lacunar stroke 
patients (64, 66). Antibodies against brain antigens develop in 
patients with leukoaraiosis (94), suggesting a humoral immune 
response to the brain injury in CSVD. Furthermore, the pres-
ence of circulating T cells sensitized against brain antigens and 
antigen-presenting cells carrying brain antigens in the draining 
lymphoid tissue of stroke patients indicate that stroke might 
induce antigen-specific immune responses similar to those found 
in MS patients. We do not know whether poststroke dementia 
via lymphocyte-mediated autoimmunity has detrimental effects; 
however, clinical and preclinical trials of immune modulation 
using lymphocyte-targeted approaches have yielded some 
promising results in cognitive degeneration after stroke (33, 99). 
Impaired tissue oxygenation, induced inflammatory responses, 
and induced leukocyte infiltration are classical pathological fea-
tures in CSVD (Table 1). In theory, mitigating chronic and diffuse 

neuroinflammation triggered by recurrent brain injury attack to 
prevent cerebral degeneration could be a feasible strategy against 
CSVD. However, one challenge to the advancement of the field 
is the incomplete understanding of the complex interactions 
between the immune system and the brain in CSVD. Therefore, 
the involvement of autoimmunity in CSVD should be cautiously 
assessed in future studies to facilitate the development of effective 
therapeutic interventions for CSVD.
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