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Extracellular vesicles (EVs) are released from nearly all mammalian cells and different EV 
populations have been described. Microvesicles represent large EVs (LEVs) released from 
the cellular surface, while exosomes are small EVs (SEVs) released from an intracellular 
compartment. As it is likely that different stimuli promote the release of distinct EV popula- 
tions, we analyzed EVs from human lymphocytes considering the respective release 
stimuli (activation Vs. apoptosis induction). We could clearly separate two EV populations, 
namely SEVs (average diameter <200 nm) and LEVs (diameter range between 200 and 
1000 nm). Morphology and size were analyzed by electron microscopy and nanoparticle 
tracking analysis. Apoptosis induction caused a massive release of LEVs, while activated 
T-cells released SEVs and LEVs in considerably lower amounts. The release of SEVs 
from apoptotic T-cells was comparable with LEV release from activated ones. LEVs 
contained signaling proteins and proteins of the actin-myosin cytoskeleton. SEVs carr-
ied cytoplasmic/endosomal proteins like the 70-kDa heat shock protein 70 (HSP70) or 
tumor susceptibility 101 (TSG101), microtubule-associated proteins, and ubiquitinated 
proteins. The protein expression profile of SEVs and LEVs changed substantially after 
the induction of apoptosis. After apoptosis induction, HSP70 and TSG101 (often used 
as exosome markers) were highly expressed within LEVs. Interestingly, in contrast to 
HSP70 and TSG101, gelsolin and eps15 homology domain-containing protein 3 (EHD3) 
turned out to be specific for SEVs irrespective of the stimulus causing the EV release. 
Finally, we detected several subunits of the proteasome (PSMB9, PSMB10) as well as 
the danger signal HMGB1 exclusively within apoptotic cell-released LEVs. Thus, we 
were able to identify new marker proteins that can be useful to discriminate between 
distinct LEV subpopulations. The mass spectrometry proteomics data are available via 
ProteomeXchange with identifier PXD009074.
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inTrODUcTiOn

Extracellular vesicles (EVs) are released from a variety of mam-
malian cells. These vesicles can be discriminated by size or mole- 
cular composition and two main EV populations have been 
described. To date, a population of large EVs (LEVs)—released 
from the cellular surface—is distinguished from a population 
of small EVs (SEVs), which is released from an intracellular/
endosomal compartment, the multivesicular body. These EV 
populations have been termed microvesicles (considering LEVs) 
and exosomes (considering SEVs, respectively). Microvesicles are 
large vesicles with varying sizes in a diameter range from 200 up 
to 1,000 nm. These vesicles carry receptors and surface molecules 
from the cell of origin (1–6). The release of microvesicles results 
from reorganization of the actin-myosin cytoskeleton, and 
occurs by direct budding of the outer cellular membrane (7–9). 
Exosomes are vesicles smaller than 200 nm and are released from 
an intracellular/endosomal compartment, called multivesicular 
body (4, 10). Due to their endosomal origin exosomes carry 
endosome-associated proteins, such as Rab GTPases, Alix, or 
tumor susceptibility 101 (TSG101) (11–13). Exosomes and 
their molecular composition have intensively been studied and 
TSG101, the 70-kDa heat shock protein 70 (HSP70) or tetraspa-
nins (e.g., CD63, CD81) have been reported as exosome marker  
proteins (14–19).

Beside analyses of their protein cargo, EVs have been reported 
to carry DNA or distinct RNAs and they are able to transfer genetic 
information from cell to cell (20–26). Thus, EVs are incr easingly 
recognized as mediators of intercellular communication (27–30), 
and their role in the pathogenesis of autoimmune diseases or 
tumor growth has been discussed (3, 31–36). However, while the 
EV field is rapidly expanding, there is an urgent need to better 
define vesicle subpopulations. Meanwhile, the heterogeneity of 
EVs is a well-known fact and it has become evident that SEVs 
(often called exosomes) consist of diverse subpopulations. A diver-
sity that applies for LEVs (often referred to as microvesicles or 
apoptotic bodies) as well (5, 17, 37).

The release of EVs can be triggered by many stimuli like cell- 
ular activation or apoptosis induction (5, 38). Thus, it seems obvious 
that different stimuli might favor the release of a distinct EV type. 
Recently, a first systematic study by Théry and co-workers analyzed 
and directly compared the protein content of exosomal and non-
exosomal EVs released from primary human monocyte-derived 
dendritic cells was analyzed (39). Nevertheless, a comparative study, 
which systematically analyzes EVs, released after different stimu-
lation conditions (i.e., cellular activation or apoptosis induction)  
is still needed. To address this issue, EVs were isolated from 
primary human T-lymphocytes. Activated T-lymphocytes were 
generated by PHA/IL-2 stimulation of PBMCs resulting in >95% 
CD3 positive T-cells (23, 40–42) (for details see Materials and 
Methods). These activated T-cells were then further stimulated 
with IL-2 or induced to undergo apoptosis by UV-B irradiation. 
LEVs were isolated by filtration following an ultracentrifugation 
at 10,000 × g. In a further ultracentrifugation step (100,000 × g),  
SEVs were isolated.

Both vesicle populations (SEVs and LEVs, respectively) were 
isolated either after cellular activation or after the induction of 

apoptosis. SEVs and LEVs were quantified, morphologically  
analyzed, and the protein content of each distinct EV population 
was investigated. We could show that apoptosis induction is the 
most potent stimulus for the release of LEVs. SEVs and LEVs were 
released in considerably lower amounts from activated T-cells. 
SEV release from apoptotic T-cells was comparable to LEV release 
from activated ones. Moreover, we demonstrated that the protein 
cargo of SEVs and LEVs is tightly regulated and dependent on the 
stimulus causing EV release, with apoptosis induction dramati-
cally changing the protein cargo of both vesicle populations. As 
an example, when analyzing vesicles released from viable T-cells, 
TSG101 (a classically used exosome marker) is exclusively found 
within SEVs. After apoptosis induction, the same protein was 
detected within LEVs and was virtually excluded from the SEVs 
population. Similar changes were also observed, when we ana-
lyzed protein modifications, such as ubiquitination. By means of 
two dimensional difference gel electrophoresis (DIGE) followed 
by mass spectrometry, we were able to identify 24 proteins which 
are differentially expressed and regulated within SEVs and LEVs 
after cellular activation or apoptosis induction.

Finally, we have gained insight into the release mechanisms 
of EVs. We observed proteins of the actin-myosin cytoskeleton 
(actin, ezrin) within LEVs, whereas microtubule-associated pro-
teins [gelsolin (GSN) or eps15 homology domain-containing 
protein 3] are exclusively and specifically found within SEVs. 
Importantly, these two proteins were specific markers for the SEV 
population even after the induction of apoptotic cell death. Our 
findings indicate that the release of LEVs is dependent on the acti-
vation of the actin-myosin cytoskeleton, suggesting a release from 
the cellular surface. SEVs, however, seem to be mainly released 
from inside the cell, and their release is associated with the micro-
tubule apparatus. Furthermore, we observed an accumulation of 
proteasome subunits within LEVs and showed that the protea-
some is involved in the regulation of LEV release. Interestingly, 
the inducible proteasomal subunits as well as the danger signal 
protein HMGB1 accumulated in LEVs released from apoptozing 
T-cells. These proteins can be used as new markers to identify 
distinct LEV subpopulations.

MaTerials anD MeThODs

cell culture
Healthy donors were participated in this study after having given 
informed consent. The study, approved by the ethics committee 
of the University of Heidelberg, was conducted according to the 
ethics guidelines of our institution and those of the Declaration 
of Helsinki.

Peripheral blood mononuclear cells (PBMCs) were isolated by 
density gradient centrifugation (LSM 1.077, Merck, Darmstadt, 
Germany) out of heparinized venous blood from normal healthy 
donors. PBMCs were washed twice in phosphate-buffered saline 
(PBS, Sigma, Taufkirchen, Germany) and were cultured in 
RPMI 1640 (Life Science Technologies, Darmstadt, Germany) 
supplemented with 10% (v/v) heat inactivated fetal calf serum 
(Gibco-BRL, Eggenstein, Germany) 10 mM HEPES buffer, 4 mM 
l-glutamine and penicillin-streptomycin (Sigma, Taufkirchen, 
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Germany). Cell viability was checked by trypan blue exclusion 
test. To generate activated T-lymphocytes 1 µg/ml phytohemag-
glutinine (Sigma, Taufkirchen, Germany) and 0.5  U/ml IL-2 
(Roche, Mannheim, Germany) were added to the culture media 
for 5  days, leading to activation and marked proliferation of 
T-cells. These PHA/IL-2 activated lymphocytes are >95% CD3 
positive (23, 40–44). Cells were then washed and stimulated with 
additionally 0.5 U/ml IL-2 to further expand T-cells.

isolation of leVs and seVs
Extracellular vesicles-depleted culture medium was prepared 
overnight by centrifugation at 100,000 × g in a 70Ti rotor (Beckman 
Coulter, Krefeld Germany). To isolate EVs, T-cells were washed 
with PBS and plated into cell culture dishes with up to 100 × 10^6 
T-cells per 30  ml EV-depleted culture medium. T-cells were 
either activated by the addition of IL-2 or induced to undergo 
apoptosis by UV-B irradiation for 30  s (90  J/cm2). Afterward 
T-cells were cultured for 20 h, LEVs and SEVs were isolated by 
differential ultracentrifugation. Before EV isolation, cell vitality 
was always assessed by staining with AnnexinV (AxV, Böhringer, 
Mannheim, Germany) and propidiumiodide (PI, Sigma,  
Taufkirchen, Germany). In short, T-cells were incubated with 
200 ng of AxV-FITC and 500 ng PI in 500 µl Ringer’s solution 
(B. Braun, Melsungen, Germany) for 30 min at 4°C and analyzed 
by flow cytometry. To deplete whole T-cells or apoptotic cellular 
remnants before EV isolation the cell suspension was centrifuged 
at 300  ×  g, 5  min and the remaining supernatant was passed 
through a 1.2 µm non-pyrogenic, hydrophilic syringe filter into 
ultracentrifuge tubes (Beckman Coulter). Subsequently, EVs 
were isolated by centrifugation at 10,000 × g for 45 min at 10°C in 
a 70Ti rotor (Beckman Coulter) to receive LEV pellets. The result-
ing supernatant was then centrifuged at 100,000 × g for 45 min at 
10°C to receive SEV pellets. All pellets were resuspended in either 
50 µl sterile PBS for nanoparticle tracking analysis (NTA) or in 
10  µl RIPA-lysis buffer (c-c-pro, Neustadt, Germany) supple-
mented with protease inhibitors for protein analysis (complete 
Mini, Böhringer, Mannheim, Germany).

nanoparticle Tracking analysis
A NS300 NTA machine (Malvern, Amesbury, United Kingdom) 
was used to analyze isolated EVs. Following camera settings were 
used: camera level 13/14, screen gain 1.0, and threshold 6. For each 
sample, a quick measurement for 60 s was performed to ensure 
right dilution factor and camera settings. Standard measurement 
was performed by taking at least three videos with 60  s, with  
more than 500 tracks per video.

immunoblot analysis
Extracellular vesicles pellets were resuspended and lysed in 
RIPA-lysis buffer (c-c-pro, Neustadt, Germany) supplemented 
with proteases inhibitor cocktail (complete Mini, Böhringer, 
Mannheim, Germany) for 30 min on ice. Lysates were centrifuged 
by 16,000 × g for 10 min at 4°C. Afterward, the supernatant of each 
probe was transferred into a new microfuge tube and the protein 
concentration was quantified by BCA assay (Life Technologies, 
Darmstadt, Germany). 15 µg protein of each probe was diluted 

in loading buffer and loaded onto a 12.5% SDS-PAGE. After 
transfer to PVDF membranes, proteins were detected by using 
the following antibodies:

Rabbit polyclonal anti-human: Actin (Sigma, Taufkirchen, 
Germany), ERK1 (K-23), HSP90 (Santa Cruz, Heidelberg, 
Germany), LAT (Upstate Biotechnology, New York, NY, USA), 
PSMA1 (clone N1C3, Biozol, Eching, Germany), ZAP70 
(Epitomics, Burlingame, Canada). Goat polyclonal anti-human: 
Ezrin (C-19), GSN (N-18) (Santa Cruz, Heidelberg, Germany), 
PSMB10 (Biotechne, Wiesbaden-Nordenstadt, Germany). 
Mouse monoclonal anti-human: pERK (E-4), EHD3, HSP70, 
Ubiquitination (Santa Cruz, Heidelberg, Germany), LCK (clone 
28, BD Pharmingen, Heidelberg, Germany), anti-TSG101 
(clone 4A10), PSMB9 (clone 792520, Biotechne, Wiesbaden-
Nordenstadt, Germany). Blots were treated with species-specific 
horseradish peroxidase-labeled antibodies (Dianova, Hamburg, 
Germany) and signals were detected with enhanced chemilumi-
nescence (Amersham Biosiences, Freiburg, Germany).

Two Dimensional Dige
Isolated EVs obtained from activated and apoptozing 
T-lymphocytes (three normal healthy donors) were lysed in THC  
buffer supplemented with 1 µg/ml Aprotonin, Leupeptin, Peps-
tatin, and 200 mM PMSF (Merck, Darmstadt, Germany). Lysates 
were sonicated (program: 1  s pulse and 5  s pulse off, 3  min, 
amplitude: 90%) two times at 4°C and centrifuged at 20,000 rpm 
for 15 min at 4°C. The supernatant was transferred into a new 
microfuge tube and protein concentration was determined by 
Bradford assay. Afterward each probe was divided into three 
parts with equal protein amounts of 5 µg. Each part was labeled 
with a specific dye for DIGE preparations (CYDYE DIGE Fluor 
CY3/CY5, VWR, Darmstadt, Germany). An internal standard 
was generated through mixing 5 µg protein of each probe and 
labeling with CY2 (CYDYE DIGE Fluor, VWR, Darmstadt, 
Germany). After labeling, probes were loaded onto pH stripes 
(VWR, Darmstadt, Germany) for the protein separation in the 
first dimension (isoelectric point). Then proteins were separ- 
ated in the second dimension (molecular weight, standard  
SDS-PAGE). The experiments were performed in triplicates. 
Including the standards, 36 gels were obtained. To identify protein 
spots, 2D-gels were scanned (IPGphor3, GE Healthcare, Freiburg, 
Germany) and analyzed by a DIGE DeCyder machine and  
software (V7.0).

Mass spectrometry
After the analysis by the DIGE DeCyder machine and software 
(GE Healthcare, Freiburg, Germany) we selected 24 protein 
spots, for identification of the proteins by mass spectrometry. 
Selected protein spots were picked out of the SDS-gels using an 
Ettan spot picker (GE Healthcare, Freiburg, Germany) and ana-
lyzed by mass spectrometry (LC-MS/MS). Mass spectrometry 
was performed at the Core Facility for Mass Spectrometry in the 
ZMBH in Heidelberg. The mass spectrometry proteomics data 
have been deposited to the ProteomeXchange Consortium via 
the PRIDE (45, 46) partner repository with the dataset identifier 
PXD009074 and 10.6019/PXD009074.
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Transmission electron Microscopy (TeM)
Isolated and pelleted EVs were fixed in glutaraldehyde-PBS (2% 
final). After washing and post-fixing in osmium tetroxide (2%) 
and K4[Fe(CN)6] (1.5%), samples were totally enclosed in contrast 
solution uranyl acetate, dehydrated with a graded dilution series  
of ethanol, and finally embedded into glycid-ether-100-based 
resin. Ultrathin sections were cut (Reichert Ultracut S ultrami-
crotome, Leica Microsystems). Slices were contrasted and analyzed  
with a Zeiss EM 10 CR electron microscope.

Proteasome inhibition assay
Activated T-lymphocytes were induced to undergo apoptosis  
by UV-B irradiation for 30  s (90  J/cm2) in the presence or 
absence of 1 nM bortezomib (Santa Cruz, Heidelberg, Germany) 
or 10 µM Y27632 (Merck, Darmstadt, Germany). After 20 h, the 
amount of released LEVs was quantified by flow cytometry (FSC/
SSC analysis), using an EPICS XL™ flow cytometer (Coulter, 
Hialeah, Fl, USA). Cell viability was assessed by AxV/PI staining 
as described above.

statistics
Paired two-tailed Student’s t-tests was used to perform statisti-
cal analysis. Experiments, in which cells of the same donor were 
treated with different conditions, and the respective experiment 
was repeated n-times with different donors, paired two-tailed 
Student’s t-tests was performed. All statistical analyses, exclu-
ding DIGE analysis, were performed using the statistical soft- 
ware GraphPad Prism 5.0 (GraphPad Software, Inc., San Diego,  
CA, USA).

Statistical analysis for DIGE analysis was performed using 
DIGE DeCyder software V7.0 (GE Healthcare, Freiburg, 
Germany). Statistical level of significance was determined as a 
p-value of <0.05.

resUlTs

Morphologic characterization of eVs 
released From activated or apoptozing 
human T-lymphocytes
The morphology and molecular composition of EVs have inten-
sively been studied since their discovery. However, vesicle prepa-
rations have been analyzed using different cellular models and 
distinct stimuli causing EV release (22, 47). So far, no study has 
analyzed different EV populations and simultaneously consid-
ered the respective release stimulus. Therefore, we characterized 
and compared different EV populations released either after 
cellular activation or after apoptosis induction.

Large EVs and SEVs were isolated from the supernatant of acti-
vated or apoptozing primary human T-lymphocytes. After apop-
tosis induction, the amount of AxV+ positive and PI− negative  
T-cells was markedly increased (90% increase, p  =  0.00004, 
Figure 1C). The percentage of necrotic T-cells (AxV+/PI+ posi-
tive ones) was only slightly increased (8.7% increase, p = 0.004, 
Figure  1C). The isolation of EVs was performed by filtration  
followed by differential ultracentrifugation. Collected EVs were 
analyzed by TEM, NTA, and BCA assay. TEM preparations showed 

LEVs, released from viable and apoptozing T-cells, as membrane 
enveloped vesicles in sizes from 200 to 1000  nm in diameter 
(Figure 1A). SEVs, released from viable and apoptozing T-cells, 
occurred as membrane-coated vesicles, but differed dramatically 
in size with an average diameter from 50 to 200 nm. Isolated EVs 
were also analyzed by NTA as shown in Figure  1B. For LEVs 
isolated from viable T-cells a mean size of 330  nm was calcu-
lated, whereas LEVs released from apoptozing T-cells appeared 
somewhat larger (100–750 nm) with an average size of 390 nm. 
In contrast, SEVs appeared as smaller vesicles with an average 
size of 190 nm for SEVs released from viable T-cells. Again, SEVs 
released after apoptosis induction appeared somewhat larger  
when compared to those released from activated T-cells.

Next, we compared the amount of vesicles (SEVs and LEVs) 
released either after cellular activation or after apoptosis induction. 
The release of LEVs was massively triggered after apoptosis induc-
tion. Here, the LEV concentration rose up to a 10-fold level from 
38 to 388*109 vesicles/ml (p = 0.00009, Figure 2A). Further, we 
observed a slight increase of SEVs released from apoptozing T-cells 
(p =  0.045, Figure 2A). Activated T-cells released slightly more 
LEVs when compared to SEVs (p = 0.043, Figure 2A). In parallel, 
we analyzed the amount of protein released within the different 
vesicle populations and obtained very similar results (Figure 2B). 
Further, a protein/vesicle ratio was calculated by division of protein 
content through the vesicle concentration (Figure 2C). The high-
est protein/vesicle ratio was found in SEVs released from activated 
T-cells (ratio score = 4.5, Figure 2C). Apoptotic SEVs and activated 
LEVs showed an equal protein/vesicle ratio (ratio score  =  2.3, 
respectively 2.1, Figure 2C). The lowest protein/vesicle ratio was 
observed by the apoptotic LEVs (ratio score = 1.2, Figure 2C).

As suggested previously by the international society of EVs 
(48) we have analyzed a set of proteins, which either should be 
present in or excluded from distinct EV populations. Proteins 
associated with compartments other than plasma membrane 
or endosomes should not be detectable within SEVs. In fact, we  
were able to show, that the mitochondrial protein Bcl-2 is excl- 
uded from all EV fractions (LEVs and SEVs) and only present 
within whole cells. The proteins calnexin and calreticulin (endo-
plasmatic reticulum related) were detected in whole cells, to a 
lesser extent also in LEVs, but were excluded from the SEV frac-
tion. Annexin I, a protein which is expected to be present within 
EVs (48), was in fact detected in whole cells as well as in all EV 
fractions (Figure S1 in Supplementary Material).

Protein Profile of leVs and seVs released 
From activated or apoptozing human 
T-lymphocytes
After the characterization of the morphology of EVs, we were 
interested in the proteins present in distinct vesicle populations. 
To this aim, we used two dimensional DIGE and western blot 
analysis. For DIGE analysis, SEVs and LEVs were isolated from 
apoptozing or activated T-cells. One representative gel for each 
condition (activated LEVs, apoptotic LEVs, activated SEVs, and 
apoptotic SEVs) is depicted in Figure 3A. Using the DIGE DeCyder 
2D software we could map 11,364 protein spots (100%). We identi- 
fied 9,583 protein spots (84.33%) that did not significantly differ 
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FigUre 1 | Morphology of large EVs (LEVs) and small EVs (SEVs). (a) Large pictures on the left show a representative T-cell either after cellular activation  
(upper picture) or after apoptosis induction (lower picture). The corresponding extracellular vesicles are shown on the right side (active LEVs: LEVs released from 
activated T-cells; active SEVs: SEVs released from activated T-cells; apo LEVs: LEVs released from apoptozing T-cells; apo SEVs: SEVs released from apoptozing 
T-cells). (B) Three representative size distribution graphs with the corresponding mean values obtained by nanoparticle tracking analysis (NTA) measurements are 
shown. On the x-axis, size distribution (nm) is depicted; the y-axis outlines vesicle concentration (106 vesicles/ml). (c) The graph shows the percentage of viable 
T-cells (AxV+/PI−), apoptotic T-cells (AxV+/PI−), and necrotic T-cells (AxV+/PI+). Activated or UV-B irradiated T-cells were analyzed by flow cytometry after AxV/PI 
staining. Data were obtained from five independent experiments (mean values + SEM). (D) The graph shows mean values of vesicle size distribution (NTA analysis) 
obtained from 10 independent experiments. Mean values + SEM are shown. Statistical significance was calculated employing the Student’s t-test.
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in their expression levels. However, 1,781 protein spots (15.67%) 
showed either a different expression level in SEVs and LEVs or a 
significant change in expression after the induction of apoptosis. 
To evaluate the expression profile in a more detailed way we 
divided the protein spots into two major categories:

(1) Spots showing a different expression level when comparing 
LEVs and SEVs. Based on a p-value ≤0.05 we found 930 
spots that were significantly higher expressed within LEVs 
(8.20%), while 846 protein spots showed a higher expression 
in SEVs (7.47%, Figure 3B, left pie chart).

(2) Spots that were up- or downregulated within distinct EV 
populations after apoptosis induction. These spots were either 
regulated in parallel or in opposing directions when comparing 
LEVs and SEVs. Here, 701 protein spots showed a simultane-
ous upregulation in LEVs and SEVs (39.85%), while 580 pro-
tein spots were simultaneously downregulated in both vesicle 
populations (32.97%, Figure 3B, right pie chart). 143 protein 
spots were upregulated in LEVs and downregulated in SEVs  
(8.13%) and 335 spots were regulated vice versa (19.04%).

Finally, we selected 24 protein spots which were either strongly 
regulated after the induction of apoptosis or which showed a 
significantly different expression in SEV and LEV preparations. 
Those spots were then identified by mass spectrometry (Figure 4).

Figure  4A shows proteins which were upregulated in LEVs  
and SEVs after apoptosis induction. Here we identified gamma- 
actin (ACTG1), beta-actin (ACTB), 14-3-3 protein theta 
(YWHAQ), stress-induced phosphoprotein 1, eukaryotic trans-
lation initiation factor three subunit H (EIF3H), myosin heavy 
chain 9 (MYH9) (Figure 4A).

The proteins shown in Figure 4B were also upregulated after 
apoptosis induction, but showed different expression levels  
when comparing LEVs and SEVs. These proteins are: protein 
phosphatase 1 regulatory subunit 7 (PPP1R7), major vault pro-
tein, eps15 homology domain-containing protein 3 (EHD3).

The proteins shown in Figures 4C,D showed a downregula-
tion after apoptosis induction. These proteins are: proteasome 
subunit beta type-4 (PSMB4), enoyl-CoA hydratase 1, septin 9 
(SEPT9), voltage-dependent anion-selective channel 1, guanine 
nucleotide-binding protein subunit beta-2-like 1 (GNB2L1), 
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FigUre 3 | Protein expression and regulation pattern of large EVs (LEVs) 
and small EVs (SEVs) after apoptosis induction. (a) One representative gel is 
shown for bidimensional electrophoresis of activated and apoptotic LEVs and 
SEVs. (B) The pie charts on the left indicate the percentage of proteins 
showing a different expression level within LEVs or SEVs. LEVs high SEVs 
low is shown in black (8.20%), LEVs low SEVs high is shown in white 
(7.47%). Proteins showing no significant differences in their expression within 
the respective EVs are shown in gray (84.33%). The right pie chart indicates 
the percentage of proteins which have been differentially regulated after 
cellular activation or apoptosis induction. LEVs high/SEVs high is shown in 
black (39.85%); LEVs low/SEVs low is shown in white (32.97%); LEVs high/
SEVs low is shown in dark gray (8.13%); LEVs low/SEVs high is shown in 
light gray (19.04%). Results are calculated out of three independent 
experiments and statistical significance (p ≤ 0.05) was calculated employing 
the Student’s t-test.

FigUre 2 | Vesicle concentration and protein content of large EVs (LEVs) 
and small EVs (SEVs). LEVs and SEVs were isolated after activation of  
T-cells or after apoptosis induction (active LEVs: LEVs released from 
activated T-cells; active SEVs: SEVs released from activated T-cells; apo 
LEVs: LEVs released from apoptozing T-cells; apo SEVs: SEVs released  
from apoptozing T-cells). (a) The concentration of isolated extracellular 
vesicles (EVs) was quantified by nanoparticle tracking analysis (NTA).  
(B) The total protein content of isolated EVs is shown. The graphs show 
mean values out of eight independent experiments + SEM. Statistical 
significance was calculated employing the Student’s t-test. (c) The graph 
shows the ratio calculated by division of protein content through vesicle 
concentration [protein content (μg) divided by vesicle concentration 
(×109 vesicles/ml)]. Active LEVs: ratio score = 2.1; active SEVs: ratio 
score = 4.5; apo LEVs: ratio score = 1.2; apo SEVs: ratio score = 2.3.
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nascent-polypeptide-associated complex alpha polypeptide 
(NACA), and the heat shock 60 kDa protein 1 (HSPD1).

Figures 4E,F show proteins, which are differentially regulated 
and expressed (comparing LEVs and SEVs) after apoptosis 

induction. The proteins are: adenosylhomocysteinase, leucine 
aminopeptidase 3, alpha-enolase 1, proteasome subunit alpha type 
1 (PSMA1), phosphoglycerate kinase 1, DNA damage-binding 
protein 1 (DDB1), GSN, and the 40 S ribosomal protein SA.

Our findings demonstrate that the protein content of distinct 
EV populations is tightly regulated and dependent on the stimulus 
causing EV release. Apoptosis induction had a significant impact 
on the protein load of LEVs as well as that of SEVs. However, 
some proteins (DDB1, EHD3, and GSN) had a high and stable 
expression within SEVs despite the induction of apoptotic cell 
death. Thus, we suggest that distinct protein groups might be 
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FigUre 4 | Continued
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specific for a particular EV type (e.g., EHD3 and GSN for SEVs). 
On the other hand, some proteins might be specific for EVs 
released from T-cells undergoing apoptosis (e.g., proteins of the 

actin-myosin cytoskeleton, like ACTG1, ACTB, and MYH9). 
To further substantiate this, we investigated several proteins by 
western blot analysis. Here, we analyzed membrane associated 
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FigUre 5 | Immunoblot analysis of proteins present in distinct extra-
cellular vesicles (EV) populations. Large EVs (LEVs) and small EVs  
(SEVs) were isolated from activated T-cells (Ø) and T-cells induced  
to undergo apoptosis (UV). Analyzed proteins included: (a) proteins  
related to the T-cell receptor signaling, (B) cytoskeletal proteins,  
(c) proteasomal subunits and HMGB1, (D) cytosolic/endosomal  
proteins, and (e) microtubule-related proteins.

FigUre 4 | Differential expression pattern of proteins in large EVs (LEVs) and small EVs (SEVs) isolated after cellular activation or apoptosis induction.  
The graphs show the expression level of proteins that have been identified by mass spectrometry. Results obtained from analysis of the 2D-gels using the  
difference gel electrophoresis (DIGE) DeCyder machine and software are shown (standardized protein abundance on the y-axis). Protein expression levels of  
LEVs or SEVs isolated either after cellular activation (Ø) or after the induction of apoptosis by UV-B irradiation (UV) are indicated. (a,B) Expression levels are  
shown of proteins that have been upregulated in both extracellular vesicles (EV) fractions after the induction of apoptosis. (c,D) Graphs show proteins that have 
been downregulated in LEVs and SEVs. (e,F) Graphs show proteins with a different expression and regulation in LEVs and SEVs. EV preparations were obtained 
from three healthy donors. Statistical analysis (p-value and AV-ratio) was done using the DIGE DeCyder software.
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proteins of the T-cell receptor (TCR) signaling cascade (LAT, 
LCK, ZAP70, ERK1, and pERK). As shown in Figure 5A, these 
proteins turned out to be specific for LEVs. Similar results were 
obtained when we analyzed actin and ezrin as proteins of the 
actin-myosin cytoskeleton (Figure 5B).

In DIGE analysis, the expression of the proteasome subunits 
PSMA1 and PSMB4 appeared higher in LEVs when compared 
to SEVs. Therefore, we investigated subunits of the proteasome 
also by western blot analysis. As shown in Figure 5C PSMA1 
was detected mainly in LEVs and strongly induced after induc-
tion of apoptosis (this expression profile matched with the data 
obtained from DIGE analysis). The proteasome subunit beta-9 
(PSMB9) and proteasome subunit beta-10 (PSMB10) were 
specific for LEVs released from apoptozing T-cells.

A further protein that was detected within apoptotic cell- 
derived LEVs is the high mobility group box protein B1 (HMGB1). 
HMGB1 (a nuclear protein involved in structural DNA organiza-
tion) can be released from necrotic cells or upon cellular acti-
vation. After this release into the extracellular space, HMGB1 
serves as a mediator of inflammation (49). Interestingly, HMGB1 
accumulated nearly exclusively within apoptotic cell-derived 
LEVs and seemed to be excluded from other EV subpopulations 
(Figure 5C).

We then analyzed cytosolic/endosomal proteins which have 
classically been used as exosome markers. These included the 
proteins TSG101 and HSP70, as well as the analysis of protein 
ubiquitination. When analyzing SEVs released from viable 
T-cells, TSG101, and HSP70 as well as ubiquitination of proteins 
appeared rather specific for isolated SEVs. However, after the 
induction of apoptosis, TSG101 and HSP70 were found mainly 
in LEVs, while protein ubiquitination was to be observed in both 
EV populations (Figure 5D).

Finally, as we had already observed a specific expression of 
the microtubule-associated proteins GSN and EHD3 in SEVs, 
released from activated as well as from apoptozing T-cells, we were 
able to validate these results by western blot analysis (Figure 5E). 
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FigUre 6 | Release of large EVs (LEVs) is impaired by bortezomib. Activated T-lymphocytes were irradiated with UV-B irradiation (90 mJ/cm2) to induce  
apoptosis in presence of 1 nM bortezomib and 10 µM Y27632. After 20 h the amount of released vesicles was analyzed by flow cytometry. (a) The amount  
of released vesicles is shown in the graph. Mean values + SEM are shown. Vesicle release was inhibited by bortezomib. (B) The amount of released vesicles  
is shown (mean values + SEM). Y27632 was used to inhibit LEV release. (c) The graph shows the percentage of apoptozing T-cells (analyzed by AxV/PI staining). 
(D) The graph shows the percentage of necrotic T-cells (AxV+/PI+, analyzed by AxV/PI staining). Data were obtained from four independent experiments and 
statistical significance was calculated employing the Student’s t-test.
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Thus, these proteins can be used as specific markers for SEVs even 
after the induction of apoptotic cell death.

The Proteasome is involved in the 
regulation of leV release
As described above we detected the proteasome subunits PSMA1, 
PSMB4 within LEVs. Moreover, we could detect the functional 
catalytic subunits, PSMB9 and PSMB10 exclusively in LEVs 
released after apoptosis induction (see Figure 5C). Thus, we ques-
tioned whether the proteasome might play a role in the release 
of LEVs from apoptozing T-cells. To analyze this, T-cells were 
induced to undergo apoptosis in the presence of the proteasome 
inhibitor bortezomib. The amount of released LEVs was then 
quantified by flow cytometry. In parallel, we analyzed the LEV 
release from apoptozing T-cells treated with Y27632, a rho-kinase 
inhibitor known to prevent the budding of the plasma membrane 
and the release of LEVs (23, 50–52). FACS analyses showed a 
significant increase of LEV release after apoptosis induction, 
which was significantly reduced in the presence of bortezomib 
(Figure 6A) as well as in the presence of Y27532 (Figure 6B). 
Importantly, the total amount of apoptozing T-cells (AxV+/
PI−) was not affected by the bortezomib treatment (p  =  0.07, 
Figure 6C) and we did not observe any changes in the amount of 
necrotic T-cells (AxV+/PI+, p = 0.4, Figure 6D). Thus, blocking 
of the proteasome function in fact reduced the release of LEVs 
from apoptozing T-cells.

DiscUssiOn

The EV research field has been rapidly growing during the past 
years and various EV subtypes have been described. To date, the 
heterogeneity of EVs is a well-known fact and it has been shown 
that SEVs (often called exosomes) as well as LEVs (often referred 
to as microvesicles or apoptotic bodies) consist of diverse EV 
subpopulations (5, 17, 37, 39). LEVs are mainly released from  
the cellular surface and distinct LEV subtypes (such as microve-
sicles and apopototic bodies) share similar release mechanism  
(e.g., blebbing of the outer cellular membrane). The discrimina-
tion between different LEV populations, however, is very difficult 
and well-defined discrimination markers are needed.

Distinct EVs subtypes are released in response to a variety 
of stimuli (5, 38) and it seems likely that a distinct stimulus can 
trigger the release of a typical EV subtype. As a first of its kind, in 
this study we systematically analyzed and compared different EV 
populations released either from activated or from apoptozing 
human T-lymphocytes.

Isolation of EVs was done by filtration followed by differential 
ultracentrifugation at 10,000 and 100,000 × g. We were able to 
isolate two EV populations (LEVs and SEVs) from activated or 
apoptozing T-cells. As expected these EV populations clearly 
differed in size (Figure 1) and apoptosis induction turned out to 
be the most potent stimulus for the release of LEVs (Figure 2). 
Interestingly, the amount of protein per vesicle was diminished 
after the induction of apoptosis when analyzing LEVs (Figure 2C).  
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FigUre 7 | Extracellular vesicles (EV) subtypes are characterized by distinct 
protein profiles. The upper diagram indicates the distribution of proteins 
characteristic for large EVs (LEVs), comparing activated and apoptotic LEVs. 
The diagram below shows the distribution of proteins characteristic for small 
EVs (SEVs) comparing activated and apoptotic SEVs. Proteins identified by 
Western blot analysis are shown in bold, proteins identified by western blot 
as well as mass spectrometry are shown in bold plus frame. Proteins 
identified by mass spectrometry are shown in italics.
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This might be explained by diminution of protein synthesis and  
the degradation of proteins during apoptotic cell death (e.g., 
caspase-dependent cleavage of proteins).

Beside their characteristic differences in size we were also 
able to demonstrate, that each EV population carries specific 
proteins, schematically summarized in Figure 7. LEVs released 
from activated T-lymphocytes carried proteins associated with 
TCR signaling (like LAT, LCK, ZAP70, ERK1, and pERK) and 
proteins related to the actin-myosin cytoskeleton (actin and 
ezrin). SEVs released from activated T-lymphocytes carried the 
cytosolic and endosomal proteins TSG101 and HSP70, proteins 
related to the microtubule apparatus (EHD3 and GSN), and the 
protein DDB1. These observations support the idea, that LEVs 
are mainly released by budding of the plasma membrane, while 
SEVs are mainly released from intracellular compartments.

Importantly, the protein content of each vesicle population 
was dependent on the release stimulus and we observed dramatic 
changes in the protein profile of LEVs and SEVs after apoptosis 
induction. While LEVs released after apoptosis induction also 
carried signaling proteins as well as the cytoskeleton-related pro-
teins, the protein pERK appeared to be rather specific for LEVs 
released from activated T-cells. We observed an accumulation of 
the proteasome subunits PSMB9 and PSMB10 exclusively within 
apoptotic LEVs. Another protein, which was highly specific 
for apoptotic LEVs, was the molecule HMGB1. This protein is 
a well-known danger signal, when released into the extracell- 
ular space (49). Thus, the packing of HMGB1 into membrane 
coated vesicles released from apoptotic T-cells might be crucial for 
the non-inflammatory response to apoptosis within multicellular 

organisms (53). This was supported by previous observations  
of our group, having shown, that apoptotic cell-derived memb-
rane vesicles were engulfed by professional phagocytes without 
the induction of an inflammatory immune response (23, 35, 54). 
The release of proteasome subunits within microvesicles or 
so-called apoptotic exosome-like vesicles has been described 
previously (55,  56). Nevertheless, we herein demonstrate that 
apoptosis induction is a specific stimulus for the translocation 
of the inducible proteasome subunits, PSMB9 and PSMB10, and 
the danger signal protein HMGB1 into LEVs. For the first time, 
we present a set of proteins (PSMB9, PSMB10, and HMGB1), 
which were highly specific for LEVs released after the induction 
of apoptosis. These proteins can be used to differentiate between 
apoptotic cell-derived LEVs (or apoptotic bodies) and other LEV 
subpopulations. Moreover, we have shown that PSMB4, PSMB9 
and PSMB10 are specific cargo of LEVs and cannot be found 
within the SEV population. Based on these findings we were 
interested, whether the proteasome function is also involved in 
the regulation of LEV release after apoptosis induction. Using the 
proteasome inhibitor bortezomib, we were able to demonstrate an 
involvement of the proteasome in the regulation of LEV release 
from T-cells induced to undergo apoptosis (Figure 6). Further 
studies will be needed in order to gain a deeper insight into the 
proteasomes role as a regulator of apoptotic cell blebbing and the 
subsequent release of LEVs (or apoptotic bodies).

When analyzing the classically used exosomal marker proteins 
TSG101 and HSP70 in EVs released from apoptozing T-cells we 
obtained very interesting results. As described above, TSG101 
and HSP70 were specific for SEVs when analyzing EVs released 
from activated T-cells. In contrast, both proteins accumulated 
within the LEV fraction after the induction of apoptosis. These 
results are in line with some other studies, which have shown 
that TSG101 can be recruited to the plasma membrane and then 
be released within microvesicles by direct plasma membrane 
budding (57, 58). Only recently, another study demonstrated the 
release of HSP70 not only within SEVs, but also within LEVs iso-
lated by low speed centrifugation. In this study, EVs released from 
human dendritic cells were analyzed (39). We demonstrate here 
for the first time that apoptosis induction causes the release of 
TSG101 and HSP70 within LEVs. Moreover, TSG101 and HSP70 
are rather excluded from the SEV fraction after the induction of 
apoptotic cell death.

Ubiquitination has been reported to be crucial for the incor-
poration of proteins into exosomes (59). Thus, we analyzed the 
ubiquitination profile of proteins within EVs released from acti-
vated or apoptozing T-cells. Analyzing LEVs and SEVs released 
after cellular activation, ubiquitinated proteins were exclusively 
present within the SEV fractions. In contrast to this, both, SEVs 
as well as LEVs contained ubiquitinated proteins when EVs were 
isolated from apoptozing T-cells.

Beside the changes of the EV protein cargo after apoptosis 
induction we identified proteins specific for SEVs, regardless of 
the underlying release stimulus. We detected the proteins EHD3, 
GSN, and DDB1 in all SEV preparations. Interestingly, EHD3  
and GSN have been reported to be regulators of intracellular 
vesicle trafficking by interacting with the microtubule apparatus 
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(60, 61). Moreover, other members of the EHD family (EHD1 
and EHD4) have been identified as SEV-specific proteins in a 
recent study (39). Based on these findings EHD3 and GSN can 
be useful markers for the identification of SEVs which are most 
likely released from intracellular compartments.

Taken together, we identified several proteins which are specific 
for distinct EV populations released from activated or apoptozing 
T-cells. LEVs are characterized by proteins which are associated 
with the actin-myosin cytoskeleton or signaling proteins linked 
to the cellular membrane. We further demonstrated that protea-
some subunits are present in LEV and that proteasomal function 
participates in the regulation of LEV release from apoptozing 
T-cells. SEVs, in contrast, carried proteins linked to endosomal 
and cytosolic compartments and some of these proteins have 
previously been shown to regulate intracellular vesicle traffick-
ing. We observed substantial change of the EV protein cargo after 
apoptosis induction. Our findings are very important as apop- 
totic cell death is present in virtually all tissues as well as in cell 
culture conditions. Thus, when analyzing EVs, the amount of 
apoptozing T-cells must always be considered and some of the 
proteins identified here (Figure 7) may be useful to identify EVs 
released from apoptozing T-cells. Our data present an important 
contribution to the EV field as they provide tools for a better 
characterization of lymphocytic EVs. Moreover, they will sub-
stantially help to standardize isolation procedures, improve purity 
of EV isolates, and enable comparability of various experimental 
projects dealing with EVs.
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