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paradigm that vaccination mimics the natural infection without 
actually causing disease and thereby stimulates the host to mount 
adaptive immune responses generally in the form of specific anti-
bodies against the pathogen.

Several aspects of gonorrhea, however, suggest that this is an 
oversimplistic view of infectious pathogenesis. In the first place, 
it has proven very difficult, despite efforts spanning a century, to 
develop an effective vaccine against Neisseria gonorrhoeae (Russell 
and Hook, 2009). Furthermore, it is clear that one of the essential 
preconditions for the standard vaccine paradigm is not met, namely 
that recovery from the disease confers a state of immunity against 
future infection. It is well-known that gonorrhea can be acquired 
repeatedly without any apparent diminution in probability of 
infection from exposure, or the severity or duration of the disease 
(Noble et al., 1977). Gonorrhea is not unique in this, as there are 
many examples of infectious diseases that can be acquired repeat-
edly including influenza, rubella, and even the common cold. The 
generally accepted explanation for this situation is the diversity of 
pathogens capable of causing the syndrome, or the antigenic vari-
ation of particular pathogens. This is the conventional view of the 
immune response to gonorrhea (Table 1).

Our recent findings, however, support an alternative or addi-
tional hypothesis. In the first place, quantitative studies of circu-
lating and local mucosal antibody responses to naturally acquired 
uncomplicated gonorrhea (i.e., gonococcal cervicitis in women, 

IntroductIon
It is now well recognized that microbial pathogenesis involves a two-
way interaction with the host immune system. Numerous examples 
are known of the ways in which bacteria resist or evade host defense 
mechanisms, and in which host responses attempt to counteract 
the efforts of pathogens to overcome them. This concept of the 
dynamic response–reaction paradigm of infectious disease has 
been held to underpin the emergence of the discipline of Cellular 
Microbiology. It is conventionally imagined that bacteria invade 
and attack the host, the host then mounts an immune response, 
the bacteria counterattack or deploy evasive strategies to which the 
host responds further, and so forth until one gains the upper hand 
such that either the pathogen is eliminated and the host is cured of 
the infection, or conversely that the host succumbs and ultimately 
dies. A third outcome can be a form of stalemate, in which both 
pathogen and host survive, in a form of chronic infection with 
ongoing pathology, or even an asymptomatic carrier state in which 
the host appears to suffer no ill effects. In the first instance it is 
supposed that the host response proves superior, in the second it is 
inadequate, while in the third some degree of balance is struck. In 
all three scenarios, vaccination aims to enhance the host immune 
response particularly by exploiting the phenomenon of immune 
memory in order to curtail the infection at an early point or shorten 
its course and mitigate disease severity. Numerous vaccines have 
been very successfully developed and deployed on the basis of the 
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and urethritis in men, both confirmed by microbiological testing) 
led to the conclusion that the human adaptive immune response 
to the infection is minimal (Hedges et al., 1998, 1999). A modest 
increase in antibodies measured against the homologous clinical 
isolate was seen in some individuals, but responses were of short 
duration, and showed no relation to documented previous infec-
tions (Hedges et al., 1999). Furthermore, there was no substantially 
increased response in subjects who had rectal involvement, in a 
site where mucosal immune inductive tissues (lymphoid follicles) 
are abundant, in contrast to the genital tract. Yet some women, 
especially those having co-infection with Chlamydia trachomatis 
or Trichomonas vaginalis, showed considerably elevated inflam-
matory cytokine responses (IL-1, IL-6, IL-8, and IL-10), testifying 
to an acute inflammatory response (Hedges et al., 1998). Overall 
these findings led us to hypothesize that “gonococci avoid inducing 
humoral immune responses during uncomplicated natural infec-
tions … [and that] gonococci use an as yet undefined mechanism 
of protection which may subvert the natural immune response.” 
(Hedges et al., 1999).

The discovery of the novel subset of helper T cells designated 
Th17, on account of their ability to produce the inflammatory 
cytokine IL-17 (Harrington et al., 2005; Park et al., 2005), provided 
the basis for a new concept in pathogenesis particularly for extra-
cellular and mucosal bacterial pathogens such as N. gonorrhoeae 
(Curtis and Way, 2009; Khader et al., 2009). When IL-17 activates 
cells that carry its receptor, IL-17R, these cells (typically endothelial 
and stromal cells) secrete other inflammatory cytokines including 
TNF-α, as well as granulocyte colony-stimulating factor (GCSF), 
granulocyte-monocyte colony-stimulating factor (GMCSF), and 
CXC chemokines (IL-8 in humans, KC, LIX, and MIP-2α in mice) 
which mobilize neutrophils from bone marrow and recruit them 
to the inflammatory focus (Kolls and Linden, 2004; Kolls et al., 
2008). In addition, epithelial cells at mucosal surfaces respond to 
stimulation with IL-17 and IL-22 (another cytokine typically pro-
duced by Th17 cells) by upregulating the secretion of antimicrobial 
defense peptides including defensins, S100 proteins, and  lipocalin-2 

(Ouyang and Valdez, 2008). Thus Th17 cells stand at the interface 
of the adaptive and innate immune systems, and activate potent 
innate defense mechanisms, both cellular (especially neutrophils) 
and molecular. IL-17 is also highly inflammatory in its mode of 
action, and has been heavily implicated in chronic inflammatory 
and autoimmune diseases such as rheumatoid arthritis, multiple 
sclerosis, and inflammatory bowel disease. Thus, like many potent 
immune mechanisms, Th17 cell activation has beneficial as well as 
harmful consequences, depending on the duration of responses, 
and the effectiveness of their control mechanisms (Onishi and 
Gaffen, 2010). Nevertheless, it is clear that Th17 responses play a 
major role in defense against bacterial infections. The evidence for 
this role in gonococcal infection is summarized below.

th17 response to N. goNorrhoeae In the mouse model
We were initially inspired to investigate Th17 responses to gono-
coccal infection following findings that mice show an IL-17-
dependent neutrophil response to the periodontal pathogen, 
Porphyromonas gingivalis (Yu et al., 2007). In these studies, neu-
trophils were recruited in response to CXC chemokines generated 
by cells responding to stimulation with IL-17. Mice lacking the 
principal receptor for IL-17 (IL-17RA-knockout or IL-17RA-ko 
mice) were more susceptible to oral infection with P. gingivalis and 
had increased periodontal bone loss as a result. Furthermore they 
showed reduced levels of CXC chemokines KC and LIX in response 
to P. gingivalis and had diminished infiltration of neutrophils into 
the gingival tissue. Given that a neutrophil-rich discharge is a classic 
diagnostic criterion of gonorrhea, we were impelled to determine 
whether IL-17 had a similar role in the response to gonococcal 
infection.

In order first to establish whether N. gonorrhoeae is capable 
of inducing cytokines characteristic of a Th17 response, in vitro 
cell culture studies were conducted in which mouse spleen mono-
nuclear cells were incubated with N. gonorrhoeae. These showed 
that IL-17A, IL-22, and other cytokines typical of an innate and 
inflammatory response (IL-1β, IL-6, TNF-α) were released into 

Table 1 | Conventional view of immunity to gonorrhea*.

Postulate Evidence for Evidence against

Neisseria gonorrhoeae induces immune 

responses in infected subjects

Infected (and many uninfected) humans have serum 

antibodies against gonococcal antigens

Little or no increase in antibody levels after infection, 

or in subjects with previous infection

Specific antibodies are rendered 

ineffective by antigenic variation

Most major gonococcal surface molecules undergo 

extensive variation through:

Partial serovar-specific immunity reported in one 

study

•	 allelic polymorphism

•	 genetic recombination

•	 phase–variable expression

•	 horizontal gene exchange

Anti-Opa antibodies may be associated with 

resistance to salpingitis

N. gonorrhoeae avoids complement-

mediated destruction

N. gonorrhoeae inhibits complement activation 

(C4BP, RMP, LOS sialylation, factor H binding) and 

resists bacteriolysis 

Serum bactericidal assay taken as an index of 

immunity

N. gonorrhoeae resists phagocytic 

destruction

N. gonorrhoeae invades neutrophils and partially 

survives within vacuoles

Resistance to intracellular killing is partial

Hence N. gonorrhoeae can survive whatever the immune system develops against it

*For discussion and references, see text.
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typical of Th1 or Th2 responses (IFN-γ and IL-4, respectively), 
in genital tract tissue. Furthermore, the CXC chemokines KC 
(CXCL1), LIX (CXCL5), and MIP-2α (CXCL2) were also secreted 
in response to N. gonorrhoeae. These are the murine equivalent of 
IL-8 (CXCL8) which does not occur in mice, and are chemoat-
tractant for neutrophils.

In order to determine whether a Th17 response occurs in 
response to gonococcal infection, the murine model (Jerse, 1999) 
was employed to examine the immune response to N. gonorrhoeae 
in vivo. In this model, gonococcal infection of the genital tract per-
sists for 1–2 weeks, and it elicits a local influx of neutrophils and 
the production of cytokines (Jerse, 1999; Song et al., 2008; Packiam 
et al., 2010). In addition, the availability of IL-17RA-ko mice (Ye 
et al., 2001) allowed us to determine the role of IL-17 in the course of 
infection and the neutrophil influx. Whereas wild-type control mice 
started to eliminate N. gonorrhoeae from day 4 onwards and cleared 
the infection by about day 7, in IL-17RA-ko mice reduction of the 
gonococcal load was delayed until day 9 and it took about 12 days to 
clear the infection (Feinen et al., 2010). The neutrophil influx, which 
began on day 3 in control mice, was almost completely abrogated 
in IL-17RA-ko mice. These results indicate that IL-17RA is impor-
tant in neutrophil recruitment and in clearance of N. gonorrhoeae 
in this mouse model. Similar findings were obtained when mice 
were treated with blocking antibody to IL-17A during gonococcal 
infection, although the neutrophil influx was diminished but not 
abrogated in these experiments (Feinen et al., 2010).

The local generation of IL-17 in the genital tract was first 
revealed by culturing cells from the draining iliac lymph nodes 
taken on 1–5 days after infection; the cultures released IL-17 into 
the supernatants (Feinen et al., 2010). Further studies of cells iso-
lated from the genital tracts of infected mice showed that γδ T cells 
were abundant and accounted for a large proportion of the IL-17 
production, in addition to CD4+ Th17 cells (Liu, Y. and Russell, 
M.W., in preparation). Gene-expression profiling of mouse genital 
tract tissue revealed upregulation of genes associated with Th17 
and innate immunity in response to N. gonorrhoeae, but not those 
associated with Th1- or Th2-driven adaptive immunity (Liu, Y. and 
Russell, M.W., in preparation). Thus the local response of the geni-
tal tract to infection with N. gonorrhoeae parallels the response of 
spleen cells, and is dominated by IL-17-driven innate inflammatory 
responses, with consequent recruitment of innate defense proteins 
and phagocytic cells, predominantly neutrophils. These findings are 
in accord with other studies of the mouse genital tract infection 
model showing that neutrophils are the predominant infiltrating 
cell type, with smaller numbers of macrophages, and little or no 
induction of a specific antibody response (Song et al., 2008). They 
are also reminiscent of the response in humans where inflamma-
tory cytokines such as IL-1, IL-6, TNF-α (Hedges et al., 1998) but 
little or no IL-12, IFN-γ, IL-4, or IL-5 have been reported (Ramsey 
et al., 1995; Naumann et al., 1997; Simpson et al., 1999; Fichorova 
et al., 2001; Makepeace et al., 2001). Moreover, elevation of IL-17 
and IL-23, which is important for the functional development of 
Th17 cells (Weaver et al., 2007), has now been reported in humans 
with gonorrhea (Gagliardi et al., 2011).

It is important to note that, while the neutrophil influx in the 
murine gonococcal infection model is abrogated in IL-17RA-ko 
mice with concomitant prolongation of the infection, it is unlikely 

the supernatant in a time- and dose-dependent manner (Feinen 
et al., 2010). Notably, there was a lack of cytokines typical of Th1 
or Th2 responses, i.e., IFN-γ, IL-12, IL-4, and the little IFN-γ that 
was secreted came not from CD4+ T cells but from innate NK 
cells. The ability of N. gonorrhoeae to induce secretion of IL-17, 
IL-22, and IL-6, but not IFN-γ in mouse spleen cell cultures, sug-
gests that it is capable of eliciting Th17 responses. There were in 
fact two sources of IL-17: both CD4+ T cells, i.e., Th17 cells, and 
T cells bearing the alternative γδ T cell receptor which belong to 
the innate immune system and are abundant at mucosal surfaces, 
including the genital tract. The responses were not confined to one 
strain of N. gonorrhoeae and were not dependent on live gonococci, 
as similar results were seen with strains FA1090, MS11, and PID-
2, and could be replicated with outer membrane vesicle (OMV) 
preparations which contain most of the surface components of 
the intact gonococci and are naturally shed by the live organisms 
(Feinen et al., 2010).

This raises the issue of which gonococcal surface components 
are responsible for eliciting the IL-17 response, and indeed whether 
it is “specific” to N. gonorrhoeae. With regard to the latter question, 
there are now numerous species of bacteria, fungi, protozoa, and 
even viruses that have been reported to induce Th17 responses in 
animal models and humans. Bacterial species include the afore-
mentioned P. gingivalis, Klebsiella pneumoniae, Escherichia coli, 
Citrobacter rodentium, Bordetella pertussis, Mycobacterium tuber-
culosis, Helicobacter pylori, Salmonella enterica, and many others, 
as well as the yeast Candida albicans and the protozoan Toxoplasma 
gondii (Higgins et al., 2006; Shibata et al., 2007; Yu et al., 2007; 
Caruso et al., 2008; Conti et al., 2009; Godinez et al., 2009; Khader 
et al., 2009). Thus it is not a unique response specific to N. gonor-
rhoeae, although the consequences for different infections and the 
implications in particular for human disease have not been fully 
explored. While Th17 cells may be induced by nominal antigens, the 
key factors in Th17 differentiation are cytokines, especially TGF-β 
and IL-6 as discussed below. Among gonococcal surface compo-
nents, we found that the effect of whole gonococci (or OMV) can 
be to a large extent replicated by gonococcal lipo-oligosaccharide 
(LOS), which induces a similar level of IL-17 production by murine 
spleen cells in vitro (Feinen et al., 2010). Signaling through TLR4 
is important, since TLR4-deficient mouse cells did not respond to 
gonococcal LOS and showed diminished responses to gonococci, 
whereas TLR2-knockout mouse cells responded similarly to wild-
type mouse cells. Interestingly, gonococcal LOS having different 
terminal glycan residues have been reported to induce Th1, Th2, or 
Th17 responses according to their interactions with different lectin 
receptors on dendritic cells (van Vliet et al., 2009). Heat-treatment 
of OMV did not affect their ability to elicit IL-17 responses in vitro, 
suggesting that proteins might not be integral to this response but 
consistent with the role of LOS. An Opa protein deficient mutant 
in which all opa genes have been eliminated (Jerse et al., 1994) 
was still capable of inducing IL-17 responses (Feinen et al., 2010).

As a first step in determining whether findings based on mouse 
spleen cells in vitro are applicable to the genital tract, we made 
use of genital tract tissue explants which can be cultured for up 
to 5 days ex vivo with N. gonorrhoeae (Feinen et al., 2010). These 
cultures showed that N. gonorrhoeae could induce IL-17 and IL-22, 
as well as other inflammatory cytokines such as IL-6, but not those 
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duration of infection was significantly shortened by about 4 days, 
and both Th1 and Th2 responses were generated in the genital 
tract or its draining lymph nodes (Liu, Y. and Russell, M.W., in 
preparation). Normally, when mice that have recovered from pri-
mary infection are later challenged with a secondary infection of N. 
gonorrhoeae, the duration of the infection follows the same kinetics 
as primary infection, and there is no significant antibody response 
resulting from either primary or secondary infection (Song et al., 
2008). This implies that in mice, as in humans, there is no effec-
tive generation of immune memory to gonococcal infection, and 
consequently no protective immunity develops against genital tract 
infection. However, if mice that have been treated with anti-TGF-β 
antibody during primary infection are then re-challenged (without 
further treatment with anti-TGF-β antibody), the secondary infec-
tion is resisted and is cleared more rapidly than in control mice that 
have not received anti-TGF-β treatment during primary infection. 
Analysis of the immune responses developed in these mice showed 
that the anti-TGF-β-treated animals develop both Th1 and Th2 
cell responses, as well as anti-gonococcal antibodies in the circula-
tion (IgG) and vaginal fluid (IgG and IgA). Thus the alleviation 
of N. gonorrhoeae-induced immunosuppression by means of anti-
TGF-β antibody treatment results in the generation of adaptive 
anti-gonococcal immune responses and protective immunity to N. 
gonorrhoeae (Liu, Y. and Russell, M.W., in preparation).

A new hypothesIs for gonococcAl–host 
InterActIons
Neisseria gonorrhoeae has probably been associated with humans 
for several millennia, and through evolution has become extremely 
well-adapted to the human immune system. Thus it has evolved 
the capacity to cope with human innate defense mechanisms such 
as defensins and other secreted anti-microbial proteins as well as 
non-opsonic phagocytosis by neutrophils. There is evidence that 
multiple drug exporter mechanisms enable gonococci to resist 
defensins (Shafer et al., 1998). Gonococci are able to survive at least 
partially within neutrophils (Casey et al., 1979); indeed they utilize 
pathogen-directed endocytosis to invade neutrophils and other cells 
(Jerse and Rest, 1997). Recent findings indicate that N. gonorrhoeae 
can survive oxygen-dependent and non-oxidative intracellular kill-
ing mechanisms within neutrophils (Criss and Seifert, 2008; Criss 
et al., 2009). Notably in this context, N. gonorrhoeae has multiple 
mechanisms that inhibit the activation of human complement, 
especially by the alternate pathway, and that prevent lysis by the 
membrane-attack complex of complement (Ram et al., 1998, 2001; 
Lewis et al., 2010). This not only allows it to escape from direct 
complement-mediated bacteriolysis, but also helps it to evade 
C3b-mediated opsonization and phagocytosis by neutrophils. An 
old body of literature indicates that antibody- and complement-
mediated opsonophagocytosis is more effective in killing ingested 
microbes than non-opsonic phagocytosis.

Neisseria gonorrhoeae has evolved potent mechanisms for avoid-
ing destruction by adaptive immune responses, especially specific 
antibodies. An obvious immune evasion strategy is its extraordinary 
capacity for antigenic variation, in which most of its major surface 
components are subject to variable expression through multiple 
mechanisms. These include genetic polymorphism (porins, Opa 
proteins, transferrin-binding proteins), phase-variable on–off 

that clearance is dependent on the neutrophils: the infection is 
still cleared in IL-17RA-ko mice (Feinen et al., 2010). Moreover, 
the extent of neutrophil influx varies considerably between mouse 
strains and bears no relation to susceptibility to gonococcal infec-
tion (Packiam et al., 2010). Numerous factors undoubtedly contrib-
ute to the inability of N. gonorrhoeae to persist in mice, in contrast 
to humans to which it has become specifically adapted.

role of tgf-β In suppressIng th1/th2 responses to 
N. goNorrhoeae
CD4+ T cells differentiate along at least four different pathways 
or lineages depending upon the cytokine milieu in which they are 
stimulated (Weaver et al., 2007). In the presence of IL-12, they dif-
ferentiate as Th1 cells, whereas in the presence of IL-4 they become 
Th2 cells. Both of these are “classical” T-helper cells that are critical 
for adaptive immune responses whether cell-mediated (e.g., by 
CD8+ cytotoxic T cells) or antibody production by plasma cells. 
Th1 and Th2 cells are cross-regulatory, as IFN-γ produced by Th1 
cells suppresses Th2 development, while IL-4 from Th2 cells sup-
presses Th1 development. Th17 cells differentiate in the presence of 
TGF-β and an inflammatory cytokine such as IL-6 or IL-1; IL-23 is 
further required for the maintenance and functional differentiation 
of Th17 cells. Both IFN-γ and IL-4 suppress Th17 development but 
there is no confirmed evidence for the suppression of Th1 or Th2 
cells by products of Th17 cells. However, when precursor T cells are 
stimulated in the presence of TGF-β alone they become induced 
T regulatory (Treg) cells which regulate Th1 and Th2 cells (Bettelli 
et al., 2006). Thus TGF-β is critical for the development of both 
Th17 and Treg cells, the essential difference being whether or not 
inflammatory cytokines are also present. TGF-β is also well-known 
as a regulatory cytokine that is directly inhibitory for Th1 and Th2 
cells. Furthermore, female genital tract tissues are known to be 
rich in TGF-β (Wira and Rossoll, 2003; Shen et al., 2007) which is 
involved in maintaining an immunosuppressive environment that 
is important for reproductive physiology, in particular, the admis-
sion of allogeneic sperm and the implantation of a semi-allogeneic 
fetus (Russell and Mestecky, 2010; Wira et al., 2010).

We therefore hypothesized that N. gonorrhoeae is capable of 
inducing the production of TGF-β, which in turn promotes the 
development of both Th17 and Treg cells. Indeed, the development 
of Treg cells in the mouse model of genital gonococcal infection has 
already been reported (Imarai et al., 2008). Studies of the interac-
tion of N. gonorrhoeae with mouse spleen cells in vitro show that 
TGF-β is among the cytokines induced, and that it is produced by 
several different cell types, especially B cells, but also by T cells, 
macrophages, and dendritic cells (Liu et al., submitted). Further 
studies with genital tract tissue cultured in vitro, and in the mouse 
genital tract in vivo, showed that N. gonorrhoeae further elevated the 
generation of TGF-β in the genital tract. Moreover, N. gonorrhoeae 
inhibited the in vitro proliferation and differentiation of Th1 and 
Th2 cells with their characteristic cytokine production by a TGF-
β-dependent mechanism. This effect was reversed in the presence 
of blocking antibodies to TGF-β, and under these conditions, Th1 
and Th2 cells developed and secreted IFN-γ and IL-4, respectively.

The effect of TGF-β-blocking antibody could also be observed 
in vivo in the genital tract infection model. When mice were treated 
with anti-TGF-β antibody during infection with N. gonorrhoeae, the 
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ineffective in a field trial because of the very high antigenic variabil-
ity of pilin protein among naturally occurring gonococcal strains 
(Boslego et al., 1991).

As effective as antigenic variation may be in evading the con-
sequences of adaptive immune responses, we further propose that 
N. gonorrhoeae avoids the generation of specific antibodies in the 
first place (Table 2). This was initially based on our observations 
of minimal antibody responses to uncomplicated gonorrhea in 
humans, despite symptomatic inflammatory disease and in some 
cases strong cytokine responses (Hedges et al., 1998, 1999). The 
human response appears to be quite well replicated in the mouse 
model of vaginal gonococcal infection, in that there is a neutrophil-
dominated cellular infiltrate, inflammatory cytokines are induced 
through TLR4-dependent mechanisms, no antibody responses are 
detectable in the serum or genital secretions and tissues, and no 
protective immunity is generated against secondary infection with 
the same strain (Song et al., 2008; Packiam et al., 2010). We find 
that the LOS-TLR4-dependent inflammatory response involves 
IL-17 and Th17-driven innate responses, and that interference with 
these leads to diminished neutrophil infiltration and prolongation 
of the infection in mice (Feinen et al., 2010).

Initial support for the concept of gonococcal suppression 
of host immune responses was provided by the findings that 
CEACAM1-binding Opa proteins inhibit human T cell activation 
and B cell differentiation (Boulton and Gray-Owen, 2002; Pantelic 
et al., 2005), although this was not confirmed in another study 
(Youssef et al., 2009). The mouse homolog of human CEACAM1, 
however, does not possess the residues found to be critical for 
Opa recognition (Virji et al., 1999). Our own studies on mouse 
immune cells in vitro, and on genital tract tissues from infected 
mice, show that N. gonorrhoeae can exploit TGF-β to suppress 
adaptive immune responses driven by Th1 and Th2 cells. There 
is preliminary evidence that this involves Treg cells which have 
been reported to be induced in the mouse model of gonococcal 

switching of gene-expression either directly (Opa proteins, pili) 
or indirectly (LOS, through expression of enzymes involved in bio-
synthesis of the glycan chains), recombination of gene segments 
(pilin structural proteins), as well as natural competence for DNA 
uptake and DNA secretion that facilitate frequent horizontal gene 
exchange (Yang and Gotschlich, 1996; Dehio et al., 1998; Massari 
et al., 2003; Cornelissen, 2008; Maiden, 2008; Hill and Davies, 2009; 
Virji, 2009). Thus it can be argued that if the host mounts antibody 
responses to these components, their constantly shifting expression 
and antigenicity prevent recognition and binding of antibodies to 
the gonococcal surface. Some evidence in favor of this scenario 
can be seen in studies on highly exposed sex-workers in Nairobi, 
Kenya. Partial serovar (porin)-specific immunity to re-infection 
with the prevalent serovar, and reduced susceptibility to salpingitis 
associated with anti-Opa antibodies have been reported (Plummer 
et al., 1989, 1994). However, these findings were not replicated 
elsewhere (Fox et al., 1999), possibly because of a lower frequency 
of infection. Antibodies to porin or Opa proteins can mediate com-
plement- or phagocyte-dependent killing of gonococci that express 
the homologous (or cross-reactive) antigens (Virji and Heckels, 
1985; Heckels et al., 1989), but additional mechanisms of resist-
ance are known. These include antibodies to the reduction-modi-
fiable protein (RMP) which is closely associated with porin; these 
antibodies block bacteriolysis mediated by anti-porin antibody 
(Rice et al., 1986; Virji and Heckels, 1988). Sialylation of LOS also 
inhibits complement-mediated lysis (Wetzler et al., 1992a; Smith 
et al., 1995). Nevertheless, purified porin formed the basis for the 
development of a potential serovar-specific vaccine (Wetzler et al., 
1992b). The outcome of the pilus vaccine effort also supports the 
concept of immune evasion by antigenic variation. This vaccine, 
based on the pilus structural protein (pilin) was successful in gener-
ating  antibodies against homologous pilus protein, and antibodies 
to pilin could inhibit attachment of gonococci to epithelial cells 
(Tramont et al., 1981). However, the vaccine proved completely 

Table 2 | New hypothesis concerning immunity to gonorrhea*.

Postulate Evidence for Evidence against

Neisseria gonorrhoeae avoids 

inducing, interferes with, or 

suppresses adaptive immune 

responses

N. gonorrhoeae enhances TGF-β production and inhibits 

Th1/Th2 development in mice

Antibodies not significantly enhanced in response to 

infection

Opa-CEACAM1 interaction inhibits T and B cell activation

Induction of TGF-β and suppression of Th1/Th2 not 

yet shown in humans

N. gonorrhoeae preferentially 

elicits innate immune responses

N. gonorrhoeae induces Th17 development in mice Not yet confirmed in humans

N. gonorrhoeae resists innate 

immune defense mechanisms

N. gonorrhoeae is resistant to complement, intracellular 

phagocytic killing, and innate defense peptides

Resistance is partial

N. gonorrhoeae is susceptible to 

adaptive (specific) immune 

defense mechanisms

Anti-TGF-β antibody reverses inhibition of Th1/Th2 

responses and allows specific antibody development 

against infection in mice

Anti-porin or anti-Opa antibody (plus complement, 

phagocytes) kills gonococci bearing homologous antigens

Not yet shown in humans

Gonococci have multiple mechanisms for evading 

antibody recognition and avoiding complement- or 

phagocyte-mediated destruction

Hence N. gonorrhoeae suppresses the generation of potentially protective specific antibody responses, and proactively elicits a host response pattern that 

favors its own survival

*For discussion and references, see text.
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infection does not usually persist in mice for more than 1–2 weeks, 
and the mechanisms by which gonococci are eliminated from the 
genital tract in either mice or humans are not known. The murine 
studies cannot be directly replicated in humans for ethical and prac-
tical reasons, but if evidence can be obtained that human immune 
cells respond to N. gonorrhoeae in a similar way to murine cells, 
and that the natural infection of humans with gonorrhea elicits 
Th17 and/or TGF-β and Treg responses, then new approaches to 
therapy and vaccine development can be anticipated. For example, 
TGF-β or Treg cells might be targeted by novel therapeutics to 
alleviate gonococcal immunosuppression, although caution will 
be needed to avoid adverse consequences, such as autoimmunity, 
allergy, or other manifestations of undesirable immune responses 
that are held in check by immunoregulatory mechanisms. In vac-
cine development, it is clear that the standard paradigm, of seeking 
to mimic the natural infection without causing disease in order 
to elicit protective immunity, is inapplicable because the natural 
infection does not induce protective immunity, due to gonococcal 
antigenic variation and gonococcus-induced immunosuppression. 
Therefore, other strategies to induce effective immune responses 
against conserved gonococcal antigens and deliver them to the sites 
of infection will be needed.

Acknowledgments
Studies in the authors’ laboratory were supported by USPHS grant 
AI074791 from the National Institute of Allergy and Infectious 
Diseases, and the John R. Oishei Foundation, Buffalo, NY, USA.

infection (Imarai et al., 2008), but this mechanism remains to be 
fully investigated. Blockade of TGF-β both in vitro and in vivo 
alleviates immunosuppression elicited by N. gonorrhoeae and 
permits the generation of Th1- and Th2-governed responses, 
with the development of immune memory and anti-gonococcal 
antibodies, and protection against re-infection. Thus we propose 
not only that N. gonorrhoeae elicits from its host Th17-driven 
innate responses that it can resist, but also that it suppresses adap-
tive responses that might be capable of eliminating it. In other 
words, N. gonorrhoeae does not merely react to the host’s immune 
responses, but it proactively elicits a pattern of immune responses 
that is favorable to its own survival, not what is desirable for the 
host. Some possible mechanisms by which this is accomplished 
are illustrated in Figure 1.

How this relates to the human infection is unclear at present, 
because studies of Th17-dependent responses to gonococcal infec-
tion have not yet been conducted. We hypothesize that IL-17-driven 
innate responses are inadequate to eliminate gonococcal infec-
tion in humans and that potentially protective adaptive immune 
responses are suppressed, but this remains to be tested. However, 
increased serum levels of IL-17 and IL-23 have now been reported 
in men infected with gonorrhea (Gagliardi et al., 2011). It must be 
borne in mind that there are numerous differences between mouse 
and human systems, and that several of the known pathogenic 
mechanisms deployed by N. gonorrhoeae are specific to human cells 
or proteins. N. gonorrhoeae is not a natural pathogen of mice which 
do not develop signs of disease due to genital tract infection, the 

FIGurE 1 | Model for mechanisms of interaction of N. gonorrhoeae (Ngo) 
with cells of the immune system. Gonococcal LOS interacts with CD4+ T cells 
and other cells through TLR4 to induce the production of IL-6 and TGF-β which 
drive the development of Th17 cells; IFN-γ is also secreted by NK cells. 
Gonococcal Opa proteins interact with an unknown receptor on mouse cells (or 

with CEACAM1 on human cells), leading to the increased production of TGF-β, 
which directly suppresses Th1 and Th2 cells, and also enhances the 
development of Treg cells which regulate Th1 and Th2 cells. Blockade of TGF-β 
thus relieves the suppression of Th1 and Th2 cells, which then drive adaptive 
immune responses, leading to memory, and antibody production.
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