
“fmicb-03-00184” — 2012/5/16 — 19:21 — page 1 — #1

REVIEW ARTICLE
published: 18 May 2012

doi: 10.3389/fmicb.2012.00184

Application of meta-transcriptomics and -proteomics to
analysis of in situ physiological state
Allan Konopka* and Michael J. Wilkins

Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA

Edited by:

Matthew Fields, Montana State
University, USA

Reviewed by:

Carl James Yeoman, University of
Illinois at Champaign-Urbana, USA
Giridhar Upadhyaya, University of
Michigan, USA

*Correspondence:

Allan Konopka, Biological Sciences
Division, Pacific Northwest National
Laboratory, P.O. Box 999, MSIN J4-18,
Richland, WA 99352, USA. e-mail:
allan.konopka@pnnl.gov

Analysis of the growth-limiting factor or environmental stressors affecting microbes in
situ is of fundamental importance but analytically difficult. Microbes can reduce in situ
limiting nutrient concentrations to sub-micromolar levels, and contaminated ecosystems
may contain multiple stressors. The patterns of gene or protein expression by microbes in
nature can be used to infer growth limitations, because they are regulated in response to
environmental conditions. Experimental studies under controlled conditions in the labora-
tory provide the physiological underpinnings for developing these physiological indicators.
Although regulatory networks may differ among specific microbes, there are some broad
principles that can be applied, related to limiting nutrient acquisition, resource allocation,
and stress responses. As technologies for transcriptomics and proteomics mature, the
capacity to apply these approaches to complex microbial communities will accelerate.
Global proteomics has the particular advantage that it reflects expressed catalytic activi-
ties. Furthermore, the high mass accuracy of some proteomic approaches allows mapping
back to specific microbial strains. For example, at the Rifle IFRC field site in Western
Colorado, the physiological status of Fe(III)-reducing populations has been tracked over
time. Members of a “subsurface clade” within the Geobacter predominated during carbon
amendment to the subsurface environment. At the functional level, proteomic identifica-
tions produced inferences regarding (i) temporal changes in anabolism and catabolism of
acetate, (ii) the onset of N2 fixation when N became limiting, and (iii) expression of phos-
phate transporters during periods of intense growth. The application of these approaches
in situ can lead to discovery of novel physiological adaptations.
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INTRODUCTION
A fundamental question in field-based studies of microbial com-
munities is “what nutrient resource or environmental stressor is
the limiting factor?” The concept of limiting factors goes back to
Liebig’s Law of the Minimum in 1840, and takes into account not
only the absolute amount of one resource but the relative ratios
of all required nutrients (Sterner and Elser, 2002). With respect
to nutrient resources, limitation may refer either to a constraint
on the standing crop of biomass or on the specific growth rate of
the microbes. Aquatic ecologists refer to cases in which a nutri-
ent resource limits standing crop as under “bottom-up” control
(Pernthaler and Amann, 2005). Usually, the concentration of lim-
iting resource is reduced to a level where specific growth rate is less
than the maximum. If loss factors such as predation or viral lysis
maintain biomass levels below what nutrient resources could yield,
the microbial populations are under“top-down”control, and their
specific growth rate is probably near their potential maximum
under the ambient conditions of temperature and pH. How-
ever, other chemical factors may act as environmental stressors
to constrain growth rate.

Determining the growth-limiting factor in natural habitats is
analytically difficult. Under bottom-up control, the microbial
population will reduce the in situ concentration of the limit-
ing nutrient to low micromolar or nanomolar concentrations

(Egli, 2010; Lin et al., 2010), which can be too low for analyti-
cal chemistry to accurately measure. Experimental additions of
nutrients to natural samples collected from nature (bioassays)
often produce only modest biomass increases (Elser et al., 1990;
Allgeier et al., 2011). As these reviews suggest, this occurs because
the addition of the limiting element can quickly drive the system
to exhaustion of another required resource, which is present in
only a modest excess relative to the limiting one.

An alternative strategy is to query the physiological state
of the microbes. Macromolecular composition and patterns of
gene expression are regulated by microbes in response to the
environmental conditions that they experience. Some of these
physiological responses can be identified by cultivating microbes
in the laboratory under specific limiting conditions; the responses
that are associated with specific physicochemical conditions can
be utilized as “physiological indicators” in assaying biomass from
natural populations to infer or exclude growth-limiting conditions
(Figure 1).

There is a rich history of use of physiological indicators over
the past 30 years, particularly in the field of phytoplankton ecol-
ogy (Healey and Hendzel, 1980; Davies et al., 2010). In these
cases, assays of enzyme levels, cell composition, or transport
capacity were generally made upon bulk samples. As a result,
discrete analyses of the physiological state of specific taxa was
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FIGURE 1 | Steps involved in the identification of physiological

indicators and their application to natural microbial communities.

A pure culture isolated from the environment is exposed to a range of
physicochemical conditions hypothesized to be relevant to the in situ

environment. Physiological responses specific to particular limitations or
stressors are elucidated. Natural samples are then tested for the presence
of these specific physiological indicators, to infer that the relevant
limitations/stressors are acting in situ.
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not possible. The development of nucleic acid and proteomics
sequencing technologies and analyses can generate the means to
target specific, adaptive responses made by individual populations
within a complex community.

THEORETICAL BASES FOR PHYSIOLOGICAL INDICATORS
There is an extensive literature from laboratory studies on pure
cultures of diverse microbes, that demonstrate the regulatory
responses in gene expression and protein activity that organisms
make to specific nutrient limitations or stress factors (Tempest
et al., 1983; Koch, 1997; Chung et al., 2006; Ferenci, 2008; Zhou
et al., 2011). There can be significant differences in the molecu-
lar details and effects of regulatory mechanisms that have evolved
in specific taxa; catabolite repression (Goerke and Stulke, 2008)
represents but one example. However, it is also possible to extract
some general principles that may be applied in developing targets
for physiological indicators.

These principles have emerged both from empirical stud-
ies of microbes (particularly in continuous culture (Gottschal,
1990; Bull, 2010) and from theoretical analyses of nutrient-limited
microbial growth (Button, 1994; Koch, 1997).

The physiological adaptations to nutrient limitation can
include the following:

1. Maximize uptake of the rate-limiting element. Molecular mech-
anisms include derepression of genes encoding the permeases
for the limiting nutrient, and induction of new high-affinity
permeases.

2. Derepress genes encoding permeases or enzymes that transport
or make available alternative forms of the resource. For exam-
ple, nitrate and amino acids represent alternative N sources to
ammonia.

3. Down-regulate cellular assimilation so that rates do not exceed
the inward flux of the limiting nutrient. This can entail low-
ering fluxes through pathways that generate monomers for
macromolecular synthesis and (most importantly) reducing
the capacity for protein synthesis (for example, by reducing
ribosome content).

4. Rearrange metabolism to circumvent bottlenecks caused by the
limitation.

Of equal (or greater) importance over a longer time period,
microbes may evolve a range of mechanisms that increase their
efficiency for dealing with long-term nutrient limitation. Some
examples include N-cost minimization and reduction in genome
and/or cell size (Grzymski and Dussaq, 2012).

Microbial responses to environmental stressors may be less
clear-cut, because environmental stressors may damage and/or
denature macromolecules such as DNA, RNA, proteins, and lipids
as well as impart changes in the cytoplasmic membrane with
consequent effects upon substrate transport and energy gener-
ation. As a result, stressors may elicit multiple responses by
cells, and those responses may not be specific to (and hence
useful to identify) a particular stressor. Some responses that
have been documented, particularly in a few “model” organisms
include:

1. Induction of general stress responses, such as heat shock
proteins, that function as molecular chaperones to refold

damaged proteins or phage shock proteins (Lund, 2009; Joly
et al., 2010).

2. Detoxification mechanisms. A strategy broadly deployed across
the microbial world is unidirectional efflux pumps – proteins
that can transport toxic chemicals out of the cell. Although
there are cases where pumps have specificity for particular
toxicants, the so-called MDR (multidrug resistance) pumps
have broad substrate ranges that extend beyond antibiotic
efflux (Segura et al., 1999; Krulwich et al., 2005; Higgins,
2007). In other cases, detoxification occurs in the cytoplasm,
via reactions that metabolize the chemical to a less toxic
form or synthesize metabolites that counter the toxic effects
(Tam et al., 2006).

3. Alteration of cell composition (for example, by modifying the
cell wall and membrane) in ways that reduce toxicity of the
stressor. This involves changes in biosynthetic gene expression
and metabolic fluxes (Nicolaou et al., 2010).

Recent work (Borden and Papoutsakis, 2007; Brynildsen and
Liao, 2009; Alsaker et al., 2010; Rutherford et al., 2010) that has
applied analysis of the transcriptome and proteome in response to
stressors has observed responses in genes of unknown function –
hence, there are many facets of stress responses in microbes whose
biochemical basis are unknown.

APPLYING PHYSIOLOGICAL PRINCIPLES TO IN SITU
MICROBIAL COMMUNITIES
The principles listed above have arisen from analyzing the physio-
logical ecology of individual microbes. However, in a microbial
community, the relative abundance of diagnostic genes, tran-
scripts, or proteins for specific physiological processes can provide
insights into the dominant metabolic processes in the community.
Lin et al. (2012) documented changes in the relative abundance of
anaerobic respirers capable of using sulfate vs. nitrate as terminal
electron acceptors across a vertical depth profile in Hanford sub-
surface sediments. Geochemical analyses demonstrated that the
availability of these acceptors varied and quantitative PCR of dsrA
and nosZ gene copies was related to these changes. Their analysis
(at the DNA level) indicated potential for a specific respiratory
process; it would be more insightful to carry out analysis of gene
or protein expression that would be related to actual physiological
activity.

Identifying and measuring either the presence or shifts in abun-
dance of proteins or gene transcripts that can be linked to specific
physiological activities has emerged as a powerful tool to probe
environmental stressors not detectable using other means. While
metagenomic analysis of a microbial assemblage can offer insights
into strain level community composition and functional potential,
the coupling of a genomic foundation with either metatran-
scriptomics or metaproteomics has allowed expressed function
to be interrogated. The first such integrated ‘omics approach
utilized a combined metagenomics and proteomics technique,
and focused on a microbial biofilm population within an acid
mine drainage (AMD) system (Tyson et al., 2004; Ram et al.,
2005). These studies allowed the effects of nitrogen limitation
to be studied at the community level, rather than just for an
individual microorganism. Metagenomic analysis indicated that
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a low abundance strain, Leptospirillum group III was able to
fix nitrogen, while the dominant biofilm community member,
Leptospirillum group II, was unable to carry out this process.
Likewise, community members Ferroplasma types I and II were
similarly unable to fix nitrogen, but contained a large number
of ammonia permeases and amino acid transporters, indicating
an N scavenging role for these strains. Subsequent proteomic
analyses confirmed the presence of Nif proteins that could be
assigned to Leptospirillum group III, and ammonia uptake systems
in Leptospirillum group II, consistent with this strain’s inability to
fix atmospheric nitrogen. In addition, this combined proteoge-
nomic approach revealed mechanisms through which biomass was
able to survive in metal-rich low pH AMD systems, utilizing a
suite of chaperones, thioredoxins and proteins involved in radical
defense.

Similar techniques have subsequently been applied to a range
of environmental systems. Here, we will focus on two environ-
ments where nutrient limitation and other stresses play a key
role in determining microbial community structure and expressed
functionality: oligotrophic ocean environments, and saturated
subsurface aquifers.

PLANKTONIC MARINE ENVIRONMENTS
Survival and growth in oligotrophic oceanic surface waters poses
a range of challenges for microorganisms due to the com-
bined effects of nitrogen or phosphorous limitation plus expo-
sure to intense light. With increasing depth, light irradiance
decreases exponentially, and inorganic nutrient concentrations
increase. Ammonia/ammonium is an important compound in
both surface and deeper waters, while in deeper waters more
oxidized forms of N such as nitrite and nitrate are avail-
able at higher concentrations. Numerous pure culture studies
have investigated the mechanisms that allow the proliferation
of biomass within these systems; this understanding has then
been applied to the analysis of environmental ‘omics datasets.
Research involving ocean-dwelling Prochlorococcus strains in the
lab has revealed niche-specific mechanisms for survival (Rocap
et al., 2003); despite only varying 3% at the 16S rRNA level,
Prochlorococcus strain MED4 is adapted for surface water con-
ditions, while strain MET9313 is adapted for deeper waters by
way of differing mechanisms for nitrogen usage, phosphorous
uptake, and sensitivity to trace metals (Martiny et al., 2006; Tolo-
nen et al., 2006). The deep-water adapted strain MET9313 is able
to utilize nitrite via a series of nitrite transport and reduction
genes, whereas MED4 does not possess this metabolic capa-
bility (Moore et al., 2005). Using a transcript-based microarray
approach, Martiny et al. (2006) demonstrated the expression
of phosphorous-acquisition genes (such as components of the
pho operon) under P-limitation conditions in strain MED4.
At the proteome level, Lv et al. (2008) identified a correla-
tion between the depth of water from which a Prochlorococcus
strain had been isolated, and the atomic composition of the
proteome of that strain. Strains isolated from deeper marine
waters had higher nitrogen and sulfur contents than those from
shallower waters, indicating long-term adaptation to environ-
mental conditions. In spite of these long-term adaptations,
Gilbert and Fagan (2010) hypothesized that fluctuating nutrient

availability frequently encountered in surface waters favors mech-
anisms involving short-term down-regulation of nutrient-rich
proteins. By comparing global mRNA transcripts from MED4 and
MET9313 strains grown under a range of N and P conditions, it
was shown that MED4 responded rapidly to nitrogen limitation
by down-regulating nitrogen-rich ribosomal proteins. Contrast-
ingly, the low-light, high-nutrient adapted MET9313 strain was
shown to exhibit slow but sustained down-regulation of the same
proteins.

The effects of sample depth in oceanic systems on micro-
bial strategies for survival were recently investigated using a
combined metagenomic and metatranscriptomic approach (Shi
et al., 2011). Biomass from 25, 75, 125, and 500 m depths
in the North Pacific was recovered, and revealed high expres-
sion of nitrogen metabolism genes (ammonium transporter,
amt ; dissimilatory nitrite reductase, nirK ; urea transporter,
urt ; ammonia monooxygenase subunits, amoABC). The ubiq-
uitous expression of Prochlorococcus-related amt and urt genes
by Prochlorococcus populations was noted in contrast to the
expression of the assimilatory nitrite reductase gene by only
a small proportion of the population, consistent with previ-
ous observations of niche-differentiation within these microor-
ganisms. Other environmental transcriptomic-based approaches
have investigated the role of N2-fixing diazotrophic cyanobac-
terium species in surface waters. In addition to detecting
expression of the nitrogenase cluster, this strain was found to
express the iron-stress-induced protein A (isiA) that is involved
in protecting photosystem I from high-light-induced damage
(Hewson et al., 2009).

The oligotrophic Sargasso Sea has proved a fertile environ-
ment for investigating microbial responses to nutrient limitations
and environmental stresses; a metaproteomic study (Sowell et al.,
2009) concluded that bacteria from the SAR11 clade dedicated
a large proportion of their proteome (67% of total spectra)
to transport functions, such as ABC transporters involved in
substrate uptake. Given the low concentrations of P that can
occur in the Sargasso Sea (<5 nm), the detection of the highly
abundant periplasmic phosphate-binding protein PstS and pro-
teins involved in regulation of the pst operon (PhoU, PhoR, and
PhoB) mirrored laboratory and field observations discussed earlier
(Martiny et al., 2006). For SAR11 strains, a role for assimilation of
inorganic nitrogen via ammonium, and incorporation into glu-
tamine and glutamate was inferred from the detection of proteins
involved in that pathway (AmtB, GlnA, GlnT, and GltB). Pro-
teomic data indicated that Synechococcus were able to utilize a
wider range of nitrogen sources including urea, nitrate, nitrite,
and ammonium, whilst high-light adapted Prochlorococcus strains
preferentially used ammonium and organic sources of nitro-
gen, correlating with previously discussed transcriptomic data
(Shi et al., 2011).

Finally, this study addressed some of the potential mecha-
nisms with which these microorganisms in surface waters survive
continual exposure to environmental stresses; the detection of
chaperone proteins such as GroEL, GroES, and DnaK together
with the membrane protease HflKC at high abundances indicated
a role for proteolysis and protein re-folding in maintaining cell
viability.
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In other marine systems, Morris et al. (2010) carried out
metaproteomic analyses of multiple biomass samples recovered
from oligotrophic regions of the South Atlantic. Again, trans-
port proteins for urea and ammonia were found to dominate
the metaproteome in these regions, illustrating the impor-
tance of competing (Button, 1994) for the small concentra-
tions of available N in these environments. In a contrasting
nutrient-rich environment off the Oregon coast however
(Sowell et al., 2011), no phosphate transporters were detected
at high abundance, although the abundance of transporters
for amino acids, taurine, and polyamines led the authors to
hypothesize that carbon and nitrogen were more limiting in this
system.

SUBSURFACE SEDIMENTS
Understanding the stress–responses and physiology of microbial
communities in subsurface environments has long proved diffi-
cult. In situ measurements are hindered by the localization of
biomass in small discrete pore networks within the subsurface.
Despite these obstacles, at the Rifle Integrated Field Research
Challenge (IFRC) site in Western Colorado, a series of biostim-
ulation experiments via acetate amendment to the subsurface has
allowed the study of microbial community responses to excess
organic carbon. Given that target acetate concentrations during
these experiments can range from 5 to 15 mM (Williams et al.,
2011), other nutrient limitations may play a role constraining the
specific growth rate of the indigenous microbial population. At
the community level, a suite of molecular microbiological tools in
numerous studies have indicated that Fe(III)-reducing Geobacter
strains are greatly enriched upon carbon addition to the subsurface
(Anderson et al., 2003).

Investigations into the physiological state of these bacteria have
progressed over the past decade that field experiments have been
performed at the site, with data gleaned from single-gene mRNA
studies being subsequently utilized in more complex metatran-
scriptomic and metaproteomic investigations. Both microarray
and targeted RNA-based approaches have identified Geobacter-
specific transcripts that exhibit abundance shifts in response to
(i) nitrogen limitation, (ii) phosphate limitation, (iii) acetate lim-
itation, and (iv) oxidative stress. Holmes et al. (2004) tracked
mRNA transcript levels of nifD, the gene that encodes the alpha
subunit of the dinitrogenase protein that fixes atmospheric N2;
increased expression of this gene was linked to ammonium
limitation in both chemostat cultures and sediments from the
Rifle IFRC site. Similar trends were observed in experiments
using another important subsurface microorganism, Dehalo-
coccoides ethenogenes (Lee et al., 2009). N’Guessan et al. (2010)
demonstrated the up-regulation in Geobacter of genes within
the phosphate uptake pst (phosphate specific transport)-pho
(phosphate) operon under phosphate-limiting chemostat con-
ditions, and there was increased expression of acetate uptake
genes in response to acetate limitation (Risso et al., 2008; Eli-
fantz et al., 2010). Mouser et al. (2009a) quantified transcript
abundances for two genes [sodA (superoxide dismutase) and
cydA (cytochrome d ubiquinol oxidase, subunit I)] involved
in Geobacter oxidative stress response during in situ biostim-
ulation at the Rifle IFRC site. Perhaps reflecting the complex

responses that cells may utilize when exposed to environmen-
tal stresses, high transcript abundances for these two genes did
not fully correlate with observed reducing geochemical condi-
tions in the subsurface. Less targeted approaches have utilized
microarray-based techniques to identify gene expression patterns
under specific environmental conditions. Using a microarray
platform constructed from predicted coding sequences of the
Geobacter sulfurreducens genome, 106 genes from G. sulfurre-
ducens were shown to exhibit shifts in expression under nitro-
gen fixing conditions, including increasing abundances of nif
genes and components of the Ntr response. However, a signifi-
cant percentage of the up-regulated genes encoded hypothetical
proteins, or proteins of unknown function. Similarly, a compara-
tive metatranscriptomic study using a Geobacter uraniireducens
whole-genome microarray detailed the up-regulation of both
nitrogen fixation and phosphate uptake genes when this strain
was grown on sediments (Holmes et al., 2009). These studies have
paved the way for identification of stress or nutrient limitation
biomarkers in more broad shotgun ‘omics analyses of microbial
communities.

Wilkins et al. (2009) applied global shotgun proteogenomic
techniques to the analysis of planktonic Geobacter populations
recovered during in situ acetate amendment. Tandem mass spec-
trometry data was searched against a database of predicted pep-
tides from eight concatenated Geobacter genomes, and revealed
the expression of proteins that had been predicted from previ-
ously described laboratory experiments such as NifD, NifH, and
NifK. Measured ammonium concentrations in bulk groundwater
samples were in excess of what has been reported as necessary
for Geobacter growth (Mouser et al., 2009b); despite this, the
abundances of proteins involved in nitrogen fixation indicated
that this energetically expensive process was occurring within the
planktonic Geobacter population. Given that laboratory RNA and
microarray studies (Holmes et al., 2004; Methe et al., 2005) had
reported the rapid inverse response of nifD mRNA transcript lev-
els to ammonium concentrations, this suggested that N limitation
existed in pore spaces within the aquifer. Proteins involved in
phosphate acquisition were less abundant across time points, sug-
gesting less of role for P limitation in controlling cell proliferation
at the site.

Metal-stress responses typically induce the up-regulation of
efflux pumps with which to remove toxic concentrations of metal
ions that may build up within a cell wall. The Rifle IFRC site
is located at a former uranium and vanadium milling operation,
and a range of metals remain adsorbed to subsurface sediments.
It is believed that some of these metals may be adsorbed onto
Fe(III) phases and subsequently mobilized as reductive dissolution
of Fe(III) minerals occurs. Within metaproteomic datasets gener-
ated from Rifle IFRC groundwater biomass, heavy-metal efflux
pumps have been detected, although the non-specific nature of
the genome annotation limits the information that can be gleaned
from these identifications (Wilkins et al., 2009). The more extreme
highly acidic metal contaminated subsurface conditions at the
Oak Ridge IFRC site have proved an ideal environment to inves-
tigate the community wide genomic potential for dealing with
these stresses. Metagenomic analysis of the indigenous ground-
water microbial community at the site revealed that the bacteria
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FIGURE 2 | The discovery of novel physiological responses via data

mining of transcriptome or proteome data. Replicate environmental
samples are collected along an environmental gradient where a measured
physicochemical factor is known to vary. Multivariate statistical analyses of
the molecular sequences and the associated environmental metadata
identify genes or proteins whose abundance is related to environmental
characteristics. Some of these may represent annotated genes that
previously have been identified as physiological indicators. If this data

mining suggests that there is an annotated gene that has not previously
been recognized as part of the adaptive response, laboratory experiments
should be undertaken to confirm its role under well-controlled conditions.
However, the most powerful outcome of this approach may be the
identification of unannotated genes that contribute to specific physiological
adaptations. This generates a motivation for detailed functional genomic
analysis, and subsequent biochemical experimentation to elucidate its
novel function.

Frontiers in Microbiology | Microbiotechnology, Ecotoxicology and Bioremediation May 2012 | Volume 3 | Article 184 | 6

http://www.frontiersin.org/Microbiotechnology,_Ecotoxicology_and_Bioremediation/
http://www.frontiersin.org/Microbiotechnology,_Ecotoxicology_and_Bioremediation/archive


“fmicb-03-00184” — 2012/5/16 — 19:21 — page 7 — #7

Konopka and Wilkins ‘Omics for physiological indicators

had evolved a range of mechanisms for existing in that environ-
ment (Hemme et al., 2010). Nearly 150 genes were identified as
being involved in heavy-metal resistance systems (heavy-metal
translocating ATPases, mer operon, Co2+/Zn2+/Cd2+ efflux),
while proton and small ion transport between the cytoplasm
and periplasm was suggested as a mechanism for tolerating
pH stress.

FUTURE DIRECTIONS
Understanding the environmental factors limiting microbial
growth in nature has presented a range of problems that remain
more than 30 years after they were articulated (Healey and
Hendzel, 1980; Tempest et al., 1983). Although the introduction
of molecular tools into microbial ecology over the past 20 years
has illuminated the diversity of complex microbial communities,
the more recent application of ‘omics technologies requires fur-
ther refinements over the examples presented here in order to
comprehensively reveal the limiting nutrient or environmental
stressors impacting natural populations. With an appropriate sam-
pling design and method of data analysis, these tools may be able
to go beyond the transfer of laboratory-generated insights to field
populations, and uncover novel mechanisms whereby microor-
ganisms survive and/or proliferate under stressful environmental
conditions (Figure 2).

The advances we foresee in this field by the further applica-
tion of ‘omics techniques will be consequences of innovations
in technology, computational analysis, and the application of
sophisticated experimental design coupled to novel data mining
approaches.

Technological advances in mass spectrometry should allow
improved sensitivity and quantitation with regards to proteomic
measurements, resulting in “deeper” analysis of samples, while
newer peptide-specific techniques such as Multiple Reaction Mon-
itoring (MRM) may be utilized for tracking the absolute abun-
dances of specific biomarker peptides indicative of a particular
stress in an environment (Werner et al., 2009).

Methodologies for nucleic acid sequencing have undergone
dramatic changes that have reduced their cost by a factor of
50,000 over the past 10 years. However, the recent advances
have come with an associated “cost,” i.e., a reduction in read
length to a small fraction of a gene’s worth of information.
The fundamental unit for analysis relevant to microbial ecology
is not the base pair but rather the gene, and greater ecologi-
cal insights regarding genes of unknown function can be made
by genome context analysis, as genes of similar function are
often closely linked in Bacteria (Morales and Holben, 2011).
Advances in computational methods may yield the extraction
and reconstruction of complete or almost-complete bacterial
genomes from complex environmental datasets (Iverson et al.,
2012), and we anticipate that the future generations of nucleic acid
sequencing machines will yield increasingly longer read lengths
that may span multiple genes and thereby ease genome context
analysis.

The iteration between laboratory experiments under spe-
cific environmental conditions to identify physiological responses
and their application to natural samples to interpret limit-
ing conditions will continue to be important. However, future

improvements in ‘omics technology and analysis can provide the
opportunity to extend beyond this current formula, to the discov-
ery of novel stress resistance mechanisms by comparative analysis
of natural communities. Environmental genomicists recognize
that ecosystems contain “dark matter.” Although this term has
been applied to sequencing the genomes of microbes that have
not yet been cultivated, we believe that its deeper (and more
challenging) meaning is the presence of significant proportions
of functionally ambiguous or misannotated genes, as well as
genes/proteins of unknown function, whether in uncultivated
or cultivated microbes. Many metagenomic analyses have made
use of much less than 50% of the sequence reads (Mackelprang
et al., 2011); we suggest that this occurs because a high propor-
tion of the remaining reads come from genes that encode proteins
which play important roles in situ, but not under controlled
conditions of pure culture. These traits may include physio-
logical responses to nutrient limitation, stress, or intercellular
communication.

Experimental strategies to discover novel or unrecognized func-
tions from transcriptomic or proteomic data would be heavily
dependent upon selection of natural systems and application of
appropriate sampling design (Figure 2). For example, compara-
tive spatial analysis (Anderson-Glenna et al., 2008; Kageyama et al.,
2008; Lowell et al., 2009; Meyer-Dombard et al., 2011) across envi-
ronmental gradients of stress factors such as salinity, temperature,
heavy metals, or xenobiotics would generate correlations between
environmental factors and the up- or down-regulation of genes
or proteins. Statistical methodologies that identify genes com-
prising metabolic pathways within metagenomic datasets, and
correlating these with environmental data have recently been
described (Gianoulis et al., 2009). These would then become
targets for deeper analysis of biochemical function. Techniques
such as common garden or reciprocal transplant experiments
that juxtapose environmental conditions (Reed and Martiny,
2007) can generate environmental forcing factors by which tran-
scriptomics and proteomics may illuminate organism-specific
responses.

The analysis of DNA sequences from environmental sam-
ples has generated tremendous insights into the membership
and functional potential of microbial communities. Further mat-
uration of transcriptome and proteome analyses will enhance
our mechanistic understanding of the selective forces that are
structuring those communities and the physiological responses
made by specific organisms within them. With appropriate
sampling designs and data mining techniques, we anticipate
that these ‘omics techniques can discover unrecognized genes
and proteins that perform critical roles in the ecology of
microbes.
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