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We compared overexpression of the magnetotactic bacterial gene MagA with the modified
mammalian ferritin genes HF + LF, in which both heavy and light subunits lack iron
response elements. Whereas both expression systems have been proposed for use in
non-invasive, magnetic resonance (MR) reporter gene expression, limited information is
available regarding their relative potential for providing gene-based contrast. Measure-
ments of MR relaxation rates in these expression systems are important for optimizing
cell detection and specificity, for developing quantification methods, and for refinement of
gene-based iron contrast using magnetosome associated genes. We measured the total
transverse relaxation rate (R2*), its irreversible and reversible components (R2 and R2′,
respectively) and the longitudinal relaxation rate (R1) in MDA-MB-435 tumor cells. Clonal
lines overexpressing MagA and HF + LF were cultured in the presence and absence of iron
supplementation, and mounted in a spherical phantom for relaxation mapping at 3Tesla. In
addition to MR measures, cellular changes in iron and zinc were evaluated by inductively
coupled plasma mass spectrometry, in ATP by luciferase bioluminescence and in transferrin
receptor by Western blot. Only transverse relaxation rates were significantly higher in iron-
supplemented, MagA- and HF + LF-expressing cells compared to non-supplemented cells
and the parental control. R2* provided the greatest absolute difference and R2′ showed
the greatest relative difference, consistent with the notion that R2′ may be a more specific
indicator of iron-based contrast than R2, as observed in brain tissue. Iron supplementation
of MagA- and HF + LF-expressing cells increased the iron/zinc ratio approximately 20-fold,
while transferrin receptor expression decreased approximately 10-fold. Level of ATP was
similar across all cell types and culture conditions. These results highlight the potential of
magnetotactic bacterial gene expression for improving MR contrast.
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INTRODUCTION
Medical imaging provides a non-invasive means of monitoring
disease processes from diagnosis through therapy, and is an essen-
tial component of healthcare today. Among the available imaging
platforms, magnetic resonance imaging (MRI) is preferred for
many reasons, including superb anatomic detail, at any tissue
depth (Burtea et al., 2008). Despite these strengths, MRI does not
yet have the tools to effectively track cellular and molecular activ-
ities, as has been achieved in optical imaging using reporter genes
such as the green fluorescent protein and luciferase. Development
of molecular imaging methods to track mammalian cells using
MRI requires refinement of both contrast gene expression systems
and magnetic resonance (MR) detection methods.

Gene-based iron-labeling for MRI has broad interest owing to
the paramagnetic and superparamagnetic properties of iron. Var-
ious iron handling proteins and mechanisms have been examined
for their potential as MR contrast agents, including those long rec-
ognized for their key role in mammalian iron homeostasis: iron
response elements (Genove et al., 2005), ferritin subunits (Cohen

et al., 2009), and transferrin receptor (Deans et al., 2006). Part of
the challenge in adapting iron binding proteins for use in generat-
ing MR contrast relates to the elaborate control of iron homeostasis
in mammalian cells (Pantopoulos et al., 2012) and the manner in
which this may fluctuate in response to changes in physiological
state (Recalcati et al., 2010). An ideal method for generating iron
nanoparticles for molecular MRI would be subject to molecular
regulation of magnetite formation and compatible with cellular
iron homeostasis.

Magnetotactic bacteria are an extraordinary example of how
single cells may synthesize and compartmentalize an iron biomin-
eral and harness its magnetic properties (Komeili, 2012). The
functional unit is a magnetosome and typically consists of a
lipid bilayer surrounding a magnetite/maghemite crystal. This
subcellular structure is assembled in a protein-directed manner
and may be largely encoded on a magnetosome genome island
(Richter et al., 2007; Jogler and Schuler, 2009). While defini-
tion of the molecular nature of the magnetosome is steadily
building, multiple applications of the magnetosome are being
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developed and refined, testifying to the utility of this unique
prokaryotic compartment (Takahashi et al., 2009; Yan et al., 2012).
A fuller understanding of which genes are essential for the
synthesis of the basic magnetosome compartment and for the
manipulation of select magnetosome features, would permit the
versatile use of this structure in the generation of MR contrast
for pre/clinical imaging (Goldhawk et al., 2012). Features such
as the size and shape, composition, and clustering of the iron
biomineral may provide distinct MR signals for the detection
of cellular and molecular activities. In addition, the super-
paramagnetic property of magnetite provides a more effective
MR contrast agent than, for example, the ferrihydrite core of
ferritin.

We have used the putative iron transporter MagA
(Nakamura et al., 1995b) as a prototype for magnetotactic bac-
terial and magnetosome gene expression in mammalian cells, to
enhance MR contrast and, in the future, enable effective reporter
gene expression for MRI. Although not an essential magnetosome
gene (Uebe et al., 2012), we showed that overexpression of MagA
from AMB-1 provides MR contrast comparable to the overexpres-
sion of modified, mammalian ferritin subunits (HF + LF) that
are devoid of iron regulatory elements (Rohani et al., 2013). In a
mouse model of tumor growth, transplanted cells were repetitively
imaged over 5 weeks and compared to the parental cell xenograft.
Both MagA- and HF + LF-expressing tumors provided contrast
enhancement. Moreover, MagA-derived contrast exhibited greater
contrast to noise ratio than HF + LF-expressing tumors, par-
ticularly in the immediate days post-injection, indicating a role
for select magnetotactic bacterial genes in preclinical molecular
imaging.

More precise localization of iron-loaded cells in the develop-
ing tumor may be derived from a quantitative measure of iron
contrast such as relaxation rate mapping. The report herein inves-
tigates the longitudinal (R1) and transverse (R2*, R2, and R2′)
relaxation rates in MagA- and HF + LF-expressing MDA-MB-435
cells. Using 3 Tesla (T) MRI and gelatin phantoms, we show the
manner in which the cellular MR signal changes as a function of
iron supplementation. Results are examined in light of elemental
iron and zinc content, reflecting iron uptake and cellular redox
status, as well as ATP and transferrin receptor levels, address-
ing the active transport and regulation of iron uptake. These
findings highlight the utility of a single magnetotactic bacterial
gene as an MR contrast agent, subject to genetic control. We pre-
dict the potential for further improvements in MR detection of
gene-based contrast upon fuller delineation of the magnetosome
compartment.

MATERIALS AND METHODS
CELLS
Human MDA-MB-435 breast/melanoma cells were stably trans-
fected with MagA (Goldhawk et al., 2009) and HF + LF
(Rohani et al., 2013) as previously described. Briefly, clonal
cell lines were cultured in low glucose Dulbecco’s Modified
Eagle Medium supplemented with 10% fetal bovine serum
and 0.5% penicillin/streptomycin. Iron-supplemented cells were
prepared by incubation with medium containing 250 μM
ferric nitrate (Sigma-Aldrich, Oakville, ON, Canada) for at

least 5 days. All cell culture reagents were purchased from
Life Technologies (Burlington, ON, Canada) unless otherwise
noted.

Cultures were grown to confluency on 150 mm dishes; har-
vested by trituration; and washed three times with phosphate
buffered saline pH 7.4 (PBS) to remove extracellular iron, cen-
trifuging 5 min at 400 × g and 15◦C. Cells were counted using
a hemacytometer and 30 million cells of each type were placed
in 1% gelatin/PBS in the wells from a 96-well break-apart plate
(Nunc, Rochester, NY, USA). Each well was centrifuged to form a
compact pellet 6 mm in height. Cell pellets were overlaid with 1%
gelatin/PBS and embedded in one hemisphere of a 9 cm spher-
ical phantom filled with 4% gelatin/PBS (Figure 1A). Samples
consisted of either parental, MagA- or HF + LF–expressing cells,
cultured in the presence and absence of iron supplementation. To
form the spherical gelatin phantom, the empty hemisphere was
filled with 2% gelatin/PBS and placed on top of the half contain-
ing cell samples. To avoid susceptibility artifacts at the interface,
air was excluded using a layer of parafilm. In order to minimize
macroscopic magnetic field inhomogeneities which would inter-
fere with accurate R2′ measurement, we used a spherical-shaped
phantom.

FIGURE 1 | Relaxation rate measurement in a spherical phantom.

Representative data indicate the influence of echo time (TE) on signal
decay. (A) Single-echo SE images show sample wells in cross section at
three different TE values (13, 100, and 300 ms): 1, parental (P); 2, MagA (A);
3, iron-supplemented MagA (A + Fe); 4, iron-supplemented parental
(P + Fe); and 5 polystyrene marker for reference. Samples along the
bottom row are combinations of MagA-expressing and parental cells.
(B) R2 relaxation curves are shown for iron-supplemented samples.
Symbols indicate the mean signal intensity within a region of interest (ROI)
at each TE. Curves represent the best fit to an exponential decay.
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RELAXATION RATE MAPPING
To quantify the MRI signal changes associated with cellular
iron uptake, phantoms were scanned on a 3T Biograph mMR
(Siemens AG, Erlangen, Germany) equipped with an actively
shielded whole-body gradient system (45mT/m @ 200T/m/s).
A 15-channel knee coil was used for radiofrequency (RF) exci-
tation and signal reception. Quantification is based on mea-
surement of the MRI relaxation rates. For R1 measurements,
an inversion-recovery spin-echo (SE) sequence was used [TR
(repetition time) = 4000 ms; TE (echo time) = 13 ms; FOV
(field of view) = 120 mm; matrix = 128 × 128; slice thick-
ness = 1.5 mm; flip angle = 90◦], with inversion times of 22,
200, 500, 1000, 2000, and 3900 ms. For R2 measurements,
a single-echo SE sequence was used with varying echo times
(TR = 1000 ms; 9 echoes; TE = 13, 20, 30, 40, 60, 100, 150,
200, and 300 ms; FOV = 120 mm; matrix = 192 × 192; slice
thickness = 1.5 mm; flip angle = 90◦). Finally, R2* was measured
with a multi-echo gradient echo sequence (TR = 1000 ms; 12
echoes; TE = 4.7, 11, 17, 23, 30, 36, 42, 49, 55, 61, 68, and 80 ms;
FOV = 120 mm; matrix = 192 × 192; slice thickness = 1.5 mm;
flip angle = 60◦). Voxel dimensions were 1.5 × 0.6 × 0.6 mm
for R2 and R2* acquisitions and 1.5 × 0.9 × 0.9 mm for R1
acquisitions. Image processing and analysis were performed using
MATLAB 7.9.0 (R2010b), Excel 2010 (Version 14) and Sigma Plot
10.0.Ink. The region of interest (ROI) was selected in each well to
include the maximum number of voxels (approx. 30–50), exclud-
ing ones adjacent to the wall of the well. R2*, R2, and R1 were
determined with least square curve fitting of the mean ROI sig-
nals using standard equations. R2′ was obtained by subtraction
(R2*–R2).

ICP–AES/MS
Trace element analysis of iron and zinc was performed by the
Analytical Services Laboratory of Western University (London,
ON, Canada) using inductively coupled plasma atomic emis-
sion spectroscopy (ICP–AES) or mass spectrometry (ICP–MS).
Zinc provided a measure of cellular redox status as well as a
point of comparison to iron content. Cultured cells were lysed
in RIPA/protease inhibitors as described below, such that approx-
imately 10 million cells were solubilized per ml of lysis solution.
Iron and zinc content were normalized to quantity of protein as
determined by the BCA assay (Smith et al., 1985).

ATP ASSAY
To assure cellular viability and capacity for active transport of
iron, ATP content was measured following published procedures,
with an ATP Bioluminescent Assay kit (Sigma-Aldrich, St. Louis,
MO, USA) and a modified spectroscopy system (PTI, London,
ON, Canada; Belton et al., 2008). Immediately following MR scan-
ning, 50–100 μL cells were extracted from the gelatin phantom;
mixed with 8 M Guanidine-HCl/10 mM EDTA at a ratio of 1
part cells: 9 parts lysis solution; and stored at −20◦C for up to
12 h (Linklater et al., 1985). The ATP assay reaction was placed
in a glass tube (Fisher Scientific, Nepean, ON, Canada) and con-
sisted of 30 μL cell lysate, 570 μL sterile water, 600 μL 25 mM
HEPES pH 7.75, and 500 μL dilution buffer provided with the
kit. Immediately prior to measuring bioluminescence, 100 μL

luciferin/luciferase solution was added to the sample and mixed
for 10 s using a vortex. Bioluminescence was recorded for at
least 2 min using Felix32 software (PTI, London, ON, Canada)
to establish the peak value. ATP content was determined from an
external ATP standard curve. Viability was assessed relative to con-
trol samples prepared from cultured cells, harvested and frozen
at −80◦C as cell pellets prior to the addition of lysis solution.
ATP content was normalized to quantity of protein as described
above.

WESTERN BLOT
Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE; Laemmli, 1970) and Western blotting (Tobin et al., 1979)
were performed according to published protocols with the follow-
ing modifications. Protein samples were resolved on a 7% mini gel
and transferred to a nitrocellulose membrane for 7 min using the
iBlot Gel Transfer Device (Life Technologies). The membrane was
blocked in 3% bovine serum albumin/10 mM Tris-HCl pH 7.4
buffered saline (TBS) for 3 h; incubated 18 h in a 1/1000 dilution
of monoclonal rabbit anti-human transferrin receptor (α-TfR,
EPR4012, Novus Biologicals, Oakville, ON, Canada)/TBS/0.02%
sodium azide; followed by 2 h in a 1/5000 dilution of horse radish
peroxidase (HRP) conjugated-goat anti-rabbit immunoglobulin
(Santa Cruz Biotechnology, Dallas, TX, USA). All incubations
were performed at room temperature and blots were washed
with TBS/0.1% Tween 20. Immunoreactive bands were detected
using an enhanced chemiluminescent HRP substrate (SuperSignal
West Pico, Thermo Scientific, Rockford, IL, USA) and captured
using GeneSnap software, version 7.09, and a Chemi Genius2
Bio Imaging System (SynGene, Cambridge, England). Densito-
metry was performed using GeneTools software, version 3.06.04
(SynGene).

Samples were prepared from cultured cells on 100 mm dishes,
washed twice with PBS prior to harvesting in 1 mL RIPA (10 mM
Tris-HCl pH 7.5/140 mM NaCl/1% NP-40/1% sodium deoxy-
cholate/0.1% SDS)/150 μL Complete Mini protease inhibitor
cocktail (Roche Diagnostic Systems, Laval, QC, Canada). Cell
lysates were quantified and 50 μg of denatured protein was loaded
into each lane. Molecular size was approximated using Novex
Sharp Pre-stained Protein Standards (Life Technologies).

STATISTICS
Relaxation rate means, standard deviations (SDs) and standard
errors of the mean (SEM) were calculated for all group values.
Assuming that the data were non-parametric, for each cell type
(parental, MagA, and HF + LF), group mean relaxation rates (R2*,
R2, and R2′) were compared between runs, with versus without
iron supplementation, using the non-parametric Kruskal–Wallis
test. The same non-parametric test was then used to compare all
runs with iron versus all runs without iron, combining data from
all three cell types. Finally, four linear regression models were
tested with each relaxation rate measure as the dependent variable,
and cell type and iron status (added/not added) as independent. To
adjust for multiple comparisons, p = 0.01 was set as the threshold
for statistical significance, with p = 0.10 as the threshold for statis-
tical trend. The decision to adopt an intermediately conservative
p value, rather than the most conservative Bonferroni adjusted
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threshold of p = 0.05/10 = 0.005, takes into consideration the
relatively small sample size. All tests were two-tailed and SPSS ver-
sion 21.0 was the statistical package used. Variation in ATP content
among cell types and culture conditions was also evaluated using
the Kruskal–Wallis test and p = 0.01, again adjusting for multiple
comparisons.

RESULTS
RELAXATION RATES AND IRON CONTENT
Parental, MagA- and HF + LF-expressing cells were cultured in
the presence and absence of iron supplementation and mounted
in a spherical phantom to determine both longitudinal and trans-
verse relaxation rates. Figure 1A illustrates the phantom set
up for parental and MagA-expressing cells and provides repre-
sentative data from R2 measurements. Figure 1B indicates the
rate of signal decay with respect to TE. The manner in which
contrast gene expression alters MR relaxation rates of cells cul-
tured under iron-supplemented conditions is described further
below.

In all cell types and culture conditions, R1 remained virtually
constant between 0.72–0.91 s−1 (Table 1) and was not pursued as
an indicator of cellular iron contrast. On the other hand, trans-
verse relaxation rates were notably different in iron-supplemented
cells overexpressing MagA and HF + LF (Figure 2). Comparison
of the total transverse relaxation rate, R2*, and its irreversible and
reversible components, R2 and R2′ respectively, showed no signif-
icant differences in MR contrast of parental cells cultured in the
presence or absence of iron supplementation (Table 2). However,
the same non-parametric bivariate analysis of MagA-expressing
cells exhibited a statistically significant influence of iron supple-
mentation on all transverse relaxation rates. A similar response to
iron supplementation was obtained in both MagA- and HF + LF-
expressing cells. Overall, R2* provided the greatest absolute
difference in MR contrast from iron-supplemented MagA- and
HF + LF-expressing cells, while R2′ displayed the greatest relative
difference.

Across the entire sample, the significant effect of iron supple-
mentation is confirmed using both bivariate and multi-variate
analyses (Table 3). Kruskal–Wallis analysis indicates there is
no significant influence of the expression system itself. Rather,

Table 1 | Longitudinal relaxation rates in parental, MagA- and

HF + LF-expressing cells +/− iron supplementation.

Samplea R1 (s–1)b n

P 0.719, 0.821 2

P + Fe 0.762, 0.767 2

A 0.808 ± 0.025 5

A + Fe 0.812 ± 0.030 5

F 0.906 ± 0.053 3

F + Fe 0.794 ± 0.018 3

aCells were incubated in the presence (+Fe) or absence of 250 μM ferric nitrate.
P, parental; A, MagA expression; F, HF + LF expression.
bIndividual values are reported for n = 2. Mean + SEM is reported for n = 3–5.

FIGURE 2 |Transverse relaxation rate mapping. Representative maps
are shown for (A) R2, (B) R2∗ and (C) R2’. The first two maps were
obtained using voxel by voxel curve fitting with an exponential decay
function and the R2’ map was obtained by subtraction (R2∗–R2). The
units of the scale bar are sec−1. Images show sample wells in the
phantom, in cross section. From left to right across the top row are:
parental (P); MagA (A); iron-supplemented MagA (A + Fe); and
iron-supplemented parental (P + Fe). Along the bottom row, from left to
right, there is a polystyrene marker for reference and samples with
combinations of iron-supplemented, MagA-expressing and parental cells.
These samples decrease from 70% A + Fe to 50% and 30% and were
not further evaluated. Note that pixel values for all three rates are highest
for A + Fe. Maps are provided for display only; relaxation rates (Table 2)
were determined as outlined in methods.
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Table 2 |Transverse relaxation rates in parental, MagA- and HF + LF-expressing cells +/– iron supplementation (non-parametric bivariate

analysis).

Relaxation

rateˆ(s–1)

Parental (n = 4) MagA (n = 8) HF + LF (n = 5)

Fe (–) (SD) Fe (+) (SD) p Fe (–) (SD) Fe (+) (SD) p Fe (–) (SD) Fe (+) (SD) p

R2* 13.70 (3.07) 15.68 (5.83) 0.66 13.91 (3.69) 26.46 (8.69) < 0.005 13.09 (1.87) 28.39 (11.59) [< 0.05]§

R2 9.69 (0.76) 11.58 (2.30) 0.15 11.17 (2.95) 17.37 (4.80) < 0.01 9.46 (2.31) 16.63 (6.35) [< 0.05]

R2′ 4.01 (2.41) 4.10 (3.94) 0.56 2.74 (1.03) 9.09 (4.12) 0.001 3.63 (2.04) 17.87 (20.66) 0.18

ˆMean +/− SD
§Data in brackets represent a statistical trend, as identified by 0.01 < p < 0.10.

Table 3 | Statistical analysis of transverse relaxation rates in parental,

MagA- and HF + LF-expressing cells +/− iron supplementation.

Condition (n = 34)a Kruskal–Wallis (bivariate)

R2* R2 R2′

Iron vs. no iron p = 0.001 p < 0.001 p < 0.005

P vs. A vs. F p = 0.32 p = 0.24 p = 0.53

Condition (n = 34)a Linear regression (multi-variate)

R2* R2 R2′

Iron vs. no iron p < 0.005 p < 0.001 (p < 0.05)b

P vs. A vs. F p = 0.11 p = 0.27 (p = 0.09)

aSample size, n, consists of 8 parental (P), 16 MagA (A) and 10 HF + LF (F). Data
sets include both iron-supplemented and unsupplemented cells.
bData in parentheses represent a statistical trend, as identified by 0.01 < p < 0.10.

it is the addition of an iron-supplement that exploits the dif-
ference in transverse relaxation rates in engineered cells. This
finding is supported by linear regression analysis, which fur-
ther indicates that the cell type variable approaches a sta-
tistically significant influence on R2′, the most iron-specific
measure.

Over the course of relaxation rate measurements, iron
content was periodically evaluated in cultured cells. In any
cell type cultured in the absence of iron supplementation,
ICP–MS analysis indicated 0.048 + 0.017 μg Fe/mg protein
(n = 10; mean +/− SD) and 0.223 + 0.121 μg Zn/mg pro-
tein (Table 4 and data not shown). In contrast, the presence
of iron supplementation in MagA- and HF + LF-expressing
cells increased iron content to approximately 0.66 μg/mg pro-
tein while zinc levels remained at approximately 0.13 μg/mg
protein (Table 4). The ratio of iron/zinc in non-supplemented
cultures (approx. 0.22) is over 20 times lower than under iron-
supplemented conditions (approx. 5.2). Interestingly, sizable
increases in iron content were observed periodically in sup-
plemented cultures of both MagA- and HF + LF-expressing
cells, giving greater than 1 μg Fe/mg protein (data not shown
since these samples exceeded the upper calibration range of
ICP–MS, 0.172 + 0.012 μg Zn/mg protein, Fe/Zn over 6, n = 3,
mean +/− SD).

Table 4 |Trace element analysisˆ of cells cultured in the presence or

absence of iron supplementation*.

Sample Iron# Zinc# Fe/Zn n

A 0.047 ± 0.006 0.249 ± 0.047 0.19 7

A + Fe 0.667 ± 0.111• 0.117 ± 0.008◦ 5.70 7

F 0.044 ± 0.008 0.183 ± 0.034 0.24 5

F + Fe 0.650 ± 0.113• 0.139 ± 0.015◦ 4.68 4

ˆData were collected using either ICP–AES or –MS.
*Cells were incubated in the presence (+Fe) or absence of 250 μM ferric nitrate.
#Elemental analysis is reported as μg/mg protein; mean ± SEM.
•Samples +/− Fe were evaluated using the Student’s t-test and showed signifi-
cance at p < 0.01.
◦Samples +/− Fe were evaluated using the Student’s t-test and were not
significant: p > 0.01.

ATP STORES AND TRANSFERRIN RECEPTOR LEVELS
To address the potential for variation in amount of iron uptake in
MagA- and HF + LF-expressing cells, we examined cellular levels
of ATP and transferrin receptor. The ATP content of viable and
scanned cell samples was evaluated using a luciferase biolumines-
cence assay and normalized to total protein (Figure 3). In general,
viable cells contained approximately 0.50–2.50 pmol ATP/μg pro-
tein. There was no significant influence of iron supplementation or
cell type on ATP levels. As expected, samples harvested within 24 h
of scanning showed decreases in ATP content to levels generally
less than 0.50 pmol ATP/μg protein.

The influence of MagA and HF + LF expression systems on
the level of transferrin receptor was evaluated by Western blot
(Figure 4). Both MagA- and HF + LF-expressing cells exposed
to long-term iron-supplemented culture exhibited decreases in
transferrin receptor expression. A densitometric analysis of the
soluble transferrin receptor band at 95K indicates comparable pro-
tein levels in non-supplemented cell culture and an approximately
10-fold decrease in transferrin receptor in the presence of iron
supplementation (Table 5).

DISCUSSION
Improvements in molecular MRI are likely to evolve as develop-
ments in MR hardware, sequences and contrast agents progress
(Huang et al., 2012). We are interested in adapting select fea-
tures of the bacterial magnetosome to generate magnetosome-like

www.frontiersin.org February 2014 | Volume 5 | Article 29 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/Microbiotechnology,_Ecotoxicology_and_Bioremediation/archive


Sengupta et al. Characterizing MagA expression for MRI contrast

FIGURE 3 | Cellular ATP content before and after MR scanning.

ATP was quantified in each cell type using a luciferase
bioluminescence assay and normalized to protein content (black bars).
In parental and MagA-expressing cells, ATP content was not
statistically different in the presence and absence of iron
supplementation. In cells mounted in a gelatin phantom (open bars),
the ATP content decreased variably within 24 h of harvest and
scanning. Error bars represent SEM where n = 3–4; both values are
shown where n = 2.

FIGURE 4 | Decrease in transferrin receptor expression upon iron

supplementation. Tumor cells were cultured in the presence (+) or
absence (−) of iron supplementation, lysed, and analyzed by Western
blot using a primary antibody to transferrin receptor. Both MagA- and
HF + LF-expressing cells showed greater immunoreactivity toward the
soluble form of transferrin receptor (arrow) in cells cultured in the
absence of iron supplementation. Under reducing conditions, soluble
transferrin receptor migrates at a M.W. of approximately 95K. Protein
M.W. standards are indicated on the right margin.

Table 5 | Relative expression of transferrin receptora.

Sample Pixel Numberb Relative Expressionc

MagA 71254 14

MagA + Fe 4938 1.0

HF + LF 72700 15

HF + LF + Fe 7432 1.5

aComparable results were obtained in four separate experiments.
bPixel number was assessed using GeneTools software.
cEach sample consisted of 50 μg total protein.

nanoparticles in mammalian cells and provide MR contrast
enhancement that is subject to genetic control. Toward this
goal, we have used the gene MagA to examine (1) the potential
for contrast enhancement in tumor cells and (2) whether iron
binding protein from magnetotactic bacteria is compatible with
mammalian iron regulation.

RELAXATION RATES, IRON STORES AND MR CONTRAST
Using phantoms of compact cell pellets, we report cellular MR con-
trast using relaxation rate mapping and compare overexpression
of MagA to HF + LF, the modified human ferritin subunits
that lack iron response elements to enable continuous expres-
sion. In agreement with the literature, we show that there is
little, if any, influence of cellular iron on the longitudinal relax-
ation rate (Table 1; Bin Na et al., 2009). Rather, our results
show that transverse relaxation rates detect significant contrast
enhancement in both MagA- and HF + LF-expressing cells
when cultured in iron-supplemented medium (Figures 1 and 2,
Tables 2 and 3). In these cell types and culture conditions, the
ratio of elemental iron/zinc increased over 20-fold (Table 4). In
addition to establishing specific iron uptake, relatively constant
levels of zinc are consistent with little or no redox cytotoxicity
(Chung et al., 2006).

Iron-based contrast agents create hypointense regions and
cells with this type of contrast may be difficult to differenti-
ate from anatomical regions that are also dark on MRI, such
as the liver or a blood clot (Kim et al., 2011). For this reason,
MagA and HF + LF overexpression may be useful in tracking
breast cancer metastasis in the white matter of brain (Renier
et al., 2010). In addition, the clear response to an iron-supplement
suggests that these methods of gene-based iron contrast may be
suitable indicators of hemorrhage, revascularization or changes
in iron homeostasis. For example, Shpyleva et al. (2011) have
reported changes in the level of ferritin subunits between epithe-
lial and mesenchymal breast tumor cell lines (Shpyleva et al.,
2011). In this case, to avoid interfering with the cancer cell biol-
ogy, MagA overexpression might be a preferred method of cell
tracking.

R2 measurements have previously been reported in 293FT
and A549 cells expressing MagA (approx. 20 s−1, 3 T, n = 4;
Zurkiya et al., 2008) and HF + LF (approx. 45 s−1, 11.7 T,
n = 3; Genove et al., 2005), respectively. The values for MagA-
expressing cells compare well with our findings; however, we
show that R2 alone provides the weakest index of MR contrast
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activity (Table 2). Measures of R2* and R2′ report the most
statistically significant change in cellular contrast upon iron sup-
plementation. In addition, relative changes in R2′ were larger
than those in R2, suggesting the potential of R2′ for better
iron-related specificity, as previously suggested for human brain
regions with high iron (Gelman et al., 1999). This may be impor-
tant for in vivo cell tracking and optimization of molecular
MRI. Rohani et al. (2013) used balanced SSFP to measure an
increase in MagA- and HF + LF-expressing tumor contrast in
the first 3 weeks of xenograft growth. Beyond this timeframe,
contrast in the parental tumor increased, reducing the benefit of
contrast gene expression in larger tumors. Relaxation mapping
using optimal measures provides an additional tool for improving
image analysis. As well, the iron-related contribution to trans-
verse relaxation increases with field strength, thus, differences
between contrast gene expression and controls should be greater
at higher fields. We previously reported contrast enhancement
in iron-supplemented, MagA-expressing N2A cells using 11T
micro-MRI and a novel, dual echo sequence (Goldhawk et al.,
2009).

ATP STORES, CELLULAR VIABILITY, AND IRON HOMEOSTASIS
Although transverse relaxation rates vary as a function of tissue
iron (Wood et al., 2005), R2 in particular is affected by other
factors in the tissue or cell, such as water content reflecting
proton density, subcellular compartmentalization, and water–
protein interactions, particularly those that influence ferromag-
netic metals like iron. By comparison, R2′ is mostly influenced by
sources of magnetic field inhomogeneity. If sources of macro-
scopic inhomogeneity are minimized, as done here by using
a spherical phantom, then R2′ should be influenced mostly
by microscopic sources of inhomogeneity, which in our sam-
ples should be from iron particles. Post-processing methods
have been developed to correct for macroscopic inhomogeneities,
using the phase of the gradient echo signals for which no addi-
tional acquisition is required. This was previously demonstrated
in a small animal imaging study reporting R2* and R2′ mea-
surements from cancer cells labeled with superparamagnetic
iron nanoparticles (Kuhlpeter et al., 2007). To further address
variability in MR relaxation rates obtained from MagA and
HF + LF overexpression, we examined ATP and transferrin recep-
tor levels in cells cultured in the presence and absence of iron
supplementation.

ATP quantification showed no significant difference in the
energy stores of parental, MagA- and HF + LF-expressing cells,
regardless of iron supplementation (Figure 3). Iron uptake in
both prokaryotes and mammalian cells is an ATP-dependent
process. In bacteria, iron transport requires ATP hydrolysis
(Andrews et al., 2003). When MagA was expressed in E. coli,
iron uptake was observed in membrane vesicles when cells were
supplemented with iron and ATP; however, this response was lim-
ited when ATP was excluded, suggesting that MagA function is
coupled to ATP hydrolysis (Nakamura et al., 1995a). In mam-
malian cells, transferrin-bound iron is transported into the cell
through receptor-mediated endocytosis. Iron is released from the
transferrin-transferrin receptor complex by a pH change in the
endosomal compartment, caused by proton-pump ATPase activity

(Anderson and Vulpe, 2009). The results presented in the current
report confirm that iron loading in our engineered tumor cell
model produced neither cytotoxicity nor substantial changes in
total ATP stores.

Transferrin receptor, the principle mammalian iron import
mechanism, is ubiquitously expressed in almost all cells (Ponka
and Lok, 1999), with higher levels of expression in highly pro-
liferating cells and those that have a functional need for iron
(Pantopoulos et al., 2012). Compared to healthy tissue, tumor
cells have reduced levels of ferritin expression and elevated lev-
els of transferrin receptor (Daniels et al., 2006; Anderson et al.,
2012). Such changes in the regulation of iron uptake, storage and
distribution support rapid proliferation, for example by supplying
iron as a cofactor for ribonucleotide reductase and DNA synthesis
(Weinberg, 1992; Nyholm et al., 1993). The tendency of prolif-
erating cells toward iron uptake may be used to best advantage
in cancer cell tracking by MRI and the development of gene-
based contrast. In MagA- and HF + LF-expressing tumor cells,
we have detected a decrease in transferrin receptor following cul-
ture in the presence of iron supplementation (Figure 4, Table 5).
Therefore, the activity of MagA has elicited the same homeostatic
response as expected of an increase in ferritin storage. In spite of
this, a statistically significant level of MR contrast enhancement
was achieved with both expression systems, verifying dysregula-
tion of HF + LF from iron response elements and suggesting that
MagA may function outside the regulatory control of iron binding
proteins. In the case of MagA and HF + LF activity, the lack of
cellular regulation may be reflected in greater fluctuation in iron
levels and therefore in MR contrast. The iron export activity of
ferroportin (Ganz, 2005) in MagA- and HF + LF-expressing cells
has not been reported.

The ability of MagA to circumvent key features of mammalian
iron regulation, without causing cytotoxicity, bodes well for future
development of gene-based contrast. Effective MR contrast in
mammalian cells, derived from the overexpression of iron han-
dling protein(s), would benefit from a clearer understanding of
which combination of magnetotactic bacterial or magnetosome
genes will (1) sequester iron within a membrane-enclosed vesicle
and (2) permit iron biomineralization in the presence of mam-
malian iron homeostasis. What is the simplest magnetosome unit?
The definition awaits further insight into the synthesis of this
compartment and may vary depending on the application. Magne-
tosome gene knock-out studies (Greene and Komeili, 2012) raise
the possibility that a subset of genes may be used to generate
a minimal compartment in multiple cell types that would per-
mit iron biomineralization for non-invasive medical imaging with
MRI.
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