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Viruses have been long known to perturb cell cycle regulators and key players of the DNA
damage response to benefit their life cycles. In the case of the human immunodeficiency
virus (HIV), the viral auxiliary proteinVpr activates the structure-specific endonuclease SLX4
complex to promote escape from innate immune sensing and, as a side effect, induces
replication stress in cycling cells and subsequent cell cycle arrest at the G2/M transition.
This novel pathway subverted by HIV to prevent accumulation of viral reverse transcription
by-products adds up to facilitating effects of major cellular exonucleases that degrade
pathological DNA species. Within this review we discuss the impact of this finding on
our understanding of the interplay between HIV replication and nucleic acid metabolism
and its implications for cancer-related chronic inflammation.
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INTRODUCTION
Efficient human immunodeficiency virus (HIV) replication in
target cells relies on its ability to use cellular resources and to over-
throw host defense mechanisms. Indeed, viral fitness is defined by
both the availability of cellular dependency factors and the abil-
ity to escape cellular blocks. One of the most challenging steps of
HIV life cycle is the delivery of its single stranded RNA (ssRNA)
genome and its conversion into double stranded DNA (dsDNA) in
the host cell without inducing innate immune responses. Indeed,
cellular “sensors” specialized in the recognition of foreign or
pathological nucleic acids are present in different compartments
through which viruses enter target cell. These nucleic acid sen-
sors belong to the pattern recognition receptors (PRRs) family
that recognize pathogen associated molecular patterns (PAMPs)
and subsequently trigger a signaling cascade that culminates in
the production of pro-inflammatory cytokines, including antivi-
ral interferon (IFN; for review Kawai and Akira, 2006). Once
recognition established, a signaling cascade is triggered, endow-
ing an antiviral state and a cellular response aiming to clear
the infection. In the course of reverse transcription of the HIV
ssRNA genome into dsDNA, several intermediate, and sometime
abortive, nucleic acid species are generated, including DNA:RNA
hybrids, DNA flap structures and dsDNA. Exposure of these in
the cytoplasm engages various sensors. Those include Toll like
receptor 7 (TLR7) that detects viral RNA in endosomes (Beignon
et al., 2005), Gamma-interferon-inducible protein 16 (IFI16) that
recognizes virus-derived DNA in the cytoplasm of lymphoid qui-
escent CD4 T cells (Monroe et al., 2013) and the cyclic guanosine
monophosphate-adenosine monophosphate synthase (cGAS; Gao
et al., 2013).

To avoid recognition of reverse-transcription intermediates,
viral genomes are protected within the capsid core. If uncoating

is correctly orchestrated, this ensures delivery of fully reverse-
transcribed viral genomes into the nucleus that are subsequently
integrated into the host cell genome, a pre-requisite for the
establishment of productive infection. However, as reviewed in
Yan and Hasan within this issue, while few viruses efficiently
undergo these steps, abortive infection events also occur, lead-
ing to accumulation of “junk” nucleic acid species in the host
cell cytoplasm that may be detected and thereby have adverse
effects on the infection. The frailty of viral reverse-transcription
is highlighted by the plethora of antiviral factors that target this
specific step. Those include three of the prototypical restriction
factors. Although their mechanism of action being beyond the
scope of this review, it is worthy to mention that Tripartite Motif
5 alpha (TRIM5α) causes untimely uncoating, leading to prema-
ture exposure of virus-derived nucleic acid species in the host cell
cytoplasm, apolipoprotein B mRNA-editing, enzyme-catalytic,
polypeptide-like 3G (APOBEC3G) induces hypermutations in
the viral genome generating non-functional unstable genomes
and SAM domain and HD domain 1 (SAMHD1) deprives the
viral reverse transcriptase of the deoxynucleoside building blocks
required for its action (Malim and Bieniasz, 2012 and this review
series).

Escape from innate immune sensing is therefore paramount
to the establishment of productive viral infections. In recent
years, several lines of evidence have shown that HIV has evolved
highly specialized mechanisms to elude cellular blocks. For
example, blocks imposed by restriction factors are mostly over-
come through the use of viral accessory proteins (Vpx, Vpr,
Nef, Vif, Vpu). Accessory proteins, initially qualified as such
because unrequired for in vitro replication in permissive cells, are
encoded by lentiviral genomes in addition to the essential struc-
tural and enzymatic proteins required for mature viral particles
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production (Gag, Pol, Env, Tat, and Rev). Additional mech-
anisms deployed by viruses to avoid innate immune sensing
include a direct action on the IFN signaling cascade: inhibi-
tion of IFN synthesis, IFN receptor decoy and inhibition of IFN
signaling (for review Stetson and Medzhitov, 2006; Broz and
Monack, 2013). HIV also takes advantage of pre-existing cel-
lular processes. Importantly, while cellular nucleic acid sensors
recognize virus-derived nucleic acids and thereby detect incom-
ing virions, they also play crucial roles in cellular metabolism
and are usually constitutively expressed. They may therefore
detect the presence of nucleic acid species resulting from DNA
damage-associated repair mechanism or endogenous retroele-
ment life cycle. Thus, cellular processes co-exist to prevent
accumulation of abnormal self-nucleic acids, thereby prevent-
ing auto-initiation of pro-inflammatory responses (for review
Yan and Hasan). These include major cellular exonucleases that
have also been shown to positively impact of HIV life cycle:
ribonuclease H2 (RNaseH2) and three prime repair exonuclease
1 (TREX1) (Yan et al., 2010; Genovesio et al., 2011). Impor-
tantly, these proteins involved in nucleic acid metabolism belong
to a family of genes that, when mutated, lead to the Aicardi-
Gouttière syndrome (AGS). This rare autosomal recessive genetic
encephalopathy is characterized by neurological dysfunctions,
intracranial calcifications, brain atrophy, psychomotor retarda-
tion and increased plasma levels of IFN that lead to chronic
inflammation (Lebon et al., 1988). We recently established that
the SLX4 structure-specific endonuclease regulator complex also
acts as a facilitator of HIV infection (Laguette et al., 2014). This
finding bears substantial similarities with what was shown for the
TREX1 exonuclease. Indeed, similar to TREX1, the SLX4 com-
plex is involved in nucleic acid metabolism and plays crucial roles
in the repair of DNA lesions. In addition, the core component
of this complex is the SLX4 molecular scaffold that assem-
bles structure-specific endonuclease modules. Biallelic mutations
in SLX4 are involved in the onset of Fanconi anemia (FA), a
cancer predisposition syndrome characterized by congenital mal-
formations, hypersensitivity to DNA interstrand cross-linking
agents and progressive bone marrow failure (Sasaki and Tono-
mura, 1973). In addition, FA patients experience heightened
pro-inflammatory cytokines levels (Whitney et al., 1996; Rath-
bun et al., 1997; Dufour et al., 2003; Briot et al., 2008). The latter
is a feature shared with AGS patients and supports a poten-
tial link between proteins involved in DNA damage response
and the development of inflammatory responses. These recent
findings also shed a new light on the implication on proteins
involved in the maintenance of genomic stability and the HIV
life cycle.

CROSS-TALK BETWEEN CELL CYCLE REGULATION
MACHINERY AND VIRAL INFECTIONS
Viruses have been long known to keep a privileged relationship
with cell cycle regulatory mechanisms. Indeed, an estimated 20%
of human cancers arise from infection with DNA or RNA viruses.
Malignancy frequently results from side-tracking of cell cycle
regulatory elements. A stricking example is virus-driven onco-
genesis that results from subversion of the boundaries between
the DNA replication step (S), segregation of sister chromatids

(mitosis) and gap phases (G1 and G2). This is frequently achieved
through viral non-structural proteins that modulate cell cycle
regulators. Transforming viruses essentially subvert the G1/S
boundary, thereby pushing cells into proliferation. In the case
of the retrovirus HTLV-I, that encodes several potential onco-
genes, the well-studied Tax protein is necessary and sufficient to
initiate cellular transformation, while the HBz protein is required
for its maintenance (Gatza et al., 2003). Similarly, HBx from the
DNA virus HBV has the ability to transform immortalized cell
lines and to provoke liver cancer in mice (Kim et al., 1991). Small
DNA tumor viruses often encode potent oncoproteins that can
cause cellular transformation in vitro [for example E6/E7 from
HPV – for review (Howley and Livingston, 2009)]. In contrast
certain viruses such as EBV require the concerted action of sev-
eral proteins to achieve cellular transformation (Kutok and Wang,
2006).

Importantly, manipulation of the cell cycle or of cell cycle reg-
ulators is not solely confined to transforming viruses. Indeed,
several DNA and RNA viruses are able to cause cell cycle arrest
at the G2/M transition, including HIV (Davy and Doorbar, 2007).
The molecular mechanisms underlying virus-induced G2/M arrest
vary widely and have been extensively studied. Nonetheless,
the understanding of the biological end-point of G2/M arrest
remains poor despite suggestions that G2/M arrest may decrease
propensity to secrete IFN (Lee and Rozee, 1970), increase RNA
production rates (Lee and Rozee, 1970), and overall boost early
step of the HIV life cycle (Groschel and Bushman, 2005). Sub-
version of the host cell cycle by HIV-1 relies on the highly
conserved viral protein regulatory (Vpr) protein that causes a
potent G2/M arrest in most cycling eukaryotic cells (Di Marzio
et al., 1995; He et al., 1995; Jowett et al., 1995; Re et al., 1995;
Rogel et al., 1995).

From a mechanistic stand point, Vpr-induced G2/M arrest is a
well-documented phenotype. To understand how G2/M arrest is
achieved, it is necessary to recapitulate the mechanism underly-
ing this cell cycle check-point (for more details see Guenzel et al,
this issue). Indeed, in healthy cells, the G2/M transition is con-
trolled by Cyclin-dependent kinase1:CyclinB1 (CDK1:CCNB1).
As cells progress through G2, CDK1:CCNB1 is progressively acti-
vated and once the G2/M boundary crossed, the complex is
inactivated. The G2/M check-point serves as a quality-control
step during the replication of the cellular genome that ensures
the transmission to daughter cells of a complete unaltered set
of chromosomes. Thus, when genotoxic stress is incurred, entry
into mitosis is prevented to provide an opportunity to repair
genomic lesions (Stark and Taylor, 2006). This is achieved through
preventing CDK1:CCNB1 activation (Sanchez et al., 1997). This
response is regulated through a signaling cascade that involves
detection of the DNA lesion by the key DNA damage response
regulators ataxia-telangiectasia-mutated kinase (ATM), ATM and
Rad3-related kinase (ATR), and DNA-dependent protein kinase
[DNA-PK; for review (Smith et al., 2010; Sirbu and Cortez, 2013)].
When damaged DNA or unreplicated regions of the genome are
detected, these kinases activate downstream CHK1 or CHK2 that
in turn inactivate CDK1:CCNB1 (Lopez-Girona et al., 1999).

Similar to what is observed following genotoxic stress, Vpr
expression activates ATR,ATM, and the downstream CHK1/CHK2
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kinases (Roshal et al., 2003; Munoz et al., 2009), thereby
inactivating CDK1:CCNB1. In agreement, treatment of Vpr-
expressing cells with caffeine, which inhibits ATR and ATM,
relieves the cell cycle block (Poon et al., 1997; Shostak et al.,
1999). Intriguingly, although mobilization onto sub-regions of
the chromatin of breast cancer susceptibility protein 1 (BRCA1)
and γH2ax have been reported upon Vpr expression, it remains
unclear whether actual DNA breaks occur in the presence of
Vpr and whether these lesions would be the trigger for cell
cycle arrest. Rather, the prevailing view is that Vpr mediates
ATR-dependent replication stress. Importantly, since the only
consensual cellular partner of Vpr for the induction of G2/M
arrest is the VPRBP-DDB1-CUL4 E3-ligase complex (Belzile et al.,
2007; DeHart et al., 2007; Hrecka et al., 2007; Le Rouzic et al.,
2007; Tan et al., 2007; Wen et al., 2007), it was assumed that
Vpr would provoke the proteasomal degradation of a cell cycle
regulatory element governing the G2/M transition. We recently
identified the SLX4 complex as being the Vpr partner required for
G2/M arrest (Laguette et al., 2014). Indeed, the structure specific
endonucleases ERCC4XPF-ERCC1 and MUS81-EME1 together
with the SLX4FANCP scaffold protein co-purified with Vpr as
well as the poorly characterized TSPYL1 and C20orf94SLX4IP

subunits. Vpr binds to the C-terminus of SLX4, inducing the
recruitment of VPRBP and kinase-active PLK1. This leads to
VPRBP-induced ubiquitination of MUS81 and hyperphospho-
rylation of EME1, the consequence of which being activation
of SLX4-associated MUS81-EME1. Vpr-induced untimely activa-
tion of SLX4-bound MUS81-EME1 results in replication stress,
ultimately leading to G2/M cell cycle arrest (Laguette et al.,
2014).

VIRAL PROTEIN REGULATORY AND SLX4 COMPLEX
REGULATION
Vpr AND THE FANCONI ANEMIA PATHWAY
SLX4, also as known as FANCP, together with the fifteen addi-
tional identified FA or FA-like proteins, is involved in the FA
DNA repair pathway. This pathway has been extensively described
in reviews (Garner and Smogorzewska, 2011; Su and Huang,
2011; Constantinou, 2012). Briefly, FANCM binds chromatin
at damage sites and recruits the E3 ubiquitin ligase activity-
containing FA core complex (Kim et al., 2008). The FA core
complex monoubiquitinates FANCD2–FANCI and stabilizes them
at sites of damage (Garcia-Higuera et al., 2001). FANCD2–FANCI
subsequently activate DNA repair proteins, including the SLX4
complex (Yamamoto et al., 2011). The latter is involved in the
repair of double strand breaks, interstrand cross-links (ICL),
and collapsed/damaged replication forks by homologous recom-
bination (HR; Munoz et al., 2009; Svendsen et al., 2009; Kim
et al., 2011; Stoepker et al., 2011). HR allows accurate repair by
using the sister chromatid as a template and leads to the for-
mation of four-way DNA structures, Holliday junctions (HJ),
that must be removed prior to chromosome segregation. It is
important to note that in somatic cells, the favored pathway to
remove HJ relies on non-endonucleolytic dissolution by Bloom
(BLM)-related helicases, a process that prevents sister chromatid
exchanges (Wu and Hickson, 2003). Sister chromatid exchanges
are particularly disfavored in somatic cells because they may

engender loss of heterozygosity thereby predisposing cells to can-
cer (Matos et al., 2011, 2013; Gallo-Fernandez et al., 2012; Dehe
et al., 2013; Saugar et al., 2013; Szakal and Branzei, 2013). How-
ever, in certain cases, for example in the absence of BLM or when
the levels of damage incurred are above those that can be salvaged
through dissolution, structure-specific endonucleases activities
associated with the SLX4 complex may be mobilized (Schwartz
and Heyer, 2011; Garner et al., 2013). In vitro studies have shown
that SLX4–SLX1 (Fekairi et al., 2009; Munoz et al., 2009; Svend-
sen et al., 2009) and MUS81-EME1 have 5′ and 3′ endonuclease
activities, respectively (Boddy et al., 2001; Doe et al., 2002; Cic-
cia et al., 2003; Gaillard et al., 2003). However, SLX4-associated
resolvase activity requires interaction of SLX1 and MUS81-EME1
with the SLX4 scaffold (Castor et al., 2013; Garner et al., 2013;
Wyatt et al., 2013).

Because activation of MUS81-EME1 during S phase may cause
pathological processing of healthy replication forks (Dehe et al.,
2013; Matos et al., 2013; Saugar et al., 2013) and replication
stress (Blais et al., 2004; Matos et al., 2013; Szakal and Branzei,
2013), under physiological conditions and when DNA damage is
incurred, acquisition of MUS81-EME1 endonuclease activity is
under tight regulatory circuits. Those ensure that MUS81-EME1
activity is mostly confined to late G2-early M, when bulk DNA
synthesis has been completed (Dehe et al., 2013; Saugar et al.,
2013). The molecular mechanism underlying Mus81-Mms4EME1

regulation has been extensively studied, and is achieved through
phosphorylation of EMEMms4 by PLK1Cdc5 in budding yeast and
in mammalian cells (Matos et al., 2011; Gallo-Fernandez et al.,
2012; Saugar et al., 2013) or Cdc2CDK1 in fission yeast (Dehe et al.,
2013). Importantly, work in mammalian cells has recently shown
that MUS81-EME1 is regulated through phosphorylation of EME1
within the SLX4 complex (Castor et al., 2013; Garner et al., 2013;
Wyatt et al., 2013).

Importantly, interaction of Vpr with the SLX4 scaffold protein
induces recruitment of VPRBP and kinase-active PLK1, thereby
activating the MUS81-EME1 endonuclease module independently
of the cell cycle stage (Figure 1). This results in replication
stress as visualized by accumulation of FANCD2 on sub-regions
of the chromatin that likely mark the sites of abnormal pro-
cessing of replication intermediates (Naim and Rosselli, 2009).
Thus, as supported by previous work, Vpr causes cell cycle
arrest through a S phase-dependent mechanism (Li et al., 2010),
which is congruent with activation of the ATR pathway in Vpr
expressing cells (Roshal et al., 2003; Lobrich and Jeggo, 2007).
Interestingly, SLX4 has also been identified as an ATR substrate
(Matsuoka et al., 2007; Mu et al., 2007) and in yeast, phosphoryla-
tion of Eme1 requires Rad53ATR activation (Dehe et al., 2013).
Thus, aberrant processing of stalled replication forks by Vpr-
activated SLX4-associated MUS81-EME1 would cause replication
stress, ATR-CHK1 pathway activation, resulting in inhibition of
CDC25C. This signaling cascade will ultimately lead to inability of
CDC25C to activate CCNB1:CDK1 and thus result in G2/M arrest
(Figure 1).

Vpr AND GENOMIC INSTABILITY
The MUS81-EME1 endonuclease module plays an important role
in the removal of ultrafine DNA bridges (UFBs). These DNA
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FIGURE 1 | Vpr induces G2/M arrest through activation of the SLX4

complex. (1) Under physiological conditions, inactive MUS81-EME1 interact
with the SLX4 scaffold. (2) Upon Vpr expression, PLK1 and VPRBP are
recruited to SLX4. (3) PLK1 phosphorylates EME1 while VPRBP causes
ubiquitination of MUS81. (4) These posttranslational modifications contribute
to activation of SLX4-bound MUS81-EME1 that can process healthy
replication forks (RF) in cycling cells. (5) This leads to activation of the ATR

signaling pathway and subsequent activation of CHK1. Activated CHK1
provokes inhibitory phosphorylation of CDC25C, leading to inhibition of
CCNB1:CDK1 and cell cycle arrest at the G2/M transition. (4′) In addition,
ubiquitinated MUS81 molecules are degraded by the proteasome machinery,
leading to decreased steady-state levels of MUS81. (5′) Consequently, UFBs
are not processed and persist in Mitosis. This possibly contributes to overall
G2/M arrest in Vpr expressing cells.

structures that arise from regions of the genome that replicate at
slower rates, such as centromeres and common fragile sited (CFS),
are formed during the S phase and can be visualized after chromo-
some condensation in mitotic cells. They form bridges between
sister chromatids that must be removed prior to chromosome seg-
regation. Absence of MUS81-EME1 results in non-processing of
UFBs and thus leads to CFS-associated chromosomal instability
and mitotic catastrophe (Chan et al., 2009; Chan and Hickson,
2011; Wechsler et al., 2011; Naim et al., 2013; Ying et al., 2013).
Accumulation of UFBs therefore causes cell cycle arrest at the
G1/S transition. Intriguingly, Vpr targets MUS81 for ubiquiti-
nation by VPRBP, leading to decreased levels of MUS81 prior
to G2/M arrest (Laguette et al., 2014). Since a stark increase of
FANCD2 twin foci that mark the edges of UFBs (Chan et al.,
2009) occurs in the presence of Vpr, this indicates that, although
not complete, decreased MUS81 levels in Vpr-expressing cells
may be sufficient to impair UFBs untangling prior to mitosis
(Chan et al., 2009; Wechsler et al., 2011; Naim et al., 2013; Ying
et al., 2013). However, Vpr-associated replication stress prevents
completion of G2. This likely prevents the occurrence of mitotic
catastrophe. While it is possible that additional Vpr-associated
functions may prevent cells from exiting mitosis, one may also
speculate that steric hindrance imposed by UFBs tying together
sister chromatids may also contribute to the extent of G2/M
arrest witnessed in Vpr-expressing cells (Figure 1). Thus, the
complete sequence of events leading from SLX4 complex pre-
mature activation to cell cycle arrest by Vpr requires further
investigations.

VIRAL PROTEIN REGULATORY AND INNATE IMMUNITY
One interesting feature of Vpr is that disruption of the corre-
sponding open reading frame (ORF) results in inefficient viral
spread ex vivo particularly in primary macrophages (Connor et al.,
1995) while its most studied molecular function is to halt cell
cycle progression. This conundrum has puzzled the HIV field
for several years but little was understood about how these two
observations can be reconciled until recent work (Laguette et al.,
2014).

Infection with an HIV-1 molecular clone harboring a dele-
tion of the Vpr ORF causes an increase of IFN production as
compared to infection with wild type HIV-1 (Okumura et al.,
2008; Doehle et al., 2009; Laguette et al., 2014). This HIV-
induced IFN production is augmented following SLX4 complex
subunits (SLX4, VPRBP, and MUS81) knock-down, suggesting
that the presence of the SLX4 complex is required for inhibi-
tion of HIV-dependent type 1 IFN production. Furthermore,
the SLX4 complex binds HIV-1-derived reverse transcribed DNA
in presence of Vpr, suggesting that Vpr is required for this
interaction. In addition, in the absence of SLX4, there is an
increase of HIV DNA in infected cells. This further suggests
that the SLX4 complex is required to degrade excess HIV-derived
nucleic acids susceptible of triggering innate immune responses.
While the MUS81-EME1 endonuclease module appears to be
required for this process one cannot exclude contribution of
additional SLX4-bound endonucleases. Indeed, SLX4–SLX1 inter-
action is required for SLX4 complex associated resolvase activity
and SLX1 expression is required for Vpr-mediated cell cycle
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arrest (Laguette et al., 2014). Overall, similar to TREX1 and
RNaseH2, the SLX4 complex would prevent sensing of excess
nucleic acids derived from HIV reverse transcription (Figure 2).
Importantly, RNaseH2 and TREX1 preferentially degrade DNA
within DNA:RNA hybrids (Haruki et al., 2002) and ssDNA sub-
strates, respectively (Mazur and Perrino, 2001) while SLX4-bound
MUS81-EME1 presumably target dsDNA structures (Fadden et al.,
2013). While all these nucleic acid species arise in the course
of HIV reverse transcription, the relative contribution of these
nucleases remains to be evaluated. Furthermore, SLX4-mediated
nucleic acids processing would lead to the generation of DNA
fragments that likely require further processing to avoid recog-
nition. This leaves several questions open amongst which are:
what is the sensor triggered in the absence of SLX4 and what
are the nucleases mobilized to clear SLX4-processed DNA frag-
ments? These processes may rely on previously identified key
players in viral life cycles. However, one must bear in mind that
the SLX4 scaffold can bind to additional proteins involved in
DNA metabolism and is as such involved in several additional
pathways, including Telomere maintenance and DNA mismatch
repair (Svendsen et al., 2009). Whether these may intervene in
the degradation of virus derived nucleic acids is also to be
explored.

As previously mentioned, FA is associated with high production
of pro-inflammatory cytokine in patients. This can be recapit-
ulated in vitro in SLX4-deficient patient cells (Kim et al., 2011)
and also in mouse embryonic fibroblasts knocked-out of MUS81
(McPherson et al., 2004) through the activation of NF-κB path-
way (Laguette et al., 2014). This leads to the establishment of an
antiviral state that likely accounts for the inability of these cells
to support efficient HIV replication. While this bears similari-
ties with what is observed in TREX1 deficiency, the endogenous
trigger for SLX4 complex activation remains unknown. Those
may include, nucleic acids derived from processing of aberrant
replication intermediates or endogenous retroviruses. Elucidat-
ing the trigger for spontaneous upregulation of pro-inflammatory
cytokines in FA is likely to be the next horizon in the field.
This would possibly provide insight into the molecular basis
of FA-associated chronic inflammation. In addition, Vpr has
been shown to modulate immune responses at additional lev-
els. This includes impairment of DC/macrophage maturation,
disruption of natural killer T cells effector functions, increased
apoptosis of cytotoxic T cells and disruption of T cell acti-
vation pathways (reviewed in Ayinde et al., 2010). Thus, Vpr
compromises the establishment of adaptive immune responses.
How inhibition of pro-inflammatory cytokines by Vpr through

FIGURE 2 | Vpr-induced SLX4 complex activation promotes escape from

innate immune sensing. (1) Premature delivery of viral genomes in the
cytoplasm of host cells may lead to recognition by nucleic acid sensors. (2)
Editing by APOBEC3G and dNTP hydrolysis by SAMHD1 induce viral DNA
instability and impair reverse transcription. Of note, a nuclease activity has
been described for SAMHD1 which may target viral nucleic acids. (3)
APOBEC3G and SAMHD1 contribute to generate abortive RT by-products
which are taken care of by cellular exonucleases: RNaseH2 degrades

DNA:RNA hybrids while TREX1 degrades ssDNA preferentially. (3′) Abortive
nucleic acid intermediates may also be directly degraded by RNaseH2 and
TREX1. (4) The SLX4 structure specific endonuclease complex is activated by
Vpr and likely cleaves dsDNA. Whether these dsDNA fragments are further
degraded by cellular exonucleases or may be recognized by nucleic acid
sensors remains questioned. (1′) When uncoating is correctly orchestrated,
viral nucleic acids are protected from mechanisms described in 1–4, and
ensures delivery of viral genomes in the nucleus.
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activation of SLX4 complex contributes to this process remains to
be explored.

DNA DAMAGE RESPONSE AND INNATE IMMUNITY
Initiation of the DNA damage response usually requires recog-
nition of abnormal nucleic acid species in the nucleus and the
triggering of a signaling cascade that orchestrates repair. This
process bears similarities with what is witnessed when virus-
derived nucleic acids are delivered into host cells. Those are
recognized by sensors that trigger a signaling cascade aiming at
clearing the infection. It has been widely speculated that the
nucleic acid-based repository of the information required for
de novo virus production is difficultly modified by viruses to
promote escape; it constitutes a prime target for cellular sen-
sors. Recent work has placed key players of the DNA damage
response on the front line of pathogen recognition. For exam-
ple DNA-PK has been shown to act as a PRR for DNA and
RNA viruses (Zhang et al., 2011; Ferguson et al., 2012). Indeed,
DNA-PK is involved in DNA damage response, more particu-
larly in the repair of double-strand breaks and these functions
are related to its nuclear localization (for review Davis and Chen,
2013). However, this complex is also found in the cytoplasm
where it can bind nucleic acids and activates the production of
IFN. This highlights how overlapping mechanisms have evolved
for the recognition of pathological nucleic acid species. Further-
more, inflammation impacts every step of tumorigenesis, from
initiation to metastatic progression. Tumor-promoting inflam-
mation may either result from environmental factors, as clearly
identified in the case of exposure to asbestos for example, or from
chronic viral infections and attempts of the immune system to
eliminate those. This results in a feed-forward regulatory loop
that favors chronic production of pro-inflammatory cytokines,
supporting tumorigenesis. Indeed, it is recognized that sub-
clinical, often undetectable, inflammation increases cancer risk
(reviewed in Grivennikov et al., 2010). Thus, persistent DNA
damage or inability to repair broken DNA may lead to tumor-
promoting chronic inflammation (Zheng et al., 2007; Rodier et al.,
2009).

Cellular mechanisms exist that serve to avoid the accumula-
tion of pathological nucleic acid species susceptible of triggering
innate immune responses. These include the previously men-
tioned TREX1 exonuclease and the SLX4 complex. Intriguingly,
TREX1 that was initially described to be involved in DNA base
excision repair (Mazur and Perrino, 2001), also degrades ssDNA
derived from aberrant replication intermediates and thus simi-
lar to the SLX4 complex is involved in DNA damage response
(Yang et al., 2007; Gehrke et al., 2013). Thus, like in TREX1
deficiency, absence of the SLX4 complex may lead to accumu-
lation of pathological nucleic acids in the cytoplasm. Recognition
of those by a yet to be identified sensor, activates the immune
system.

Importantly, HIV is not the sole virus affected by cellu-
lar enzymes involved in DNA metabolism. Indeed, several
DNA viruses can be targeted by cellular factors involved in
DNA damage response. For example, the genome of the Ade-
novirus or Herpes Simplex Virus type 1 (HSV-1) can be tar-
geted by protein complexes that control the non-homologous

end-joining DNA repair pathway [reviewed in Weitzman et al.
(2010)]. These viruses have evolved potent ways of counteract-
ing these proteins that operate as potential restriction factors.
This can be compared to what is witnessed during HIV infec-
tion in the presence of SAMHD1. Indeed, this HIV restriction
factor has been shown, in addition to depleting the dNTP
pool (Lahouassa et al., 2012), to have in vitro nuclease activity
(Beloglazova et al., 2013).

While there is accumulating evidence that proteins involved in
DNA repair are involved in viral life cycles, recent work has also
shown that proteins previously identified as counteractors of HIV
infection are in fact involved in the DNA damage response. This is
the case for APOBEC proteins where mutation patterns were found
in human cancers (Leonard et al., 2013; Roberts et al., 2013) and
SAMHD1. In the case of SAMHD1, recent work has highlighted
that SAMHD1 may qualify as a tumor suppressor gene, and thus
play roles in DNA damage response, through its ability to regu-
late the dNTP pool (Clifford et al., 2014; Kretschmer et al., 2014),
the levels of these being important for genome stability (Math-
ews, 2006). Although this SAMHD1 function has been essentially
described to be involved in HIV restriction, it may also be related
to increased IFN production in AGS. Moreover, RNaseH2, as
previously mentioned, is also involved in AGS and degrades
RNA in DNA:RNA hybrids and thus may also prevent chronic
inflammation (Rice et al., 2007). Importantly, both SAMHD1 and
APOBEC3G have been shown to control endogenous retrotrans-
position (Esnault et al., 2006; Zhao et al., 2013). Since absence
of SAMHD1 also correlates with increased pro-inflammatory
cytokine production, one may also speculate about the trigger for
this response and whether there is a correlation between inefficient
DNA repair or endogenous retroelement retrotransposition in the
absence of SAMHD1 and chronic inflammation. Similarly, the
origin of chronic inflammation in SLX4-deficiency remains to be
identified and may include residual nucleic acids resulting from
processing of aberrant replication intermediates or endogenous
retroelements.

CONCLUSION
Although host cells oppose numerous blocks to HIV replication,
several mechanisms have evolved to counteract those. While defec-
tive viruses may elicit pro-inflammatory responses, viruses that
establish productive infections remain mostly protected from cel-
lular defenses. Viral accessory proteins are specialized in mediating
this escape, in part through counteraction of cellular restriction
factors. Interestingly, restriction factors have also been recently
reported to play a role in detection of viral infections (PRR).
Thus, viral accessory proteins, though their degradation simul-
taneously achieve escape from recognition and overthrowing of
mediators of the antiviral responses. This complex array of inter-
actions between innate immune responses and viral replication
is still poorly understood. While new insight into the role of the
DNA damage response machinery in this process may add a fur-
ther layer of complexity, this may also provide with an additional
way to identify sensors that detect incoming viruses and escape
mechanisms.

In addition to the described role of Vpr in arresting the cell
cycle and promoting escape from innate immune sensing, this
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HIV accessory protein has been shown to play several addi-
tional roles in HIV life cycle. Indeed, Vpr contributes to fidelity
of reverse transcription (Stark and Hay, 1998), nuclear trans-
port of the pre-integration complex (Heinzinger et al., 1994).
Vpr also promotes the transactivation of LTR promoter (Felzien
et al., 1998), and induction of apoptosis (Stewart et al., 1997).
Do these also result from Vpr-induced activation of the SLX4
complex or do they rely on additional interactions established
by Vpr? Importantly, in addition to interacting with structure-
specific endonucleases, the SLX4 molecular toolkit also recruits
MSH2–MSH3 and TRF2–RAP1 (Svendsen et al., 2009) and is
involved in additional cellular functions, including Telomere
maintenance, which may be altered upon binding to Vpr. For
example, since SLX4 inhibits over-lengthening of telomeric
ends, Vpr-induced activation of the SLX4 complex may lead to
Telomere shortening and cell death. Whether this is related to
increased apoptosis witnessed in Vpr-expressing cells is yet to be
explored.

The discovery of the SLX4 complex as being involved in
inhibition of pro-inflammatory responses opens new avenues
in the understanding of the interplay between innate immune
responses and HIV infection. This work also opens new perspec-
tives in the understanding of the molecular mechanism underlying
cancer related chronic inflammation. Based on the fact that pro-
inflammatory cytokine production is witnessed in all cancers,
one may anticipate that additional DNA damage repair mecha-
nisms may be involved in pathogen recognition and inhibition of
spontaneous pro-inflammatory cytokine production.
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