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Trifoliate orange [Poncirus trifoliata (L) Raf.] is considered highly arbuscular mycorrhizal
(AM) dependent for growth responses through a series of signal transductions in form
of various physiological responses. The proposed study was carried out to evaluate the
effect of an AM fungus (Funneliformis mosseae) on growth, antioxidant enzyme (catalase,
CAT; superoxide dismutase, SOD) activities, leaf relative water content (RWC), calmodulin
(CaM), superoxide anion (O•−

2 ), and hydrogen peroxide (H2O2) concentrations in leaves
of the plants exposed to both well-watered (WW) and drought stress (DS) conditions. A
58-day of DS significantly decreased mycorrhizal colonization by 60% than WW. Compared
to non-AM seedlings, AM seedlings displayed significantly higher shoot morphological
properties (plant height, stem diameter, and leaf number), biomass production (shoot and
root fresh weight) and leaf RWC, regardless of soil water status. AM inoculation significantly
increased CaM and soluble protein concentrations and CAT activity, whereas significantly
decreased O•−

2 and H2O2 concentration under both WW and DS conditions. The AM
seedlings also exhibited significantly higher Cu/Zn-SOD and Mn-SOD activities than the
non-AM seedlings under DS but not under WW, which are triggered by higher CaM levels
in AM plants on the basis of correlation studies. Further, the negative correlation of Cu/Zn-
SOD and Mn-SOD activities with O•−

2 and H2O2 concentration showed the DS-induced ROS
scavenging ability of CaM mediated SODs under mycorrhization. Our results demonstrated
that AM-inoculation elevated the synthesis of CaM in leaves and up-regulated activities of
the antioxidant enzymes, thereby, repairing the possible oxidative damage to plants by
lowering the ROS accumulation under DS condition.

Keywords: CaM, Cu/Zn-SOD, drought stress, Mn-SOD, mycorrhizal fungi, ROS, trifoliate orange

INTRODUCTION
Arbuscular mycorrhizal fungi (AMF) as an ubiquitously bene-
ficial soil microorganism can build symbiotic association with
citrus plant roots, popularly known as arbuscular mycorrhizas
(AMs). Earlier study demonstrated a key role of AM in protect-
ing host plants against detrimental effects of drought stress (DS;
Wu et al., 2013). In recent past, massive efforts have been under-
taken to study how the water deficit stress signals are perceived
and transduced by the plants to activate the antioxidant pathways.
Enhancement in drought tolerance of AM-inoculated plants is by
and large reported to be governed by the nature of antioxidant
protective system (Wu et al., 2006a, 2013; Wu and Zou, 2009),
especially under DS conditions.

Drought stress is the most important abiotic factor, invariably
limiting plant growth and yield in a variety of irrigated crops
including citrus (Abbaspour et al., 2012; Wu et al., 2013). Genera-
tion and elimination of reactive oxygen species (ROS) in plants
remain in dynamic balance under well-watered (WW) condi-
tion, but such balance of ROS is interrupted under DS condition,
thereby, inducing an elevation in ROS concentration (Bowler et al.,
1994). These ROS mainly comprise of superoxide anion O•−

2 ,

hydrogen peroxide (H2O2), and hydroxyl radical (HO·). An exces-
sive accumulation of these ROS in cells can cause oxidative damage,
through the processes involving lipids peroxidation, protein oxi-
dation, DNA fragmentation, etc. (Sharma et al., 2010, 2012). As a
consequence, plants also develop a complex enzymatic and non-
enzymatic antioxidant protective system to scavenge overproduced
ROS, thus alleviating the oxidative damage to plants (Sharma et al.,
2012). Superoxide dismutases (SODs) are considered as the first
line of defense against ROS catalyzing dismutation reaction of
O•−

2 into H2O2, and O2. H2O2 (an important signal transduc-
tion molecule and toxic byproduct) can then be scavenged by
catalase (CAT). According to different metal atoms combined in
SODs, they exist in three isoforms comprising copper/zinc SOD
(Cu/Zn-SOD), manganese SOD (Mn-SOD), and iron SOD (Fe-
SOD), which are located in different subcellular compartments
(Bowler et al., 1994), with differential activities as per plant species.

Calmodulin (CaM) as an acidic protein is one of the best
characterized Ca2+ receptors (Yang et al., 2010). CaM consists
of two globular domains, each harboring a pair of EF-hands
that can bind Ca2+, upon exposure of hydrophobic surfaces,
develops high affinity binding sites for downstream effectors
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(Perochon et al., 2011). Although CaM has no enzymatic activ-
ity of its own, the binding of Ca2+ to CaM can activate numerous
downstream target proteins. Ca2+/CaM complex as the messen-
ger system, modulates a series of physiological and biochemical
processes to reduce oxidative damage (Kim et al., 2009). Plants
possess an interesting and rapidly growing list of CaM tar-
gets (Snedden and Fromm, 2001), including metabolic enzymes,
transcription factors, etc. (Reddy and Reddy, 2004; Bouché
et al., 2005). Roles of CaM in plant growth and development,
besides fighting against stresses, such as salt damage, freezing
injury and disease, are well documented (Yang and Poovaiah,
2003; Bouché et al., 2005; Du and Poovaiah, 2005; Hu et al.,
2007). Nevertheless, there is hardly any information available
highlighting the relationship of CaM with antioxidant enzymes
under mycorrhization, especially under DS conditions. Like-
wise, the effect of AM on the relationship between CaM and
SOD isoforms is poorly understood under DS. In this back-
ground, the present study was undertaken with two objectives:
(i) analyze the effect of AMF, (Funneliformis mosseae), on relative
water content (RWC), CaM concentration, SODs (Cu/Zn-SOD
and Mn-SOD) activities, and ROS (O•−

2 and H2O2) levels in
leaves of trifoliate orange [Poncirus trifoliata (L.) Raf.] seedlings
under WW and DS conditions and (ii) analyze the relationship
between CaM and antioxidant enzymatic protective system under
mycorrhization.

MATERIALS AND METHODS
PLANT CULTURE
Seeds of trifoliate orange (Poncirus trifoliata L. Raf.) were first
surface-sterilized with 70% alcohol for 5 min, rinsed five times
with distilled water, and germinated in autoclaved (0.11 Mpa,
121◦C, 2 h) sands in a growth chamber (26/20◦C day/night tem-
perature, 740 μmol/m2/s photosynthetic photon flux density and
80% relative humidity). Twenty-three days later, seedlings (three
four-leaf-old) were transferred to a plastic pot (15 cm upper
diameter × 12 cm height × 10 cm bottom diameter), each filled
with 2.5 kg autoclaved (0.11 Mpa, 121◦C, 2 h) soil. The soil for
the experiment was collected from a citrus orchard of Yangtze
University campus and taxonomically classified as Xanthi-Udic
Ferralsols (FAO system). The 60 g inoculum of F. mosseae con-
taining sands and spores (23 spores/g) was mixed with 2.5 kg soil
at the time of transplanting. Non-AMF treatment also received
the same quantity sterilized inoculum and 2 mL inoculum fil-
trate (25 μm filter) to keep similar microbial communities other
than the AM fungus. The strain of the AM fungus, F. mosseae
(Nicol. & Gerd.) Schüßler and Walker (BGC XZ02A), isolated
from the rhizosphere of Incarvillea younghusbandii in Dangxiong
(90o45′E and 29o31′N, altitude 4 300 msl), Tibet. The AM fungus
was propagated with both the identified fungal spores and white
clover (Trifolium repens) for 16 weeks under potted conditions.
The spore density of growth substrate was 23 spores per g, on
the basis of wet sieving and decanting method (Gerdemann and
Nicolson, 1963) and stereoscopic microscope. The experiment was
performed in an environmentally controlled plastic greenhouse
(photosynthetic photon flux density 982 μmol/m2/s, day/night
temperature 27/20◦C, and relative humidity 80%) from March
15 to August 1, 2013. The position of pots in the glasshouse was

re-randomized at weekly interval in order to expose experimental
plants to avail equitable distribution of growing conditions.

EXPERIMENTAL DESIGN
Experimental treatments consisted of 2 × 2 factorial randomized
block design with two soil water regimes (WW, 75% maximum
water holding capacity of soil; DS, 55% maximum water holding
capacity of soil) and two mycorrhizal inoculations (with or with-
out F. mosseae). Each treatment replicated four times carrying a
total of 16 pots.

Drought stress started 82 days after transplanting and contin-
ued upto 140 days after transplanting. The soil water status in the
pots was determined daily through weighing and the amount of
water loss was accordingly supplemented in order to maintain soil
water status at 6:00 PM every day.

PLANT OBSERVATIONS AND ANALYSIS
Seedlings were harvested after 58 days of water treatments. The
growth related parameters such as plant height, stem diame-
ter, and leaf number per plant were recorded. At harvest, the
plants were divided into shoots and roots, and their fresh weights
were recorded. Subsequently, the leaves were stored at −80◦C
for the determination of soluble protein, CaM, H2O2, and O•−

2
concentrations and CAT, Cu/Zn-SOD, and Mn-SOD activities.

A number of 1-cm root segments from root tip (30 root seg-
ments per treatment) were cleared by 10% (w/v) KOH and stained
with 0.05% (w/v) trypan blue (Phillips and Hayman, 1970). The
AM colonization was observed using LEICA DME bio-microscope
and expressed as the percentage of the colonized root lengths
against the observed root lengths. RWC of fourth fully expanded
leaf from top was measured according to the method of Bajji
et al. (2001). H2O2 concentration was determined according to
Velikova et al. (2000). A 0.2 g fresh leaf sample was homogenized
with 5 mL 0.1 % (w/v) trichloroacetic acid in an ice bath and cen-
trifuged at 12,000 × g for 15 min. Then 1 mL supernatant was
mixed with 1 mL 10 mM potassium phosphate buffer (pH 7.0)
and 2 mL 1 M KI, following which absorbance was recorded at
390 nm.

Fresh leaf samples (0.2 g) were homogenized in 5 mL of 0.1 M
phosphate buffer (pH 7.8) and centrifuged at 4,000 × g for 10 min
at 4◦C. The supernatant was used to determine soluble protein,
O•−

2 and CAT. Leaf soluble protein concentration was determined
using bovine serum albumin as the standard (Bradford,1976). Leaf
O•−

2 concentration was measured using the method as described
by Wang and Luo (1990). The 0.5 mL of the supernatant was mixed
with 0.5 mL of 50 mM phosphate buffer (pH 7.8) and 0.1 mL
of 10 mM hydroxylamine chloride reaction. After 1 h reaction
at 25◦C, the mixture was added to another mixture containing
1 mL 17 mM sulfanilamide and 1 mL 7 mM α-naphthylamine
at 25◦C for 20 min, followed by determination of absorbance
at 530 nm.

Catalase activity was performed as per the procedure described
by Goldblith and Proctor (1950). The reaction mixture included
2.5 mL enzyme extract and 2.5 mL of 0.1 M H2O2. After incubation
at 30◦C for 10 min, 2.5 mL of 10% H2SO4 was added to stop the
recation, and 0.1 M KMnO4 was used to titrate the residual H2O2

until a purple color persisted for at least 30 s. CAT activity was
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expressed as mg H2O2/g FW/min. While, Cu/Zn-SOD and Mn-
SOD activities were measured using the ELISA (A001-2, Nanjing
Jiancheng Bioengineering Institute, Nanjing, China) according to
ELISA guide. The CaM concentration was assayed using the Plant
CaM ELISA Kit (YAD-001, Beijing Dingguochangsheng Biotech-
nology Co., Ltd., Beijing, China) in terms of the user guide of
ELISA.

STATISTICAL ANALYSIS
Data (means ± SE, n = 4) were statistically analyzed by the two-
factor ANOVA with SAS 8.1 software (SAS Institute Inc., Cary,
NC, USA), and the Duncan’s multiple range tests were used to
determine the significance of the treatments at the P < 0.05 level.

RESULTS AND DISCUSSION
ROOT MYCORRHIZAL COLONIZATION
Vigor of plant growth depends upon the magnitude of root col-
onization as a result of AMF inoculation. Inoculation with F.
mosseae induced varying magnitude of root colonization in trifoli-
ate orange seedlings under both WW and DS conditions. However,
root colonization under DS conditions, was observed only 31%
compared to 77% under WW conditions (Figure 1). Mycorrhizal
colonization was observed significantly dependent upon interac-
tion effect of water status and AMF (Table 1). Moreover, the 58-day
DS treatment significantly reduced the root colonization of trifo-
liate oranges by AMF. The decrease of root colonization under
DS is reported in a wide range of crops (Wu et al., 2013), since
spore germination and hyphal spread are strongly dependent on
soil water status (Huang et al., 2011).

PLANT GROWTH
Mycorrhization significantly improved all the growth related
parameters of the trifoliate orange seedlings including plant fresh
weight, regardless of soil water status (Table 2). Compared with
non-AMF control, AMF treatment significantly increased plant
height, stem diameter, and leaf number per plant by 21, 5, and

FIGURE 1 | Root AM colonization of trifoliate orange seedlings by

Funneliformis mosseae under well-watered (WW) and drought stress

(DS) conditions. Data (means ± SD, n = 4) followed by different letters
above the bars among treatments indicate significant differences at the 5%
level.

Table 1 | Significance of the main treatment effects and their

interactions based on two-factor ANOVA on tested variables of

trifoliate orange (Poncirus trifoliata) seedlings grown on well-watered

(WW) and drought stress (DS) conditions.

Variable Main effects Interaction effects

(Water status × AM)
Water status AM

Biometric parameters

Mycorrhizal

colonization

** ** **

Plant height ** ** NS

Stem diameter ** ** NS

Leaf number per plant ** ** NS

Shoot fresh weight ** ** NS

Root fresh weight ** ** NS

Total fresh weight ** ** NS

Physico-biochemical parameters

Soluble protein ** ** NS

Leaf RWC ** ** NS

Cu/Zn-SOD ** ** NS

Mn-SOD ** ** **

CAT ** ** **

CaM ** ** NS

H2O2 ** ** NS

O•−
2 ** ** NS

NS, not significant; *P < 0.05; **P < 0.01.

16%, respectively, under WW and by 21, 10, and 9% under
DS. Other growth parameters such as shoot, root and total plant
(shoot + root) fresh weight in AM seedlings were significantly
higher by 27, 23, and 26% over non-AM seedlings under WW.
But under DS, the magnitude of response in shoot, root, and
total plant fresh weight of AM seedlings compared to non-AM
seedlings, was relatively higher by 28, 27, and 28%, respectively.
Such a strongly response trend supports that AMF inoculation
possessed greater ability to improve plant biomass under DS
conditions than under WW conditions. Hence, AMF inocula-
tion significantly increased shoot morphological properties (plant
height, stem diameter, and leaf number) and biomass produc-
tion than non-AMF control, irrespective of whether or not plants
are maintained under WW and DS conditions. This is in agree-
ment with the findings of Tian et al. (2013), who reported that
AMF colonization significantly enhanced growth of Sacha inchi
(Plukenetia volubilis L.) seedlings under both WW and DS con-
ditions. The growth improvements induced by mycorrhization
under either WW or DS condition have primarily been attributed
to an enhancement in absorption capacity of water and nutrients
by extraradical hyphae (García et al., 2008; Bárzana et al., 2012).
Our observations also showed that AMF colonization significantly
increased leaf RWC under both WW as well as DS conditions.
Compared with non-AMF-inoculation, AMF inoculation signif-
icantly increased leaf RWC by 7 and 10% under WW and DS,
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Table 2 | Effect of an AM fungus (Funneliformis mosseae) on growth of trifoliate orange seedling under WW and DS conditions

Treatments Growth parameters Plant fresh weight (g/plant)

Plant height (cm) Stem diameter

(mm)

Leaf number

per plant

Shoot Root Total

WW-AMF 37.3 ± 2.7bc 3.45 ± 0.11b 37 ± 2b 2.37 ± 0.12c 0.92 ± 0.06c 3.29 ± 0.06c

WW+AMF 45.2 ± 1.3a 3.61 ± 0.08a 43 ± 2a 3.01 ± 0.12a 1.13 ± 0.05a 4.14 ± 0.16a

DS-AMF 33.7 ± 2.3c 3.12 ± 0.12c 34 ± 1c 2.12 ± 0.13c 0.79 ± 0.02d 2.91 ± 0.12d

DS+AMF 40.7 ± 3.0b 3.44 ± 0.09b 37 ± 1b 2.72 ± 0.08b 1.00 ± 0.05b 3.72 ± 0.13b

Data (means ± SD, n = 4) followed by different letters among treatments indicate significant differences at 5% level.

Table 3 | Effect of an AM fungus (Funneliformis mosseae) on Cu/Zn-SOD, Mn-SOD, and CAT activities and soluble protein, O•–
2

and H2O2

concentrations in leaves of trifoliate orange under WW and DS conditions.

Treatments Soluble protein

(mg/g FW)

Antioxidant enzymes ROS

Cu/Zn-SOD

(μg/mg protein)

Mn-SOD

(μg/mg protein)

CAT

(mg H2O2/min/g FW)

O•–
2

(μmol/g FW)

H2O2 (μg/g FW)

WW − AMF 22.23 ± 1.67bc 1369 ± 162a 1290 ± 68a 2.21 ± 0.34c 0.23 ± 0.02b 116.0 ± 3.1c

WW + AMF 26.71 ± 1.77a 1481 ± 79a 1426 ± 70a 7.31 ± 0.34a 0.20 ± 0.02c 93.9 ± 13.1d

DS − AMF 21.25 ± 1.50c 942 ± 146b 300 ± 123c 1.62 ± 0.33d 0.30 ± 0.01a 180.4 ± 15.8a

DS + AMF 24.17 ± 0.24b 1275 ± 167a 823 ± 172b 4.25 ± 0.44b 0.25 ± 0.00b 142.1 ± 12.1b

Data (means ± SD, n = 4) followed by different letters among treatments indicate significant differences at 5% level. ROS stands for reactive oxygen species.

respectively (Figure 2). Higher RWC in AM seedlings suggested
that AM seedlings were capable of absorbing additional water
from the rhizosphere or alternatively have greater ability to con-
trol water loss through stomatal regulations (Wu and Xia, 2006;
Augé et al., 2014).

FIGURE 2 | Effect of an AM fungus (F. mosseae) on leaf relative water

content (RWC) of trifoliate orange seedlings under under WW and DS

conditions. Data (means ± SD, n = 4) followed by different letters above
the bars among treatments indicate significant differences at the 5% level.

CHANGES IN CaM AND ANTIOXIDANT ENZYME PROFILE
Mycorrhization associated changes in antioxidant enzymes are
widely reported (Hu et al., 2007; Ni et al., 2013). Earlier stud-
ies (Ni et al., 2013; Wu et al., 2013) using different citrus
species demonstrated that the AMs conferred greater tolerance
to plants against soil water deficit through an enhancement in
their antioxidant enzyme defense system consequent upon a
decrease in level of H2O2 and O•−

2 . In our studies, the DS
induced accumulation of leaf O•−

2 and H2O2 concentration,
regardless of AMF- or non-AMF-seedlings (Table 3). How-
ever, compared with non-AMF treatment, AMF inoculation
significantly decreased leaf O•−

2 concentration by 13 and 15%
under both the WW and DS conditions, respectively. While
AMF-seedlings recorded 19 and 21% lower leaf H2O2 concen-
tration under WW and DS conditions, respectively, compared to
non-AMF-seedlings.

Arbuscular mycorrhizal fungi inoculation was associated
with increased soluble protein concentration and CAT activ-
ity in leaves, irrespective of soil water status (Table 3).
AMF-seedlings recorded 20 and 14% higher soluble protein
concentration under WW and DS, respectively, in leaves of
the plant. While, leaf CAT activity as result of AMF inoc-
ulation increased by 231 and 162% under WW and DS,
respectively. According to the results of Tian et al. (2013),
inoculation with AMF increased CAT activity of Plukenetia vol-
ubilis plants under DS, thus reducing both accumulation of
H2O2 and oxidative damage to lipids. Another study by Ni
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FIGURE 3 | Effect of an AM fungus (F. mosseae) on leaf CaM

concentrations of trifoliate orange leaf under WW and DS conditions.

Data (means ± SD, n = 4) followed by different letters above the bars
among treatments indicate significant differences at the 5% level.

et al. (2013) showed significantly higher leaf SOD and root
CAT activity in mycorrhizal citrus tangerine seedlings as com-
pared with non-mycorrhizal seedlings under DS conditions.
Our study further showed that amongst SODs, leaf Cu/Zn-
SOD, and Mn-SOD activities under mycorrhization remained
unchanged under WW conditions, but significantly increased
by 35 and 174% under DS conditions, respectively, as com-
pared with non-mycorrhization (Table 3). These results suggested
that AMF inoculation conferred significantly greater magnitude
of increase in Cu/Zn-SOD and Mn-SOD activities under DS
than WW conditions. The CAT and Mn-SOD activities were
significantly affected by the interactive effect between AM and
DS (Table 1), implying that the DS treatment profoundly stim-
ulated AMs to trigger the over-expression of SOD isozymes,
resulting in a lower accumulation of ROS in leaves. Ruiz-
Lozano et al. (2001) found that expression of Mn-SOD II gene
was increased in mycorrhizal plants under DS. AMF inoc-
ulation, hence, increased CAT activity under both WW as
well as DS conditions, which expanded the defense capacity
to host plant against any possible oxidative damage (Ruiz-
Lozano, 2003; Wu et al., 2006b; Huang et al., 2011). Maintaining
higher antioxidative enzyme activities provides increased resis-
tance to plant against oxidative damage under DS conditions
(Sharma and Dubey, 2005).

The DS treatment induced significant decrease of leaf CaM
concentration than WW treatment, irrespective of AMF- or
non-AMF-seedlings status (Figure 3). However, mycorrhizal inoc-
ulation significantly increased leaf CaM concentration by 11%
under both WW as well as DS conditions (Figure 3). Line regres-
sion analysis further supported that leaf CaM concentration was
significantly (P < 0.01) positively correlated with mycorrhizal
colonization (Figure 4), suggesting that root AM colonization
modulated leaf CaM levels, or CaM as the second messen-
ger involved in root mycorrhizal colonization. There were no
significant differences of leaf CaM concentration between AMF-
seedlings under DS conditions and non-AMF-seedlings under

FIGURE 4 | Line regression between root mycorrhizal colonization and

leaf CaM concentration of trifoliate orange inoculated with an AM

fungus (F. mosseae) under WW and DS conditions (n = 8).

FIGURE 5 | Line regression between CaM concentration and SODs

(Cu/Zn-SOD and Mn-SOD) (A) or CAT (B) activity in leaves of trifoliate

orange inoculated with an AM fungus (F. mosseae) under WW and DS

condition (n = 16).
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FIGURE 6 | Line regression between CaM concentration and O•−
2 (A) or

H2O2 (B) concentration in leaves of trifoliate orange inoculated with

an AM fungus (F. mosseae) under WW and DS conditions (n = 16).

WW conditions. Leaf CaM concentration was significantly pos-
itively correlated with leaf SODs (Cu/Zn-SOD and Mn-SOD;
Figure 5A) and CAT activity (Figure 5B), but negatively correlated
with leaf O•−

2 (Figure 6A) and H2O2 concentration (Figure 6B).
Our studies, hence, revealed that AMF inoculation induced CaM
mediated elevation in antioxidant enzyme activities and reduc-
tion in ROS levels. Interestingly, CaM is reported to induce ROS
generation as a second messenger mediating signal transduction
under various stress conditions (Bowler and Fluhr, 2000; Chen
et al., 2004). It seems that CaM is postulated to be of multiple
function protein involved in a series of responses, collectively
attributing towards plant defense signal network.

An increase of CaM concentration by mycorrhization under
both WW and DS conditions would bind more Ca2+, thus enhanc-
ing the signal strength and accelerating the signal transfer rate to
trigger various cellular responses (Shao et al., 2008; Yang et al.,
2010). In fact, AMF-seedlings recorded significantly higher root
Ca2+ influxes under both WW and DS conditions (Zou et al.,
2014). Lorella et al. (2007) observed that an AM fungus Rhizoph-
agus intraradices early increased the intracellular CaM in soybean
cells. These results implied that AM colonization would induce
an enhancement of CaM levels, ultimately bringing substantial
improvement in capturing the signal strength of plant. Earlier

studies (Huang et al., 1995) reported that CaM participated in
regulation of SOD activity with SOD as a CaM-binding protein
(Gong and Li, 1995). A significantly positive correlation between
CaM concentration and CAT activity substantiated that CaM was
involved in regulating the CAT activity. Gong et al. (1997) earlier
observed that CaM-mediated heat tolerance was associated with
an increase in antioxidant system consisting of SOD and CAT
activities.

CONCLUSION
Arbuscular mycorrhizal fungi inoculation, in the present study,
significantly improved the growth of trifoliate orange and induced
higher CaM synthesis under WW as well as DS conditions.
Correlations revealed that AMF-induced CaM concentration
mediated SODs and CAT activities aided in scavenging the accu-
mulated ROS, collectively enhancing the drought tolerance of
the host plant. Further studies to characterize the nature of
CaM (functional significance of CaM) and address the molecular
mechanisms of interaction between H2O2 production and CaM
activation, besides how CaM upregulates the antioxidant defense
system in the whole process of signal transduction, will provide a
better understanding of physiology and biochemistry of changes
associated with AMF inoculation.
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