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INTRODUCTION
Most studies of plant viruses have focused
on the acute viruses that cause dis-
ease in crop and ornamental plants.
These viruses are transmitted horizontally,
often by insect vectors, and are occa-
sionally transmitted vertically. Although
known for at least four decades, the
persistent viruses of plants are very
poorly studied. These viruses were pre-
viously called “cryptic” because they
did not appear to illicit any symp-
toms in infected plants (Boccardo et al.,
1987). Persistent plant viruses are not
known to be transmitted horizontally,
although phylogenetic evidence suggests
some level of transmission (Roossinck,
2010). They are vertically transmitted at
nearly 100% levels through both ova and
pollen (Valverde and Gutierrez, 2007).
They have been identified in metage-
nomic studies by their similarity to known
persistent viruses, and because they lack
any movement protein, a feature of all
known acute viruses that must move
through the plant plasmodesmata to estab-
lish a systemic infection. Persistent viruses
do not move between plant cells, but
rather infect every cell and move by cell
division.

Most plant persistent viruses have
double-stranded (ds) RNA genomes, and
encode only an RNA dependent RNA
polymerase (RdRp) and a coat protein.
Of the well-characterized persistent plant
viruses, those in the Endornaviridae are
the exception. These viruses have a single-
stranded (ss) RNA genome, based on
their RdRp, and encode a large polypro-
tein that does not have any apparent

coat protein, but encodes a number of
additional domains that appear to be
derived from diverse sources (Roossinck
et al., 2011). They are usually found as
dsRNA replicative intermediates.

Viruses of fungi have very similar
lifestyles to plant persistent viruses, and
several virus families are shared between
plants and fungi. Phylogenetic evidence
indicates that virus transmission has
occurred within and between the two
kingdoms (Roossinck, 2010; Roossinck
et al., 2011).

Fungal viruses are even less well-
studied than plant viruses, and the diver-
sity of these viruses remains mostly
unknown. A majority of known fun-
gal viruses have dsRNA genomes, some
have ssRNA genomes, and a few exam-
ples of DNA viruses are known (Yu
et al., 2010). Recently a negative sense
ssRNA virus was characterized from a
fungus (Liu et al., 2014). Similar to
plant viruses, most fungal viruses have
been studied in the context of pathogenic
fungi. The discovery of the hypovirulence
phenotype of Cryphonectria hypovirus 1
that suppresses the disease phenotype
of the chestnut blight fungus led to a
search for other examples that could be
exploited to mitigate the effects of plant
pathogenic fungi [reviewed in Dawe and
Nuss (2013)].

VIRUS DISCOVERY IN PLANTS AND
FUNGI
Deep sequencing is proving to be a
useful technique for just about every-
thing these days, and the methods have
been applied to metagenomic studies of

viruses. Unlike studies of other microbes,
viruses cannot be analyzed through the use
of any universal conserved sequences or
motifs, and a variety of techniques have
been employed to enrich for viral nucleic
acids before sequence analysis. Studies in
aquatic viruses have been reported for
a number of years (Angly et al., 2006;
Labonté and Suttle, 2013). More recently
plant viruses have been studied through
metagenomics as well (Roossinck, 2012;
Stobbe and Roossinck, 2014). A large vari-
ety of studies have been done on many
different scales, from individual plants
to ecosystems. In some studies a single
plant species has been targeted, in oth-
ers a broader sweep is used. These stud-
ies are explored in detail in a review by
this author and others to be published
elsewhere. Here I will explore the discov-
ery of persistent viruses that are extremely
common in plants and fungi, but poorly
studied, and discuss the implications of
these viruses in the ecology of plants and
fungi.

Different methods of detection have
yielded different levels of persistent
viruses. Use of dsRNA-enriched sam-
ples yielded very high levels of persistent
viruses in plants (Roossinck, 2012). Using
the small RNAs involved in plant immu-
nity (siRNAs) has been less successful at
detecting many persistent viruses in plants.
While the complete sequence of a known
endornavirus was assembled with siRNAs
(Sela et al., 2012), no novel endornaviruses
have been reported with this method. A
few siRNAs have been found for parti-
tiviruses, chrysoviruses, and totiviruses,
but with very limited genome coverage
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(Kreuze, 2014). It is likely that these
viruses are not subjected to silencing;
with the exception of endornaviruses, they
do not expose their dsRNA to the cell,
but rather retain their genomes within
the virions and extrude only ssRNA into
the cytoplasm (Safari and Roossinck,
2014).

Virus discovery in fungi is very limited.
Most analyses have been done on fungi
of economic importance such as plant
pathogenic fungi. A survey of viruses from
endophytic fungi derived from two plant
species in a wild plant community indi-
cated that the diversity of viruses in this
system was much greater than the diversity
of fungi, which was in turn much greater
than the diversity of plants (Feldman et al.,
2012).

In most cases of fungal virus stud-
ies, viruses have been discovered from
cultured fungi. This eliminates the major-
ity of fungi, which are not cultur-
able (Blackwell, 2011), but have been
discovered from environmental samples
through specific gene analysis such as
ribosomal RNA-related regions and other
genes (Seifert, 2009). Traditionally fungi
acquired from nature are “purified” by sin-
gle spore isolation. These practices result
in a gross under-estimate of fungal viruses,
as many viruses are lost during culture,
especially on solid media (unpublished
observation), and single spore isolation
is a common strategy to obtain cultures
“cured” of their viruses. Even though next
generation sequencing methods allow for
deeper analysis of environmental samples,
finding new viruses in fungi without cul-
ture is technically challenging. Although
some reports have indicated that fungal
viruses can be shed into the media when
cultured, there is little evidence of extracel-
lular accumulation of most fungal viruses.
The lack of any conserved sequences in
viruses, such as house-keeping or bar-
coding genes found in all other life forms,
means that sequence-specific primers can-
not be used. For viruses of endophytic
fungi that have been the focus of fun-
gal virus research in the author’s lab,
the minimal amount of fungal tissue in
plants makes any analysis nearly impos-
sible without culturing the fungus out of
the plant. Hence for now we must settle
for this very low estimate of fungal virus
diversity.

COMMON THEMES FROM PLANTS
AND FUNGI
Plants and fungi share several families
of viruses. The Partitviridae and the
Endornaviridae are recognized by
the International Committee for the
Taxonomy of Viruses (King et al., 2012) as
infecting both plants and fungi, but bio-
diversity surveys of plant viruses have also
identified members of the Totiviridae and
Chrysoviridae families that traditionally
are considered fungal viruses (Roossinck,
2012), and a chrysovirus was recently char-
acterized from radish (Li et al., 2013). In
fact viruses from these and related families
make up over half of the viruses identi-
fied in wild plants (Roossinck, 2012). In
plants these viruses appear to maintain
a persistent lifestyle (Roossinck, 2010),
remaining associated with their hosts for
many generations with nearly 100% ver-
tical transmission. Less is known about
the lifestyles of fungal viruses. There are
few reports of truly acute viruses in fungi.
Recently a DNA virus from Sclerotinia
sclerotiorum was shown to be infectious
as a purified virus particle, although it
is not clear if this is a mechanism for
transmission in nature (Yu et al., 2013).
Unlike the plant persistent viruses, fungal
viruses can be transmitted between closely
related strains of fungus through anas-
tomosis (Milgroom and Hillman, 2011),
and evidence of cross-species transmission
is apparent in phylogenetic analyses of
Cryphonectria hypovirus (Liu et al., 2003)
and partitiviruses in the Heterobasdion
(Vainio et al., 2011).

Persistence and high levels of ver-
tical transmission in parasites are cor-
related with commensal or mutualistic
lifestyles (Villarreal, 2007; Márquez and
Roossinck, 2012). In some cases we know
that persistent viruses are mutualistic
(Nakatsukasa-Akune et al., 2005; Márquez
et al., 2007). In many cases we don’t
know enough about their biology to assess
their symbiotic lifestyle, but in plants few
have any evidence of negative effects on
their hosts. For two persistent viruses
in Heterobasidion species, virus lifestyle
was dependent on the fungal environment
(Hyder et al., 2013). A complicating factor
in understanding the ecology of persistent
viruses is that the well-studied persistent
viruses are mainly from crop plants, or
from economically important fungi; there

is virtually no information about any roles
these viruses may play in the natural envi-
ronment where the virus-host relation-
ships evolved.

CONCLUSIONS
The abundance of persistent viruses in
plants and fungi imply functions that
may contribute to the biology of the
host. Unfortunately we have little ecolog-
ical data about these viruses, and since
they often cause no disease they have not
been the subject of intensive study. Data-
mining from transcriptomic, genomic and
metagenomic studies may allow us to
address the true ecological role of these
viruses. For example, the partitiviruses
have poly-A tails, and may be detectable in
transcriptome analyses (Jiang et al., 2013).
In some cases persistent virus sequences
are found integrated into plant or fungal
genomes (Liu et al., 2010; Chiba et al.,
2011). Deeper analyses along these lines
may provide data on time-lines of persis-
tent virus-host relationships.
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