
ORIGINAL RESEARCH ARTICLE
published: 04 March 2015

doi: 10.3389/fmicb.2015.00158

Viruses and bacteria in floodplain lakes along a major
Amazon tributary respond to distance to the Amazon River
Rafael M. Almeida1, Fábio Roland 1, Simone J. Cardoso1,2 , Vinícius F. Farjalla 3 , Reinaldo L. Bozelli 3 and

Nathan O. Barros1*

1 Laboratory of Aquatic Ecology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
2 Department of Sanitary and Environmental Engineer, Federal University of Juiz de Fora, Juiz de Fora, Brazil
3 Laboratory of Limnology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

Edited by:

André Megali Amado, Universidade
Federal do Rio Grande do Norte, Brazil

Reviewed by:

Hélène Montanié, Université de la
Rochelle, France
Stéphan Jacquet, Institut National de
la Recherche Agronomique, France

*Correspondence:

Nathan O. Barros, Laboratory of
Aquatic Ecology, Department of
Biology, Federal University of Juiz de
Fora, Juiz de Fora 36036-900, Brazil
e-mail: nathan.barros@ufjf.edu.br

In response to the massive volume of water along the Amazon River, the Amazon
tributaries have their water backed up by 100s of kilometers upstream their mouth. This
backwater effect is part of the complex hydrodynamics of Amazonian surface waters, which
in turn drives the variation in concentrations of organic matter and nutrients, and also
regulates planktonic communities such as viruses and bacteria. Viruses and bacteria are
commonly tightly coupled to each other, and their ecological role in aquatic food webs
has been increasingly recognized. Here, we surveyed viral and bacterial abundances (BAs)
in 26 floodplain lakes along the Trombetas River, the largest clear-water tributary of the
Amazon River’s north margin. We correlated viral and BAs with temperature, pH, dissolved
inorganic carbon, dissolved organic carbon (DOC), phosphorus, nitrogen, turbidity, water
transparency, partial pressure of carbon dioxide (pCO2), phytoplankton abundance, and
distance from the lake mouth until the confluence of the Trombetas with the Amazon
River. We hypothesized that both bacterial and viral abundances (VAs) would change along
a latitudinal gradient, as the backwater effect becomes more intense with increased
proximity to the Amazon River; different flood duration and intensity among lakes and
waters with contrasting sources would cause spatial variation. Our measurements were
performed during the low water period, when floodplain lakes are in their most lake-like
conditions. Viral and BAs, DOC, pCO2, and water transparency increased as distance to
the Amazon River increased. Most viruses were bacteriophages, as viruses were strongly
linked to bacteria, but not to phytoplankton. We suggest that BAs increase in response to
DOC quantity and possibly quality, consequently leading to increased VAs. Our results
highlight that hydrodynamics plays a key role in the regulation of planktonic viral and
bacterial communities in Amazonian floodplain lakes.

Keywords: plankton, viruses, bacteria, Amazonian freshwater ecosystems, floodplain lakes, dissolved organic

carbon, backwater effect

INTRODUCTION
Of the 10 largest tropical rivers in terms of discharge on Earth, four
are in the Amazon basin, being the Amazon River itself the largest
one (Latrubesse et al., 2005). In addition to a complexly arranged
fluvial network, the Amazon floodplain is composed of exten-
sive wetlands and about 9,000 floodplain lakes that cover nearly
70,000 km2 (McClain, 2001), which are seasonally flooded by
bordering rivers. The flood pulse is one of the most marked char-
acteristics of Amazonian aquatic ecosystems (Junk et al., 1989),
and it defines four distinct flood seasons: rising, high, falling, and
low waters. Because peak discharges of the northern and south-
ern tributaries of the Amazon River have different timings, the
discharges of the Amazon River vary by a factor of 3, whereas its
tributaries vary their discharges by a factor of 10 (Meade et al.,
1991). As a result, even the largest tributaries have their water
backed up by 100s of kilometers upstream of the mouth, with
falling river stages being as much as 3 m higher than rising stages
at a same discharge – the so-called backwater effect. The intricate

hydrodynamics of Amazonian aquatic systems regulates the con-
centrations of organic matter and nutrients in Amazonian lakes
(Forsberg et al., 1988), as well as a variety of aquatic communities,
such as the planktonic ones, zoo-, phyto-, bacterio-, and virio-
plankton (Bozelli, 1994; Anesio et al., 1997; Huszar and Reynolds,
1997; Barros et al., 2010).

Viruses are ubiquitous in aquatic ecosystems, and increasing
attention has been paid on their role in aquatic food webs since
it was discovered that they are the most abundant aquatic com-
ponents (Bergh et al., 1989). Viruses are not only abundant, but
they also play an important biogeochemical function by releasing
dissolved organic matter (DOM) and nutrients through host cell
lysis (Fuhrman, 1999). In addition, viral activity can affect ecosys-
tem respiration, primary production, bacterial and algal diversity,
species distribution, and genetic transfer between microorganisms
(Maranger and Bird, 1995; Fuhrman, 1999; Suttle, 2005). Likewise,
bacteria are crucial players in aquatic ecosystems, processing large
amounts of both autochthonously and allochthonously derived
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organic carbon (Cotner and Biddanda, 2002). For this reason,
bacteria and viruses are recognized as key alternative routes of
organic matter and nutrient transfer to metazoan trophic levels,
which was first introduced through the microbial loop concept
(Pomeroy, 1974; Azam et al., 1983), and then by the viral loop
(Fuhrman, 1999).

While temperature, nutrient, organic carbon, flood pulses, and
light exposure are key bottom–up factors controlling bacterial
dynamics in aquatic systems (Farjalla et al., 2002, 2006; Amado
et al., 2013), the action of viruses is known to be an important
top–down mechanism of bacterial regulation in aquatic ecosys-
tems (Fuhrman and Noble, 1995). This viral control on bacteria
is summarized in the “killing the winner” hypothesis: abundant
prokaryotic types are exposed to strong viral pressure, because
viral infection rate depends, among other things, on the abun-
dance and type of prokaryotic host cells (Winter et al., 2010).
Viruses impact directly on bacterial populations and indirectly on
bacterial diversity by decreasing the density of dominant bacterial
species (Maranger and Bird, 1995). Moreover, viruses can account
for up to 40% of bacterial mortality in surface waters, which can
be similar in magnitude to the effect caused by protistan grazing
(Fuhrman and Noble, 1995).

Although there is a growing body of research on aquatic viral
ecology, little is known about viral function in tropical environ-
ments (Peduzzi and Schiemer, 2004; Bettarel et al., 2006; Araújo
and Godinho, 2009). This is particularly true for the Amazon,
where to our knowledge only one study has investigated aquatic
viruses to date (Barros et al., 2010). In Amazonian clear-water
floodplain lakes, bacterial and viral abundances (VAs) are tightly
coupled, and both of them are linked to the flood pulse and the
concentration of suspended particles (Barros et al., 2010). This
study was a key initial step toward a comprehensive understand-
ing on the role of viruses in Amazonian aquatic ecosystems, but
the variation of bacteria and virus between contrasting floodplain
lakes is still unknown. Spatially explicit reports of virus–bacterium
relationships have been documented for boreal, temperate and
tropical African lakes (Maranger and Bird, 1995; Anesio et al.,
2004; Bettarel et al., 2006), but no such study exists for the
Neotropical region.

Here, we made an extensive survey of several floodplain lakes
distributed along the margins of the Trombetas River, the sec-
ond largest northern tributary of the Amazon River. Throughout
the sampling stretch, the Trombetas River is permanently subject
to a backwater effect caused by the Amazon River (Veiga Pires
et al., 1988). The backwater effect becomes progressively more
pronounced with increasing proximity to the confluence with the
Amazon River (Meade et al., 1991). As a result, lower basin lakes
are frequently flooded by the turbid waters of the Amazon River,
whereas upper basin lakes are strictly flooded by the clear waters
of the Trombetas River. In addition, the duration of floods may be
longer in the lower basin. Thus, we hypothesized that both bacte-
rial and VAs would change according to the distance to the Amazon
River. This would occur because of different flood duration and
intensity among lakes and waters with different sources. Contrast-
ing flooding characteristics would eventually influence planktonic
communities during low water, when lakes are more disconnected
and dissimilar (Thomaz et al., 2007).

MATERIALS AND METHODS
SITE DESCRIPTION
The Trombetas River originates in the Guiana shield and is the
largest northern clear-water tributary of the Amazon River, with
a mean discharge of 2,555 m3 s−1 (Moreira-Turcq et al., 2003).
The total area of the Trombetas River basin is 120,000 km2, 6% of
which are covered by floodplain forests and lakes (Melack and
Hess, 2010). These floodplain lakes exhibit large oscillation in
water level over the year, with mean depths being as low as 1 m
during low water periods and as high as 10 m during high water
periods (Roland and Esteves, 1998).

The backwater effect of the Amazon River on its tributaries is
a pattern well described in literature, and it gets gradually more
pronounced following an upstream–downstream gradient (Meade
et al., 1991). The Trombetas River, for instance, has been reported
to be permanently subject to a backwater effect until Cachoeira
Porteira, about 210 km upstream the mouth (Veiga Pires et al.,
1988). Discharge and stage measurements from a gaging station
20 km upriver of our upper-most lake (Lake Macaco) confirm
this (Figure 1A). At this gaging station, the river level is some-
times a few centimeters higher during falling stages than during
rising stages at the same discharge, which is due to a time lag
between the peak discharges of the Trombetas and Amazon rivers
(Figure 1B).

We selected the peak of a low water period to perform our
measurements, in order to sample the floodplain lakes in their
most lake-like conditions. During low water, river-floodplain sys-
tems are more heterogeneous with respect to physical, chemical
and biological variables, since the connectivity with the adjoining
river is weakest (Thomaz et al., 2007). We sampled 26 flood-
plain lakes adjacent to the Trombetas River, following a north
(upstream) to south (downstream) gradient (Figure 2). The
northern-most lake is about 200-km distant from the conflu-
ence of the Trombetas with the Amazon River. We also sampled
one site in the Trombetas River, located halfway from the conflu-
ence with the Amazon River until the northern-most lake. Satellite
imagery from the free software Google Earth was used to measure
the distance traveled through the Trombetas River main chan-
nel from the lake mouths until the confluence with the Amazon
River.

WATER SAMPLING AND ANALYSIS
Water samples were taken from the upper 0.5 m at the center of
each of the 26 lakes during a cruise along the Trombetas River
between December 1st and 8th 2007 (low water period). In the
field, subsamples were filtered through 0.7 μm glass microfiber
filters (GF/F; Whatman) for further analysis of dissolved com-
pounds. All water samples sent for laboratory analysis were kept
refrigerated at ∼4◦C and analyzed within 15 days after sampling.
Dissolved oxygen (DO) concentrations and water temperature
were measured at the subsurface with a portable oximeter (YSI-95)
and a thermometer, respectively. Turbidity was measured using
a turbidimeter La Motte 2008 Turbidity Meter, whereas sam-
ples for pH were analyzed using a pH meter (Micronal B474).
The water transparency was measured using the Secchi disk. Pre-
acidified (pH < 2) water samples for total nitrogen (TN) and total
phosphorus (TP) were analyzed within 15 days using standard
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FIGURE 1 | (A) Stage-discharge relations in the Trombetas River at the
Caramujo gaging station (1◦3′54′ ′S, 57◦3′41′ ′W) during the rising (open
circles) and falling (solid circles) stages. (B) Mean stages of the Trombetas
River at Caramujo between 1996 and 2013 (solid line) and the Amazon River
at Óbidos (1◦ 55′9′ ′S, 55◦30′47′ ′W) between 1968 and 2013 (dashed line);
the X-axis indicates the months of the year. The arrows indicate the peak
discharges of both rivers. Data were obtained downstream the confluence
of both rivers. Discharges and stages data were obtained at the website of
the Brazilian National Water Agency (http://hidroweb.ana.gov.br).

spectrophotometric techniques (Wetzel and Likens, 2000). Pre fil-
tered samples of DOC and dissolved inorganic carbon (DIC) were
analyzed on a Tekmar–Dohrmann Total Carbon Analyzer (model
Phoenix 8000). DIC was analyzed following persulfate digestion,
and pre-acidified (pH < 2) DOC samples were analyzed following
high temperature oxidation with a UV lamp. The partial pressure
of carbon dioxide (pCO2) was calculated from DIC, pH, and water
temperature according to Stumm and Morgan (1996).

VIRAL, BACTERIAL, AND PHYTOPLANKTON ABUNDANCES
Here, we consider bacteria as a generic term describing prokary-
otic organisms (i.e., organisms lacking a nucleus, comprising the
domains Bacteria and Archaea), since the method that we used
(epifluorescence microscopy using SYBR stains) does not distin-
guish bacteria from Archaea. Additionally, free DNA and non-viral

background fractions occasionally interferes the counting of
viruses through epifluorescence miscroscopy using SYBR stains
(Pollard, 2012). Samples for viral and bacterial abundances (BAs)
were taken from the center of the lakes in triplicates. Immediately
after sampling, the samples were fixed with glutaraldehyde solu-
tion (2% final concentration; pre-filtered on a 0.02 μM-pore-size
filter). In the laboratory, on the same day of sampling, bacteria and
viruses were stained with SYBR green (Molecular Probes, Eugene,
OR, USA; Noble and Fuhrman, 1998), which is recommendable as
immediate preparation of slides avoids viral decay that commonly
occurs during storage of water samples. Two-milliliter samples
were filtered on a 0.02 μm-pore-size Anodisc membrane filter
(Whatman aluminum oxide) with a 0.45 μm-pore-size backing
membrane filter. The filter was laid, sample side up, on a drop
of SYBR green I solution (1:400) for 15 min in the dark. After
being dried, the filter was placed on a glass slide and mounted
with an antifade mounting solution (Patel et al., 2007), and kept
frozen at −20◦C until analysis within 15 days after sampling. For
each filter, more than 200 viruses and 100 bacteria were directly
counted in 20 fields. The fields were selected randomly. Analyses
were performed under ×1,000 magnification with an epifluores-
cence microscope (Provis AX-70; Olympus, Melville, NY, USA)
using light filters for blue excitation (450–490 nm wide bandpass).

Samples for phytoplankton enumeration were fixed in the field
with acidic Lugol’s solution at a final concentration of 1:100
(Soares et al., 2011). The samples were stored in dark glass-ware
protected from light and analyzed within 15 days after sampling. In
the laboratory phytoplankton abundances (PAs) were determined
in an inverted microscope (Olympus IX 71) following the Uter-
möhl (1958) sedimentation method. At least one 100 specimens
of the dominant species were enumerated (Lund et al., 1958) in
random fields (Uhelinger, 1964).

STATISTICAL ANALYSIS
We used linear regressions to assess possible relationships between
distance to the Amazon River and the limnological parameters
and planktonic communities considered here. A linear regression
was also used to verify the coupling between bacteria and viruses.
We utilized p < 0.05 as a threshold level for the acceptance. All
analyses were made on SigmaPlot version 11.0.

RESULTS
The distance from the lake mouths until the Amazon River var-
ied between 31 km (Sapucuá Lake) and 192 km (Macaco Lake;
Table 1). Water temperature was elevated and showed minor vari-
ation between lakes. Oxygen concentrations averaged 5.9 mg L−1

(range: 4.3–6.8 mg L−1), and were about 80% of the oxygen satura-
tion considering the water temperature and atmospheric pressure.
The apparent oxygen deficit in the water was corroborated by
CO2 supersaturation (average pCO2 = 2916 μatm; range 320–
5856 μatm). Only one lake was below atmospheric equilibrium,
here considered as 390 μatm (Table 1). The Trombetas River, sam-
pled 90 km upstream the mouth, showed oxygen concentrations
and pCO2 similar to the average of the lakes, but it was less enriched
in DOC, TN, and TP than most lakes. Turbidity was mostly below
the detection limit in the upper basin lakes, as expected for clear-
water systems. This is confirmed by the fact that the Secchi disk
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FIGURE 2 | Map of the study site, emphasizing theTrombetas River and its associated floodplain lakes.

transparency (SDT) had a positive relationship with distance to the
Amazon River (Table 2). The distance to the Amazon River was
also significantly and positively correlated to DOC concentrations
and pCO2 (Table 2).

Viral abundances were higher than BAs irrespective of the sam-
pling site (Figure 3A), averaging 1.9 × 107 (±0.7 SD) VLP mL−1

(range: 0.4–3.0 × 107 VLP mL−1); the VA of the Trombetas River
(1.8 × 107 VLP mL−1) was close to the average of the lakes. BAs
varied by an order of magnitude, ranging from 0.6 × 106 cells
mL−1 to 8.3 × 106 cells mL−1 (Figure 3B); the BA of the Trombe-
tas River (1.9 × 106 cells mL1) was in the lower range of the values
found for the lakes. If on the one hand viral and BAs varied sub-
stantially between lakes, on the other hand, the virus-to-bacterium
ratio (VBR) was less variable (Figure 3C), averaging 4.8 (±1.46
SD; range: 2.2–9.1), and it was higher in the Trombetas River
(9.8) than in all lakes. The PAs varied considerably (range: 318–
22300 ind. mL−1; Figure 3D), and the Trombetas River exhibited
a very low PA (190 ind. mL−1).

A simple linear regression analysis showed that BA has a positive
relationship with VA (r2 = 0.69; p < 0.05; Figure 4). On the
other hand, no significant relationships were found when PAs
were regressed against bacterial and VAs (Table 2). Both bacterial
and VAs had a weak positive, but significant relationship with
the distance from the lake mouths until the confluence of the
Trombetas and Amazon rivers (r2 = 0.24; p < 0.05 and r2 = 0.17;
p < 0.05, respectively; Table 2). DOC was significantly correlated
to BAs (r2 = 0.16; p < 0.05), but not to VAs (Table 2). Both

bacterial and VAs showed positive and significant relationship with
pCO2 (r2 = 0.23; p < 0.05 and r2 = 0.20; p < 0.05, respectively;
Table 2). The VBR was not significantly related to any variable
(Table 2).

DISCUSSION
HYDRODYNAMICS AFFECTING WATER CHEMISTRY, BACTERIA, AND
VIRUSES
The results of our analysis indicated that viral and BAs, DOC,
pCO2, and water transparency of floodplain lakes adjacent to the
Trombetas River increase as distance from the lake mouth until
the Amazon River increases. We attribute this latitudinal gradi-
ent to a decreased intensity of the backwater effect of the Amazon
River as one moves upriver. The intensity of the backwater effect in
floodplain lakes bordering Amazon tributaries becomes progres-
sively more pronounced with increasing proximity to the Amazon
River (Meade et al., 1991). In other words, the backwater effect
keeps the water level high during falling stages in lower basin
lakes, which tend to present a higher proportion of river water
with respect to local water at low water periods. The presence of
riverine flood waters dilutes DOC, cells, and virus-like particles
(Anesio et al., 1997; Farjalla et al., 2006; Barros et al., 2010), and
increases allochthonous to autochthonous DOC ratio, as more
terrestrially derived recalcitrant DOC enters the lakes (Farjalla
et al., 2006). In addition, proximity to the Amazon River makes
lakes subject to turbid flood waters, which is corroborated by the
decreased SDT and increased turbidity in the lower basin lakes

Frontiers in Microbiology | Aquatic Microbiology March 2015 | Volume 6 | Article 158 | 4

http://www.frontiersin.org/Aquatic_Microbiology/
http://www.frontiersin.org/Aquatic_Microbiology/archive


Almeida et al. Viruses and bacteria in Amazonian lakes

T
a

b
le

1
|

L
im

n
o

lo
g

ic
a

l
c
h

a
ra

c
te

ri
s
ti

c
s

o
f

th
e

2
6

la
k
e

s
a

n
d

th
e

T
ro

m
b

e
ta

s
R

iv
e

r.

L
a

k
e

s
C

o
o

rd
in

a
te

s
D

is
ta

n
c
e

to

A
m

a
z
o

n

R
iv

e
r

(k
m

)

D
e

p
h

t

(m
)

T
e

m
p

(◦
C

)

S
e

c
c
h

i

(m
)

D
O

(m
g

L
−1

)

D
O

C
(m

g

L
−1

)

D
IC

(m
g

L
−1

)

T
P

(μ
g

L
−1

)

T
N

(μ
g

L
−1

)

T
u

rb
it

id
y

(N
T

U
)

p
H

p
C

O
2

(μ
a

tm
)

S
ap

uc
uá

S
1◦

47
′ 2

5′
′ ,

W
55

◦
59

′ 3
8′

′
31

2.
2

28
.8

0.
4

5.
5

4.
6

2.
7

87
57

7
31

.8
7.

7
32

0

Ji
bó

ia
S

1◦
38

′ 0
5′

′ ,
W

55
◦

59
′ 3

0′
′

54
1.

7
30

.5
1.

3
6.

7
3.

4
1.

0
26

24
0

1.
4

6.
3

15
75

La
gu

in
ho

S
1◦

31
′ 4

3′
′ ,

W
56

◦
04

′ 0
7′

′
68

1.
4

33
.8

1.
0

6.
5

4.
8

1.
0

24
46

1
N

D
5.

0
29

27

A
ra

cu
ã

do
M

ei
o

S
1◦

30
′ 4

8′
′ ,

W
56

◦
07

′ 3
7′

′
70

1.
9

30
.1

0.
8

6.
7

3.
8

1.
3

30
32

9
6.

8
6.

1
23

23

C
ar

im
um

S
1◦

31
′ 3

7′
′ ,

W
56

◦
06

′ 0
6′

′
71

1.
9

32
.4

1.
1

6.
3

3.
3

0.
8

34
53

9
0.

5
5.

1
23

12

B
ac

ab
au

S
1◦

29
′ 3

4′
′ ,

W
56

◦
11

′ 0
6′

′
82

1.
9

30
.5

1.
2

5.
7

4.
6

1.
5

28
36

3
0.

7
5.

5
38

34

A
ca

ri
S

1◦
33

′ 0
6′

′ ,
W

56
◦

13
′ 1

1′
′

88
3.

7
30

.9
2.

1
5.

5
3.

4
1.

0
12

28
3

N
D

5.
1

27
90

Fl
ex

al
S

1◦
30

′ 4
9′

′ ,
W

56
◦

16
′ 1

0′
′

95
2.

4
30

.7
0.

9
5.

4
4.

3
1.

1
31

50
3

4.
6

5.
3

29
03

B
at

at
a

S
1◦

31
′ 5

6′
′ ,

W
56

◦
18

′ 3
1′

′
95

3.
0

29
.0

1.
2

–
5.

4
1.

7
–

–
10

.0
6.

3
24

30

M
us

su
rá

S
1◦

28
′ 5

7′
′ ,

W
56

◦
18

′ 1
7′

′
10

0
2.

4
30

.1
0.

5
5.

5
3.

9
1.

8
27

46
9

18
.6

6.
4

22
98

A
ju

da
nt

e
S

1◦
27

′ 2
1′

′ ,
W

56
◦

22
′ 4

5′
′

10
9

1.
9

30
.6

1.
2

6.
8

3.
5

1.
3

23
45

2
N

D
5.

9
27

78

M
ou

ra
S

1◦
25

′ 3
6′

′ ,
W

56
◦

25
′ 4

′′
11

3
5.

0
30

.5
2.

1
5.

8
3.

7
0.

7
29

42
5

N
D

5.
4

18
62

M
at

he
us

S
1◦

24
′ 4

9′
′ ,

W
56

◦
24

′ 3
7′

′
11

5
1.

6
32

.6
1.

6
6.

5
5.

6
0.

8
30

56
8

N
D

5.
2

23
73

E
re

pe
cu

S
1◦

20
′ 2

6′
′ ,

W
56

◦
28

′ 0
6′

′
11

9
4.

2
31

.5
1.

3
6.

1
4.

3
1.

0
27

42
6

N
D

5.
9

22
49

Pa
lh

au
S

1◦
26

′ 4
6′

′ ,
W

56
◦

31
′ 1

4′
′

13
0

2.
3

30
.1

1.
3

4.
7

4.
1

–
39

35
2

2.
2

5.
5

–

Ju
qu

iri
-G

ra
nd

e
S

1◦
25

′ 0
2′

′ ,
W

56
◦

34
′ 0

6′
′

13
3

3.
4

30
.5

1.
8

6.
0

4.
1

1.
0

29
27

9
N

D
5.

4
25

25

C
ur

uç
á-

M
iri

m
S

1◦
25

′ 1
5′

′ ,
W

56
◦

37
′ 1

7′
′

14
5

2.
9

31
.7

1.
9

5.
9

4.
2

1.
1

37
50

4
N

D
5.

2
29

43

C
ur

uç
á-

G
ra

nd
e

S
1◦

26
′ 2

1′
′ ,

W
56

◦
38

′ 0
4′

′
14

5
2.

1
32

.4
1.

7
6.

0
5.

5
1.

1
24

51
0

N
D

5.
5

29
08

Ju
qu

iri
-M

iri
m

S
1◦

24
′ 5

5′
′ ,

W
56

◦
40

′ 1
3′

′
15

0
2.

3
31

.2
1.

6
6.

1
3.

5
1.

4
14

35
9

N
D

5.
2

38
53

M
ãe

-Q
ue

r
S

1◦
25

′ 5
5′

′ ,
W

56
◦

46
′ 5

8′
′

16
2

2.
8

31
.2

2.
0

5.
6

4.
5

1.
4

50
60

8
N

D
5.

5
35

20

Ta
pa

ge
m

Pe
qu

en
o

S
1◦

25
′ 5

9′
′ ,

W
56

◦
51

′ 2
6′

′
17

0
2.

0
29

.9
1.

4
5.

6
4.

4
1.

4
16

30
4

N
D

5.
4

34
87

Ta
pa

ge
m

G
ra

nd
e

S
1◦

24
′ 3

6′
′ ,

W
56

◦
51

′ 1
3′

′
17

2
4.

0
29

.2
1.

7
5.

7
4.

7
1.

5
18

36
4

0.
9

5.
4

38
17

Fa
ria

s
S

1◦
21

′ 4
5′

′ ,
W

56
◦

53
′ 1

2′
′

17
8

1.
5

32
.6

1.
3

6.
6

7.
0

1.
5

30
66

0
N

D
4.

6
44

38

Ja
ca

ré
S

1◦
20

′ 3
2′

′ ,
W

56
◦

51
′ 0

1′
′

17
8

2.
1

32
.7

1.
0

6.
8

5.
4

1.
3

41
57

7
0.

4
5.

3
35

21

A
bu

í
S

1◦
16

′ 1
7′

′ ,
W

56
◦

56
′ 5

6′
′

18
4

2.
5

32
.4

1.
7

6.
2

4.
0

0.
9

18
41

7
N

D
5.

5
24

57

M
ac

ac
o

S
1◦

12
′ 5

1′
′ ,

W
56

◦
53

′ 5
0′

′
19

2
2.

3
29

.9
1.

6
4.

3
6.

6
2.

5
37

60
9

0.
6

5.
7

58
56

Tr
om

be
ta

s
R

iv
er

S
1◦

31
′ 2

2′
′ ,

W
56

◦
14

′ 4
6′

′
90

2.
5

30
.0

1.
8

5.
8

3.
6

1.
4

17
25

9
N

D
5.

3
35

09

M
ea

n
–

–
2.

5
31

.0
1.

4
5.

9
4.

5
1.

3
30

44
0

3.
0

5.
6

29
16

S
D

–
–

0.
9

1.
3

0.
5

0.
6

1.
0

0.
5

15
12

1
7.

1
0.

6
10

40

Te
m

p.
,t

em
pe

ra
tu

re
;S

ec
ch

i,
S

ec
ch

id
is

k
tr

an
sp

ar
en

cy
;D

O
,d

is
so

lv
ed

ox
yg

en
:D

O
C

,d
is

so
lv

ed
or

ga
ni

c
ca

rb
on

;D
IC

,d
is

so
lv

ed
in

or
ga

ni
c

ca
rb

on
;T

P,
to

ta
lp

ho
sp

ho
ru

s;
TN

,t
ot

al
ni

tr
og

en
;p

C
O

2
,p

ar
tia

lp
re

ss
ur

e
of

ca
rb

on
di

ox
id

e.

www.frontiersin.org March 2015 | Volume 6 | Article 158 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/Aquatic_Microbiology/archive


Almeida et al. Viruses and bacteria in Amazonian lakes

Table 2 | Simple linear regression relationships.

REGRESSION EQUATION R2 p-value n

SDT = 0.751 + (0.00514*D) 0.26 <0.05 26

pCO2 = 903.0 + (16.470*D) 0.50 <0.05 25

logDOC = 0.537 + (0.000873*D) 0.20 <0.05 26

BA = 1.773 + (0.0205*D) 0.24 <0.05 26

VA = 1.051 + (0.00691*D) 0.17 <0.05 26

logVBR = 0.757 − (0.000801*D) 0.08 0.17 26

logPA = 3.186 + (0.000515*D) 0.01 0.79 26

BA = −1.315 + (8.668*logDOC) 0.16 <0.05 26

VA = −0.121 + (3.127*logDOC) 0.13 0.07 26

BA = 3.062 + (0.367*logPA) 0.01 0.69 26

VA = 2.598 − (0.219*logPA) 0.02 0.56 26

BA = −9.081 + (3.872*logpCO2) 0.23 <0.05 26

VA = −3.062 + (1.435*logpCO2) 0.20 <0.05 26

D, distance traveled through the Trombetas River from the lake mouth until
the Amazon River; SDT, Secchi disk transparency; pCO2, carbon dioxide partial
pressure; DOC, dissolved organic carbon; BA, bacterial abundance; VA, viral abun-
dance; VBR, virus-to-bacterium ratio; PA, phytoplankton abundance. The values
were log transformed for DOC,VBR, and PA because the data failed the normality
test (Shapiro–Wilk, p < 0.05). The significant relationships are shown in italics.

studied here. Also, we cannot discard the possibility that the higher
turbidity in the lower basin lakes is partly anthropogenic, as this
portion of the basin is closer to urban areas and human settle-
ments. High turbidity implies that less labile autochthonous DOC
is formed by primary producers. This is consistent with findings
from Batata Lake, a clear-water floodplain lake heavily impacted
by bauxite tailings where the turbid impacted sites exhibit lower
DOC as well as bacterial and VAs than clear-water natural sites
(Barros et al., 2010).

We suggest that a chain of events is triggered following the
decreased intensity of the backwater effect as proximity to the
Amazon River decreases: DOC increases (in quantity and likely
in quality), leading to increased BAs, and ultimately VAs. It has
been shown before that DOC stimulates bacterial growth, and
that VAs respond to changes in BAs in a clear-water Amazonian
lake (Farjalla et al., 2002; Barros et al., 2010). Finally, pCO2 also
increased with distance to the Amazon River, which is probably a
result of increased bacterial respiration due to higher BA. Indeed,
BA was positively correlated to pCO2.

In addition to proximity to the Amazon River, it is likely that
other factors also regulate bacteria and viruses in Amazonian
floodplain lakes. At low water, the influence of parent rivers on
floodplain lakes is substantially reduced, and some lakes become
totally isolated from their associated rivers (Thomaz et al., 2007).
The degree of dissociation with the parent river is, however, fairly
variable among lakes, which results from differences in local inputs
(Forsberg et al., 1988). Therefore, there are two factors that act
simultaneously during low waters: (1) the backwater effect that
tends to keep water level higher than expected by discharge, ulti-
mately making lower basin less confined than upper basin ones;

and (2) the rate of local inputs of water and associated chemical
compounds.

The relative importance of local inputs depends on the
hydraulic loading rate from the local drainage basin, which in
turn depends on the drainage basin area to lake area ratio (BA:LA;
Forsberg et al., 1988). Generally, lakes with a low BA:LA display a
mixture of river and local water by the end of the low water period,
whereas lakes with a high BA:LA are primarily characterized by the
presence of local water. In Amazonian floodplain lakes, the BA:LA
ratio can vary by up to two orders of magnitude from one lake
to another (Forsberg et al., 1988) – and, in general, higher BA:LA
leads to decreased nutrient availability because local water derived
from forest runoff is usually less nutrient-enriched. The distance
to the Amazon River (i.e., a proxy to the intensity of the backwater
effect) had a significantly positive, but low explicability on bacte-
ria and viruses. This low explicability is expected if one considers
that a wide range of geological, hydrological, and environmental
factors controls planktonic food webs and lake water chemistry.
Therefore, we suggest that the BA:LA ratio is likely an important
additional factor governing bacteria and viruses in the Trombetas
floodplain lakes, as this ratio influences the availability of nutrients
and DOM, as well as mixing and dilution of water.

RELATIONSHIPS OF VIRUSES WITH BACTERIA AND PHYTOPLANKTON
A strong virus–bacterium relationship plus a lack of relationship
between virus and phytoplankton indicate that most viruses are
bacteriophages (i.e., infect bacteria). The predominance of bacte-
riophages suggests that VAs increase with distance to the Amazon
River because of increased BAs, as viral infection depends directly
on the number of host cells (Brussaard, 2004). The predomi-
nance of bacteriophages in the lakes studied here is in line with
the only existing report of virus–bacterium relationship in Ama-
zonian aquatic ecosystems (Barros et al., 2010), which shows a
strong correlation between bacterial and VAs, constant VBR and
predominance of bacteriophages. Since the encounter between
virus and host cell is mediated by random drift in the water
column (Brussaard, 2004), it is expected that bacteriophages pre-
dominate in the oligotrophic lakes studied here. Indeed, VAs are
usually more strongly correlated to BAs than to phytoplankton in
surface waters (Cochlan et al., 1993; Fuhrman, 1999). Also, the
relative importance of bacteria over phytoplankton increases in
oligotrophic lakes (Cotner and Biddanda, 2002), which reinforces
that a strong correlation between viral and BAs is likely to occur
in clear-water Amazonian floodplain lakes. Finally, a lack of rela-
tionship between phytoplankton and bacteria is consistent with
the fact that a low proportion of phytoplankton carbon is trans-
formed into bacterial biomass in the tropics (Roland et al., 2010),
probably because most of carbon utilized by tropical aquatic bac-
teria is potentially used to maintain their high respiration rates
(Amado et al., 2013).

The VBR is highly variable in world lakes, with reported ratios
ranging from 0.4 to over 100 (Maranger and Bird, 1995; Anesio
et al., 2004; Clasen et al., 2008). In tropical systems, reported VBRs
range from 4 to 22 (Peduzzi and Schiemer, 2004; Bettarel et al.,
2006; Araújo and Godinho, 2009). Therefore, the VBRs of the lakes
surveyed here are low (2.5−9.1; average = 4.7), fitting the lower
range of values reported for tropical lakes. Nevertheless, our VBR
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FIGURE 3 | (A) Bacterial abundances (BA), (B) viral abundances (VA), (C)

virus-to-bacterium ratios (VBR), and (D) phytoplankton abundances (PA) in the
floodplain lakes of the Trombetas River basin. Bars and traces in (A,B)

represent mean and SD of the bacterial and viral counting, respectively.
Dashed and dotted horizontal lines indicate the average of the lakes and the
value of the Trombetas River, respectively.

is similar to the only existing description for clear-water floodplain
lakes (4.3−6.1; Barros et al., 2010). In the Trombetas River main
channel, we observed the highest VBR among all systems, as BA
was within the lower range and VA was within the middle range
of our dataset. A high abundance of viruses relative to bacteria

in the Trombetas River is probably because the more turbulent
riverine waters may facilitate the random encounter between viral
and bacterial host cells. Finally, both bacterial and VAs were
within the middle range of worldwide data (e.g., Maranger and
Bird, 1995; Anesio et al., 2004; Bettarel et al., 2006; Clasen et al.,
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FIGURE 4 | Simple linear regression of BA with VA in the floodplain

lakes. The Trombetas River (square) was not included in the regression and
is shown as outer data. The relationship was significant (p < 0.05).

2008), which is in agreement with previous studies in Amazo-
nian lakes (Anesio et al., 1997; Amado et al., 2006; Barros et al.,
2010).

HYDRODYNAMICS AND THE PLANKTONIC VIRAL LOOP
The viral loop is a semi-closed loop connecting bacteria, viruses,
and organic matter. It was initially idealized for marine systems
(Fuhrman, 1999), in which the main external suppliers of DOM to
the loop are grazers and primary producers. However, we propose
that, in Amazonian floodplain lakes, there is a very relevant force
that regulates the loop: hydrodynamics (Figure 5). A previous
study showed that the flood pulse influences bacteria and viruses,
with decreased abundances of both communities during floods
(Barros et al., 2010); here, we show that viral and BAs increase in
lakes less affected by the Amazon River backwater effect. Hydrody-
namics also modulates viral communities in macrotidal estuaries,
with VAs decreasing seaward because of dilution of viruses enter-
ing the estuary from the river (Auguet et al., 2005). Hence, our
study builds on previous findings, underscoring the central role
of hydrodynamics in shaping the viral loop. The action of hydro-
dynamics is not only through the regulation of the availability
of DOM and nutrients, but also directly through water dilu-
tion and mixing of the microbial compartments. The schematic
diagram that we propose underpins the role of viruses in the
biogeochemistry of Amazonian aquatic ecosystems. Planktonic
models indicate that bacterial respiration increases substantially
in the presence of viral infection (Fuhrman, 1999). Hence, on the
one hand, viral infection may contribute to CO2 production –
which is large in Amazonian surface waters (Richey et al., 2002;

FIGURE 5 | Schematic diagram representing the viral loop, included

within the microbial food web, in Amazonian lakes, emphasizing the

importance of hydrodynamics. There is a semi-closed loop connecting
bacteria, viruses, and dissolved organic matter (DOM). Primary producers and
grazers are the two external suppliers of DOM to the loop. In Amazonian
lakes, however, hydrodynamics is also a pivotal forcing influencing the loop,

as it regulates the availability and quality of DOM. Additionally, hydrodynamics
promotes water dilution and mixing that change the abundance of the
different microbial compartments of the scheme. Modified from Fuhrman
(1999). *there are two different arrows connecting “primary producers” with
“DOM and nutrients” because primary producers uptake and release
nutrients, but they only release DOM.
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Abril et al., 2014), but on the other hand, this can possibly be
counteracted by nutrient regeneration through viral lysis that ulti-
mately favors the growth of primary producers (Shelford et al.,
2012).

CONCLUSION
Although we do not have data for the high water period, existing
literature data allow us to make some inferences. Data from 10
floodplain lakes in the Trombetas River basin indicate that there is
a higher coefficient of variation for several limnological parame-
ters – including water transparency and DOC – during low waters
(Thomaz et al., 2007). This suggests that the lakes are more sim-
ilar among themselves and with Trombetas River during floods,
when they are connected. Thus, the inter-lake dissimilarity of bac-
terial and VAs that we found during low water is probably less
significant during high water due to the increased connectivity.
In summary, we found a latitudinal gradient in the characteristics
of the floodplain lakes analyzed here. We attribute this spatiality
to the backwater effect of the Amazon River on the Trombetas
River, which tends to increase the ratio of river to local water in
lower basin lakes. DOC enrichment, CO2 supersaturation, water
transparency, VAs and BAs significantly increase as distance to the
Amazon River increases.
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