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Powering microbes with electrical energy to produce valuable chemicals such as
biofuels has recently gained traction as a biosustainable strategy to reduce our
dependence on oil. Microbial electrosynthesis (MES) is one of the bioelectrochemical
approaches developed in the last decade that could have critical impact on the current
methods of chemical synthesis. MES is a process in which electroautotrophic microbes
use electrical current as electron source to reduce CO2 to multicarbon organics.
Electricity necessary for MES can be harvested from renewable resources such as
solar energy, wind turbine, or wastewater treatment processes. The net outcome is that
renewable energy is stored in the covalent bonds of organic compounds synthesized
from greenhouse gas. This review will discuss the future of MES and the challenges that
lie ahead for its development into a mature technology.

Keywords: microbial electrosynthesis, bioelectrochemical systems, electricity, CO2 reduction, electron transfer
mechanisms

Introduction

Microbial electrosynthesis (MES) happens when a microbial catalyst reduces CO2 into multicar-
bon chemical commodities with electrons derived from the cathode of a bioelectrochemical system
designed primarily to perform biological reductive reactions (rBES; Rabaey and Rozendal, 2010;
Rabaey et al., 2011; Lovley, 2012; Lovley and Nevin, 2013; Wang and Ren, 2013; Hallenbeck et al.,
2014; Rosenbaum and Franks, 2014; Figure 1). rBES-driven processes also include electrofermen-
tation, electrorespiration, and electromethanogenesis. Electrofermentation occurs when electrons
coming from a cathode are supplied to a fermentative microbial catalyst shifting the fermen-
tation balance toward the production of more reduced products (Rabaey and Rozendal, 2010;
Kracke and Krömer, 2014). In the case of electrorespiration, a terminal electron acceptor such
as fumarate is reduced by a respiratory microbial catalyst with electrons coming from a cathode
(Park et al., 1999; Rabaey and Rozendal, 2010). Electromethanogenesis has similarities with MES
since CO2 is the feedstock, but in this case CO2 will be reduced to methane by a methanogenic
microbial catalyst using electrons derived from a cathode (Cheng et al., 2009; Villano et al., 2010;
Kobayashi et al., 2013).

Besides its capacity of using CO2 directly as feedstock, the two other main qualities of MES are
its energetic efficiency and its versatility (Figure 1). The electricity efficiency to chemical commodi-
ties of MES processes is ca. 80–90% (Nevin et al., 2010, 2011; Nie et al., 2013; Zhang et al., 2013).
Many crop plants have sunlight efficiency to biomass below 3% (MacDonald, 2003), whereas com-
mon silicon solar cells are at least six times more efficient at capturing the sun energy (Green et al.,
2014). Therefore, powering MES with electricity from solar cells could be a more potent strategy
for storing the sun energy into the chemical bonds of multicarbon compounds (Nevin et al., 2010;
Lovley and Nevin, 2011).
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FIGURE 1 | Principle and flexibility of MES. (i) MES can be coupled with different renewable energy sources such as wind and solar to produce a wide range of
chemical commodities. MES can also be coupled to environment-friendly anodic processes such as (ii) sulfide oxidation and (iii) wastewaters treatment.

Microbial electrosynthesis is a versatile technology because
the necessary electricity can be generated from multiple renew-
able sources. Apart from sun energy, MES can be powered
with electricity produced by wind turbine. Renewable electricity
sources are intermittent by nature and do not harmonize well
with the market demand (Jürgensen et al., 2014). In this con-
text, MES becomes a perfect technological fit making possible
the direct storage of electricity surplus into value-added chemical
commodities (Lovley and Nevin, 2011).

Microbial electrosynthesis can also be coupled with a bio-
electrochemical system performing biological oxidation reactions
(oBES). Processes driven by oBES are defined by the trans-
fer of electrons from a microbial catalyst metabolizing a given
substrate to an electrode collecting electricity. oBESs have been
developed for a multitude of applications including wastewater
treatments, in situ bioremediation, water desalination, biosen-
sors, electrohydrogenesis, and various types of microbial fuel
cells (Cheng and Logan, 2007; Cao et al., 2009; Lovley, 2009,
2012; Logan, 2010; Logan and Rabaey, 2012). Recent studies have
shown that electrons coming from oBES-driven processes can
be used to supply MES (Figure 1). In sulfide-driven MES, the
electricity required for MES is generated by the abiotic oxida-
tion of the toxic contaminant sulfide to sulfur and the subse-
quent biological oxidation of sulfur to sulfate (Gong et al., 2013).
A similar process has also been developed to supply electrons
for the electroproduction of methane from CO2 (Jiang et al.,
2014). Moreover, MES and electromethanogenesis have been
conducted in parallel with the biorecovery of cobalt at the
cathode further illustrating the versatility of this technology
(Huang et al., 2014).

A vibrant illustration of the significant progress made
by MES in a relatively short period of time is that mul-
ticarbon compounds production rates by MES have been
increased substantially over the last 4 years. For instance, the
acetate production rate has been increased 433-fold from ca.
30 mM d−1 m−2 to ca. 1.3 mM d−1 cm−2, whereas the elec-
tron transfer rate was enhanced 521-fold from ca. 71 mA m−2

to ca. 3.7 mA cm−2 (Nevin et al., 2010; Marshall et al., 2012,
2013; Nie et al., 2013; Zhang et al., 2013; Jourdin et al., 2014;
LaBelle et al., 2014; Table 1). However, the main obstacle for
the development of MES as an economically viable technology
is still the relatively slow microbial reduction rate of CO2 to
multicarbon compounds in scalable rBES reactors. This review
will discuss the ongoing efforts to increase MES productiv-
ity, stability, long-term efficiency, and versatility by optimizing
microbial catalysts and electrochemical hardware and by char-
acterizing the electron transfer mechanisms from cathode to
microbe.

The Microbial Catalysts

Mixed Communities
Microbial electrosynthesis can be driven by two major types
of microbial catalysts: mixed communities and pure cultures.
In the case of mixed communities, the cathodic chamber of
the MES system is inoculated with samples from wastewater,
sludge, or sediment (Table 1). One of the main advantages of
employing a mixed community for MES is that it eliminates
the need to work under stringent sterile conditions required
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TABLE 1 | Microbial electrosynthesis systems in chronological order of publication.

Microbial catalyst Cathode Comments Reference

Acidithiobacillus ferrooxidans -Platinum -Fe(II)-mediated Kinsel and Umbreit (1964)

A. ferrooxidans -Platinum mesh -Fe(II)-mediated Nakasono et al. (1997)

A. ferrooxidans -Platinum mesh
-0.0 V (vs. Ag/AgCl)

-Fe(II)-mediated Matsumoto et al. (1999)

Leptospirillum ferrooxidans -Platinum mesh
- +0.1 V (vs. Ag/AgCl)

-Fe(II)-mediated Matsumoto et al. (2000)

Sporomusa ovata -Graphite stick
- –0.4 V (vs. SHE)

-Direct electron transfer
-Acetate and 2-oxobutyrate produced

Nevin et al. (2010)

A. ferrooxidans -Graphite felt
- –0.0 V (vs. SCE)

-Direct electron transfer
-Current density: 5 A m−2

Carbajosa et al. (2010)

Clostridium aceticum
Clostridium ljungdahlii
Moorella thermoacetica
Sporomusa silvacetica
Sporomusa sphaeroides

-Graphite stick
- –0.4 V (vs. SHE)

-Direct electron transfer
-Acetate, 2-oxobutyrate and formate produced

Nevin et al. (2011)

Ralstonia eutropha -Indium foil
- –1.6 V (vs. Ag/AgCl)

-Formate-mediated
-Biofuels produced

Li et al. (2012)

Mixed community -Graphite fiber brush/carbon rod/graphite
plate
- –0.439 V or –0.539 V (vs. SHE)

-Current density: 52 mA m−2 (Graphite plate)
-Power density: 83 mWm−2 (graphite plate)

Pisciotta et al. (2012)

Mixed community -Graphite granule
- –0.59 V (vs. SHE)

-Acetate, methane, and H2 produced
-Acetate production: >4 mM d−1

Marshall et al. (2012)

Nitrosomonas europaea -Nickel, glassy carbon, or copper
-Multiple potentials

-Ammonia-mediated
-Multi-reactors system

Khunjar et al. (2012)

Geobacter sulfurreducens -Stainless steel
- –0.6 V (vs. Ag/AgCl)

-Direct electron transfer
-Current density: 30 A m−2

Soussan et al. (2013)

S. ovata -Modified carbon cloth
- –0.6 V (vs. Ag/AgCl)

-Direct electron transfer
-Best cathode modification: chitosan
-Current density: 475 mA m−2

-Acetate production: 229 mM d−1 m−2

Zhang et al. (2013)

S. ovata -Graphite plate -Powered by sulfide/sulfur bioanode (0.3 V vs. SHE)
-Acetate production: 49.9 mmol d−1 m−2

Gong et al. (2013)

Mariprofundus ferrooxydans -Graphite
—0.076 V (vs. SHE)

-Direct electron transfer
-Cell-normalized electrode oxidation rate:
0.075 pmol electrons cell−1 h−1

Summers et al. (2013)

Mixed community -Carbon felt
- –1.15 V (vs. Ag/AgCl)

-Methane and acetate produced
-Acetate production: 94.73 mg d−1

Jiang et al. (2013)

Mixed community -Graphite granule
- –0.59 V (vs. SHE)

-Acetate, H2, formate, butyrate, and propionate
produced
-Acetate production: 17.25 mM d−1

Marshall et al. (2013)

S. ovata -Nickel nanowires anchored to graphite
- –0.6 V (vs. Ag/AgCl)

-Direct electron transfer
-Acetate production: 282 mM d−1 m−2

Nie et al. (2013)

Mixed community -Carbon fiber rod
- –0.4 V (vs. SHE)

-Direct electron transfer
-Acetate, ethanol, 1-butanol, propionate, butyrate,
and H2 produced
-Current density: 34 mA m−2

Zaybak et al. (2013)

Rhodopseudomonas
palustris

-Graphite rod
-+0.1 V (vs. SHE)

-Light-driven
-Current density: 1.5 µA cm−2

Bose et al. (2014)

Mixed community -Graphite felt -Cobalt reduction
-Methane and acetate produced

Huang et al. (2014)

Mixed community -Graphite plate modified with NanoWeb-RVC
- –0.85 V (vs. SHE)

-Current density: 3.7 mA cm−2

-Acetate production: 1.3 mM d−1 cm−2
Jourdin et al. (2014)

R. palustris -Carbon cloth
- –0.22 V (vs. Ag/AgCl)

-Fe(II)-mediated
-Light-driven
-Multi-reactor system
-Current density: 7.2 µA ml−1

Doud and Angenent (2014)

Mixed community -Graphite granule
- –0.6 to –0.8 V (vs. SHE)

-Acidic pH
-Acetate, H2, and formate produced
-Acetate production: 51.6 mM d−1 (–0.8 V)
-High H2 production

LaBelle et al. (2014)
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with pure culture-driven bioprocesses. Moreover, the MES sys-
tem with the highest reported acetate production rate to date
of 1.3 mM d−1 cm−2 was driven by an uncharacterized mixed
community (Jourdin et al., 2014).Mixed community-drivenMES
systems described until now mainly produce acetate because
the microbial population quickly become dominated by ace-
togenic bacteria like Acetobacterium sp. (Marshall et al., 2012,
2013; LaBelle et al., 2014) and Eubacterium sp. (Pisciotta et al.,
2012). There is also simultaneous production of methane due
to the coexistent methanogens, unless an inhibitor of methano-
genesis is added to the cathode reactor (Marshall et al., 2012,
2013; Pisciotta et al., 2012; Jiang et al., 2013; Huang et al., 2014).
Hydrogen and formate produced biologically or abiotically at
low cathode potential are other compounds frequently found
in mixed community-driven MES reactors (Marshall et al., 2012,
2013; Pisciotta et al., 2012; Zaybak et al., 2013; LaBelle et al.,
2014). Furthermore, in a study for the development of a method
to facilitate the start-up of autotrophic biocathodes in rBESs, the
mixed community microbial catalysts were reported to produce
at least six products: butanol, ethanol, hydrogen, acetate, pro-
pionate, and butyrate (Zaybak et al., 2013). This study gives a
good example of the difficulty generating a single specific prod-
uct when employing mixed communities to drive MES processes.
Other than compromising the purity of the desired product, it
also complicates the separation process and reduces the electricity
conversion efficiency to a specific multicarbon compound.

Pure Cultures
Acetogenic Bacteria
Diverse autotrophic pure cultures have been employed success-
fully in the role of microbial catalysts for MES systems. As
illustrated by several studies on mixed community-driven MES,
acetogens reducing CO2 through the Wood–Ljungdahl pathway
(Drake et al., 1997, 2008; Ragsdale and Pierce, 2008) are dom-
inating and efficient electroautotrophs. Pure cultures of Gram
negative acetogens like Sporomusa silvacetica and Sporomusa
sphaeroides and Gram positive acetogens like Clostridium ljung-
dahlii, Clostridium aceticum and the thermophile Moorella ther-
moacetica are all capable of reducing CO2 to multicarbon com-
pounds by MES (Nevin et al., 2011). Among all the tested ace-
togenic bacteria, Sporomusa ovata DSM-2662 was the most effi-
cient electroautotroph with acetate production rates as high as
282 mM d−1 m−2 and with electricity conversion efficiency to
acetate typically above 80% (Nevin et al., 2010; Gong et al., 2013;
Nie et al., 2013; Zhang et al., 2013). The production of negligible
amount of 2-oxobutyrate and formate in comparison to acetate
by S. ovatawas also reported (Nevin et al., 2010, 2011). Acetogens
like S. ovata have high electricity conversion efficiency to chem-
ical commodities compared to autotrophic bacteria with other
types of carbon fixation metabolisms because CO2 is the sole
electron acceptor during acetogenesis (Drake et al., 1997, 2008;
Ragsdale and Pierce, 2008). Thus, most of the electrons derived
from the cathode will end up in reduced multicarbon products.
Moreover, a study by Fast and Papousakis (2012) established that
the Wood–Ljungdahl pathway is the most energetically efficient
non-photosynthetic carbon fixation pathway for the electropro-
duction of acetate and ethanol (Fast and Papousakis, 2012).

Autotrophic Fe(II) Oxidizing Bacteria
Autotrophic Fe(II) oxidizing bacteria are also capable of
reducing CO2 by MES. The acidophilic aerobic Fe(II) oxi-
dizer Acidithiobacillus ferrooxidans (Kinsel and Umbreit, 1964;
Nakasono et al., 1997; Matsumoto et al., 1999) and Leptospirillum
ferrooxidans (Matsumoto et al., 2000) were able to grow in
a bioelectrochemical system by using electrons coming from
electrochemically reduced Fe(II). Moreover, A. ferrooxidans
(Carbajosa et al., 2010) and the neutrophilic aerobic Fe(II) oxi-
dizer Mariprofundus ferrooxydans (Summers et al., 2013) were
shown to draw current directly from a poised cathode in the
absence of a redox mediator to grow with CO2 as the source
of carbon. The current draw was 5 A m−2 with A. ferrooxi-
dans (Carbajosa et al., 2010) whereas the cell-normalized elec-
trode oxidation rate was 0.075 pmol electrons cell−1 h−1 with
M. ferrooxydans (Summers et al., 2013). MES systems driven by
these Fe(II) oxidizing bacteria were poised at potential closer to
0 V vs. SHE compared to all the other reported MES systems
(Table 1). Potential closer to 0 V at the cathode could translate in
lower energy requirements (Lovley and Nevin, 2013). However,
in those systems O2 is the final electron acceptor which means
that a significant amount of electrons will not be used to reduce
CO2 into multicarbon commodities but to reduce O2 and to
generate biomass.

Ammonia-Oxidizing Bacteria
Ammonia can be employed as a redox mediator in MES sys-
tem to promote the growth of ammonia-oxidizing bacteria
(Khunjar et al., 2012; Table 1). In the study by Khunjar et al.
(2012), nitrite was reduced electrochemically to ammonia in the
first reactor and then was fed to a second reactor containing the
ammonia-oxidizing bacteria Nitrosomonas europaea. Electrons
from ammonia were used by N. europaea to produce biomass
from CO2 and to generate nitrite that was then recycled in
the first electrochemical reactor. However, like the MES system
driven by autotrophic Fe(II)-oxidizer, N. europaea requires O2 as
an electron acceptor and thus this system has the same efficiency
issue.

Recombinant Microbial Catalyst
The only example to date of a MES process driven by a geneti-
cally engineered microbial catalyst was a recombinant strain of
the chemolithotrophic bacterium Ralstonia eutropha developed
for the electroproduction of biofuels (Li et al., 2012). The recom-
binant strain of R. eutropha generated 140 mg/ml of biofuels over
a period of ca. 100 h by oxidizing formate that was electrochem-
ically produced at the surface of a poised cathode. This MES
process required O2 as the final electron acceptor and a cathode
poised at very low potential of –1.6 V vs. Ag/AgCl to generate the
necessary electron shuttle formate. These two factors are expected
to significantly lower the overall efficiency of this MES system
due to the energy loss for O2 reduction and formate production.
Nevertheless, this study demonstrates that one of the advantages
of using a pure culture for MES is that it can be genetically engi-
neered to optimize the metabolism of the microbial catalyst and
to increase the range of possible products.
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Geobacter sulfurreducens
Evidence suggest that Geobacter sulfurreducens can also reduce
CO2 into a multicarbon compound by MES (Soussan et al.,
2013; Table 1). G. sulfurreducens is a well-characterized electri-
genic bacterium generating power densities in oBESs as high
as 3.9 W/m2 (Yi et al., 2009). G. sulfurreducens pre-grown with
acetate as an electron donor and carbon source was also shown
to have the capacity to accept electrons from a cathode to
reduce fumarate (Gregory et al., 2004; Dumas et al., 2008) or
uranium(VI; Gregory and Lovley, 2005) after the depletion of
acetate. In a study by Soussan et al. (2013), G. sulfurreducens
first used electrons derived from the cathode to reduce the
final electron acceptor fumarate into succinate. When all the
fumarate was depleted, G. sulfurreducens appeared to start pro-
ducing glycerol by a process combining CO2 possibly reduced
electrochemically to bicarbonate with succinate. Interestingly,
a previous report demonstrated that G. sulfurreducens cannot
grow with CO2 alone (Coppi et al., 2004). Recently, the closely
related species Geobacter metallireducens was shown to be capa-
ble to grow autotrophically with formate as the sole source of
carbon (Feist et al., 2014). G. metallireducens genome encodes
two known carbon fixation pathways, the reductive TCA cycle
and the dicarboxylate–hydroxybutyrate cycle, both of which are
not present in the genome of G. sulfurreducens. It has been
suggested that formate could be assimilated by G. sulfurre-
ducens in the presence of a small quantity of acetate via the
pyruvate formate lyase (Speers and Reguera, 2012). However, in
Soussan et al. (2013) study, the cathode is poised at a poten-
tial (–0.6 V vs. Ag/AgCl) too high for CO2 reduction to for-
mate, hence the biochemical mechanism for the assimilation
of CO2/bicarbonate and the production of glycerol remains
unclear.

Photosynthetic Fe(II)-Oxidizing Bacteria
Microbial electrosynthesis system can also be exposed to light
to provide energy for CO2 reduction by anaerobic photosyn-
thetic Fe(II)-oxidizing bacteria. Rhodopseudomonas palustris is
the microbial catalyst in two reported photobiocathode-based
MES studies. In the first study, R. palustris was accepting elec-
trons from a poised cathode in a one-reactor system to reduce

CO2 with an electron transfer rate of 1.5 µA cm−2 (Bose et al.,
2014). Electron uptake was stimulated by light exposure, but
occurred at a significantly lower rate in the dark. However, it is
not clear if R. palustris was accepting electrons directly from the
cathode or from Fe(II) reduced electrochemically. The second
study described a multi-reactor system similar to the aforemen-
tioned ammonia shuttling MES system by Khunjar et al. (2012).
The redoxmediator Fe(III) was first reduced abiotically by a cath-
ode to Fe(II) in an electrochemical reactor before being fed to a
second photobioreactor where R. palustriswas growing with CO2
as the sole carbon source, Fe(II) as the electron source, and light
(Doud and Angenent, 2014).

Electron Transfer from the Cathode to
the Microbial Catalyst

Indirect Electron Transfer
Exogenous Electron Shuttles
Understanding the electron transfer mechanisms involved in
MES could lead to major breakthroughs in the effort to increase
the electron transfer rate between the cathode and the microbial
catalyst. Electrons can either be transferred directly or indirectly
via a shuttle (Patil et al., 2012; Figure 2). H2, formate, Fe(II) and
ammonia have all been reported to function as redox media-
tor in MES systems (Lovley and Nevin, 2013). H2 has been the
most prevalent (Table 1) since it requires only that the cath-
ode in the MES reactor is poised at a lower potential than
–0.41 V (vs. SHE). Under this condition, significant quanti-
ties of H2 are generated from the electrons coming from the
cathode and the protons migrating from the anodic cham-
ber. However, employing H2 as a redox mediator for MES
is not optimal because its low solubility might cause energy
losses.

Shuttles Excreted/Released by Bacteria
Another possible indirect electron transfer mechanism is that
microbial catalysts could be producing and excreting their
own soluble redox mediators to carry electrons from the cath-
ode. Redox mediators either excreted by the bacteria such as

FIGURE 2 | Possible extracellular electron transfer mechanisms from the cathode to the microbial catalyst. Indirect electron transfer via (i) an exogenous
shuttle or (ii) a shuttle released/excreted by the microbial catalyst. (iii) Direct electron transfer via bacterial outer surface components such as c-type cytochromes or
pili. SO is oxidized electron shuttle and SR is reduced electron shuttle.
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phenazine and riboflavin or released after cell death such as vita-
min B12 or DNA have all been suggested as possible components
involved in extracellular electron transfer (Rosenbaum et al.,
2011).

Direct Electron Transfer
Direct electron transfer requires physical contacts between extra-
cellular components of the microbial catalyst involved in the
transport of electrons and the cathode. Direct electron trans-
fer from the cathode to the microbial catalyst in the absence of
a redox mediator has been shown to occur in MES processes
driven by the following electroautotrophic species: A. ferroox-
idans (Carbajosa et al., 2010; Rodrigues and Rosenbaum, 2014),
M. ferrooxydans (Summers et al., 2013) and a group of acetogenic
bacteria (Nevin et al., 2010, 2011; Nie et al., 2013; Zhang et al.,
2013). This conclusion is mainly based on the fact that all these
MES systems were operated with cathodes poised at potentials
too high to produce significant quantity of H2. Moreover, driv-
ing MES systems with cathodes poised at lower potentials than
the formal potential of the 2H+/H2 couple does not exclude the
possibility of direct electron transfer. A study by Marshall et al.
(2012) reported evidence that direct electron transfer was occur-
ring at the same time as hydrogen-mediated electron transfer.
This suggests that microbial catalysts are capable of acquiring
electrons from a cathode through many paths simultaneously.

Electromethanogenic Bacteria
Recently, it was demonstrated that a mutant strain of
Methanococcus maripaludis lacking all its catabolic hydro-
genases was still capable of performing electromethanogenesis
(Lohner et al., 2014) thus providing supplementary significant
evidence that electrotrophic bacteria can accept electrons directly
from the cathode independently of the redox mediator H2.

The Model Metal-Reducing Bacteria
Two of the most detailed studies about electron transfer mech-
anisms from the cathode to the microbe have been done
with the two model metal-reducing bacteria G. sulfurreducens
(Strycharz et al., 2011) and Shewanella oneidensis (Ross et al.,
2011). In G. sulfurreducens, the monoheme c-type cytochrome
GSU3274 predicted to be localized in the periplasm was found
to be specifically required for electron transfer from the cathode
demonstrating the importance of c-type cytochromes for electron
uptake. Like G. sulfurreducens, S. oneidensis can do electrorespi-
ration accepting electrons from the cathode to reduce fumarate
into succinate (Ross et al., 2011). Based on functional genetic
studies, Ross et al. (2011) proposed a model where the respira-
tory pathway normally responsible for transferring electron from
the cytoplasmic metabolism to extracellular electron acceptors
(Shi et al., 2012) works in reverse. Therefore, the decaheme outer
membrane c-type cytochrome MtrC, the decaheme periplasmic
c-type cytochrome MtrA, the porin MtrB responsible for con-
necting MtrC to MtrA, the tetraheme cytoplasmic membrane-
associated c-type cytochrome CymA and the menaquinone pool
are all critical components of the electron uptake pathway of S.
oneidensis.

Electroautotrophic Bacteria
Direct electron transfer pathways are poorly characterized in
electroautotrophic bacteria. For A. ferrooxidans, experimental
evidence indicated that a Fe species excreted by the cells in
the cathode biofilm could be responsible for electron uptake
(Carbajosa et al., 2010). It has been speculated that c-type
cytochromes which are critical components for the uptake of
electrons from extracellular Fe(II) could also be involved in
the transport of electron from the cathode (Rosenbaum et al.,
2011; Sydow et al., 2014). In support of this hypothesis, metage-
nomics and metaproteomics of the mixed community pop-
ulating a self-regenerating biocathode suggest that a mem-
ber of the Chromatiaceae family reduced CO2 with electrons
acquired directly from the cathode via c-type cytochromes and
other proteins associated with Fe(II) oxidation (Wang et al.,
2015).

Much less information is known about how electrons are
acquired by acetogens from the cathode. Recently, a genetic sys-
tem developed for the Gram positive bacterium C. ljungdahlii
(Leang et al., 2013; Banerjee et al., 2014; Ueki et al., 2014) led to
the confirmation of the identity of the proton pump responsible
for the generation of a proton motive force essential for growth
with CO2 as the sole source of carbon (Tremblay et al., 2013).
This study provided insights on the energy conservation mech-
anism involved in the electroautotrophic growth of acetogens.
The electron uptake mechanism of C. ljungdahlii is expected
to be significantly different compared to other electrotrophic
bacteria because it cannot synthesize c-type cytochromes or
quinones (Köpke et al., 2010). The availability of a genetic tool-
box should accelerate the characterization of the specificities of
C. ljungdahlii’s electron transfer pathway and could provide gen-
eral information about electron uptake by other Gram positive
bacteria.

The genome sequence of the Gram negative and acetogenic
species S. ovata has recently been made available (Poehlein et al.,
2013). Genes coding for c-type cytochromes and type IV pili,
two components of bacterial extracellular electron transfer mech-
anisms, are present in the genome. As mentioned before, c-
type cytochromes are critical components of extracellular elec-
tron transfer pathways in both electrigenic and electrotrophic
bacteria. In Geobacter spp., type IV pili are filaments with
metallic-like conductivity facilitating long-range electron trans-
fer (Lovley, 2011, 2012;Malvankar and Lovley, 2012; Vargas et al.,
2013; Malvankar et al., 2014) involved in the reduction of insol-
uble electron acceptors (Reguera et al., 2005; Tremblay et al.,
2012). Ubiquinone (Möller et al., 1984), another critical compo-
nent of electron transport pathway, was also detected in S. ovata
and genes coding for enzymes involved in its biosynthesis were
found in the genome (Poehlein et al., 2013). S. ovata possesses
several well-characterized components of microbial extracellular
transfer pathways which indicates that electron uptake by S. ovata
could have similarities with other electrigenic or electrotrophic
bacteria. Recently, an acetogenic bacteria closely related to S.
sphaeroides was shown to do acetogenesis with metallic iron
(F(0)) as the sole electron donor suggesting that direct electron
transfer could be a useful strategy for Gram negative acetogens in
multiple environments (Kato et al., 2015).
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The Electrochemical Hardware

Cathode Materials Tested for Current Draw
A lot of effort has been put into optimizing rBESs/MES by select-
ing or developing more efficient and less expensive components
for bioelectrochemical reactors (Krieg et al., 2014). Until now,
most of the studies published on this topic are presenting the
impact of different types of biocompatible cathodes on the
performance of rBESs/MES. Cathodes described in the litera-
tures relied mainly on carbonaceous materials (Table 1). Indium
foil (Li et al., 2012) and platinum (Kinsel and Umbreit, 1964;
Nakasono et al., 1997; Matsumoto et al., 1999) have also been
tried in rBESs but the most efficient cathode material to date
for electron transfer is stainless steel with current draw as high
as 30 A m−2 with G. sulfurreducens as the microbial catalyst
(Soussan et al., 2013).

Conductive materials that will self-assemble in the cathodic
biofilm are another approach to enhance electron transfer
in rBESs. A S. oneidensis biofilm assembled with embodied
graphene oxide could uptake electrons 74 times more efficiently
(Yong et al., 2014). Oligoelectrolytes can also facilitate electron
transfer from the cathode by inserting itself in the lipid mem-
brane of bacteria to enable transmembrane charge transfer as
demonstrated by Thomas et al. (2013).

Cathode Materials Tested for Chemical
Production
Cathodes employed for MES are generally made of carbonaceous
materials like graphite. These basic cathodes can be treated or
coated with other materials resulting in modifications of their
surface.

Untreated Surface
When chemical commodities production rate is not normalized
to total surface area of cathode, one of the best materials is gran-
ular graphite with acetate production from a mixed community
catalyst reaching 51.6 mM per day or 3.0 gL−1 d−1 (LaBelle et al.,
2014). As a packed structure, the main advantage of granular
graphite over other carbonaceous cathodes is the high specific
area for bacterial adhesion (Wei et al., 2011).

Treated Surface
Modifications of carbonaceous cathodes have resulted in critical
improvements inMES systems driven either by mixed communi-
ties or by pure cultures. Recently, Jourdin et al. (2014) coated car-
bon nanotubes on reticulated vitreous carbon (NanoWeb-RVC)
to enhance bacterial attachment in a mixed community-driven
MES system resulting in the highest normalized current density
and the highest normalized acetate production rate reported for
any MES systems until now (Table 1). The authors suggested that
this performance improvement was due to the high surface to vol-
ume ratio of NanoWeb-RVC responsible for enhanced bacterial
adhesion and effective mass transfer within the electrode-biofílm
superstructure (Jourdin et al., 2014). The higher reported acetate
production rate and current density compared to other MES sys-
tems relying on direct electron transfer (Nevin et al., 2010, 2011;
Nie et al., 2013; Zhang et al., 2013) can also be attributed in part

to the low potential of the cathode (–0.85 V vs. SHE) promot-
ing indirect electron transfer that could be advantageous for the
unknown bacterial species populating the reactor. Maintaining
the cathode at this potential is possibly responsible for the slightly
lower electricity to acetate efficiency of 70% observed with this
MES reactor. Although this system is promising, the volumetric
acetate production rate of ca. 0.025 gL−1 d−1 is 120-fold lower
than that of the MES system also driven by a mixed commu-
nity developed by LaBelle et al. (2014). Scaling up test for the
NanoWeb-RVC biocathode of Jourdin et al. (2014) will indicate
its real potential for industrial applications.

A number of modified carbonaceous cathodes have been pro-
posed for MES systems driven by the pure culture catalyst S.
ovata with significant success. Functionalization of carbon cloth
cathodes with chitosan or other compounds conferring a positive
charge to the electrode surface with the aim of increasing interac-
tions with negatively charged bacteria like S. ovata (Zhang et al.,
2013), resulted in higher cell density at the cathode surface (up
to 9-fold increase), in better electron transfer (up to 6.7-fold
increase as 475 mA m−2) and in higher normalized acetate pro-
duction rates (up to 7.6-fold increase as 229 mM d−1 m−2).
In a second approach, carbon cloth cathodes were treated with
metal, such as gold, palladium, or nickel nanoparticles to har-
ness their exceptional catalytic activities for MES processes.
Significant increases in normalized acetate production rate by
MES were recorded with all three metals in the range of 100–
200 mM d−1 m−2 (Zhang et al., 2013). Modifying polyester-
or cotton-based textile composite cathodes with carbon nan-
otubes to create a three-dimensional matrix with more surface
area available for bacteria also resulted in significant increase in
the productivity of MES of ca. 100 mM d−1 m−2 (Zhang et al.,
2013). In a later study by the same group, using nickel nanowires
anchored to graphite electrode resulted in the highest normal-
ized acetate production rate recorded for a pure culture-driven
MES system due to enhanced surface area and the generation of
a porous structure (Nie et al., 2013; Table 1).

Concluding Remarks

Microbial electrosynthesis is a young technology that made
significant progress in terms of productivity over the last
5 years. Large efforts have been done to optimize known micro-
bial catalysts for MES and to screen new ones with strong
electroautotrophic properties (Rodrigues and Rosenbaum, 2014).
Meanwhile, cathodes fabricated with novel materials or designed
with better spatial arrangement are being explored and devel-
oped. Optimization of other parts of the electrochemical hard-
ware such as the ion-exchange membrane and the current-
collecting structure for MES processes are also ongoing
(Varcoe et al., 2014). For example, it has been suggested that
anion-exchange membranes can be exploited in the in situ selec-
tive extraction of acetate produced by MES at a lower ener-
getic cost (Andersen et al., 2014). Furthermore, understanding
in detail how electrons are transferred from the cathode to
the microbial catalyst will help devise better-designed strategies
to improve all aspects of MES. If this rate of improvement is
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maintained in the future, MES could fulfill its promise as an
energetically efficient, environment-friendly, and versatile bio-
production strategy.
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