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on arctic aquatic bacteria:
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and Atmospheric Science, Oregon State University, Corvallis, OR, USA

Storm events can pulse nutrients and carbon from soils and provide an important
subsidy to food webs in oligotrophic streams and lakes. Bacterial nutrient limitation
and the potential response of stream aquatic bacteria to storm events was investigated
in arctic tundra environments by manipulating both water temperature and inorganic
nutrient concentrations in short (up to 4 days) and long duration (up to 2 weeks)
laboratory mesocosm experiments. Inorganic N and P additions increased bacterial
production (14C-labeled leucine uptake) up to seven times over controls, and warmer
incubation temperatures increased the speed of this response to added nutrients.
Bacterial cell numbers also increased in response to temperature and nutrient additions
with cell-specific carbon uptake initially increasing and then declining after 2 days.
Bacterial community composition (BCC; determined by means of 16S denaturing
gradient gel electrophoresis fingerprinting) shifted rapidly in response to changes in
incubation temperature and the addition of nutrients, within 2 days in some cases.
While the bacteria in these habitats responded to nutrient additions with rapid changes
in productivity and community composition, water temperature controlled the speed
of the metabolic response and affected the resultant change in bacterial community
structure, constraining the potential responses to pulsed nutrient subsidies associated
with storm events. In all cases, at higher nutrient levels and temperatures the effect of
initial BCC on bacterial activity was muted, suggesting a consistent, robust interaction
of temperature, and nutrients controlling activity in these aquatic systems.

Keywords: aquatic, arctic, bacterial production, diversity, experiment, nutrients, 16S rRNA, temperature

Introduction

Nutrient limitation of bacteria occurs in a wide variety of aquatic habitats including wetlands,
rivers, lakes, and marine habitats (Morris and Lewis, 1992; Mohamed et al., 1998; Waiser, 2001;
Castillo et al., 2003; Kuosa and Kaartokallio, 2003; Granéli et al., 2004). Bacterial growth in
freshwater habitats of arctic Alaska is likely to be nutrient limited because of low nutrient sup-
ply, but bacteria in these environments must also contend with low temperatures that may
limit bacterial growth (White et al., 1991; Panzenbock et al., 2000) and interact with nutrient
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limitation. For example, the bacterial response to nutrients has
been linked to seasonal variations in temperature, and the degree
of nutrient limitation can vary with season and water tempera-
ture (Hall et al., 2009; Hoikkala et al., 2009). Additionally, direct
testing of temperature and nutrient effects often indicates co-
limitation by these factors (Wiebe et al., 1992; Pomeroy and
Wiebe, 2001; Vrede, 2005; Mindl et al., 2007; Säwström et al.,
2007).

In the Arctic, pulses of nutrients flushed from soils during
storm events act as important subsidies to oligotrophic lakes and
streams (Stieglitz et al., 2003). Because bacteria are limited in their
ability to retain nutrients (Vadstein, 2000), pulsed nutrient supply
can suspend bacterial nutrient limitation at least for the dura-
tion of the pulse. Rapid changes in temperature, nutrients, and
the quality and quantity of organic matter associated with storm
pulses may limit the ability of bacterial communities to shift to
an optimal activity for a given resource supply when environ-
mental variability is on the same time scale as their growth rate.
Therefore, examining the effects of these pulses on bacteria on
the time scale of storm events may provide a mechanistic under-
standing of the interaction of temperature and nutrient limitation
in any aquatic habitat that experiences pulsed nutrient supply
(e.g., storm events). In addition, separating the individual influ-
ences of temperature and nutrients from their interactive effect is
required to fully examine the impacts of these drivers on bacterial
activity and composition in natural habitats.

Bacterial communities contain populations with different
metabolic capabilities and thus different potential responses to
changing temperature and nutrients. Shifts in community com-
position occur as populations change in dominance in response
to different optimal conditions or differential mortality. For
example, several investigators have found correlations between
bacterial community composition (BCC) and resource sup-
ply in natural habitats (Pearce, 2005; Yannarell and Triplett,
2005; Xing and Kong, 2007). Previously rare populations can
increase in abundance in response to a new substrate (Szabo
et al., 2007; Nelson and Carlson, 2011; Crump et al., 2012)
and the now altered community may be able to access differ-
ent substrates and may have different nutrient requirements,
affecting both community structure and function. What has
not yet been determined is the interaction of temperature and
nutrients with bacterial community structure in natural habi-
tats. Individually, warmer temperatures and increased nutri-
ent concentrations can increase bacterial productivity (White
et al., 1991; Ram and Sime-Ngando, 2008) and, potentially,
select for communities that can reproduce fastest under those
conditions. However, in highly variable environments, bacte-
rial communities may be constrained to a short-term phys-
iological response, particularly if temperature and nutrients
select for different bacterial populations, resulting in a rela-
tively static community because populations lack the time to
respond.

An initial observational study of bacterial production (BP)
during storm events indicated covariance of several potential
drivers of activity such as temperature and nutrients. Thus, in this
study, we conducted experiments with natural bacterial commu-
nities to isolate the influence of temperature and nutrient supply

on bacterial activity, growth rate, and community structure. We
hypothesized that productivity of bacterial communities in ultra-
oligotrophic arctic streams and lakes would be elevated mainly
by temperature or nutrients based on the natural environmen-
tal characteristics (e.g., DOM, temperature, and nutrients) the
communities usually experience. We anticipated that communi-
ties from sites with high quality algal organic matter and more
constant temperature, such as lake outlets, would be less nutrient
limited and more strongly affected by temperature. Conversely,
communities at sites with low quality terrestrial organic mat-
ter and more variable temperatures, such as headwater streams,
would respond more strongly to nutrients than temperature. In
all cases we found that nutrient treatments approximating max-
imum natural concentrations had a larger impact on BP than
did elevated temperature, although warmer incubation temper-
atures increased the speed of this response to added nutrients;
this suggests a robust interaction of temperature and nutrients
controlling bacterial activity in these aquatic systems.

Materials and Methods

Study Site
Sites are located on the north slope of the Brooks Range, Alaska,
at the Toolik Field Station (68◦38′N, 149◦36′W). Samples were
collected from the inlet and outlet of lakes I-8 and Toolik. Toolik
Lake is a multi-basin lake, draining a catchment of 66.9 km2,
and has a single outlet. Two kilometers upstream of the main
Toolik inlet stream is an 18-ha lake, Lake I-8, which has a large
headwater stream inlet, I-8 inlet, and a single outlet, I-8 outlet
(Figure 1).

For summers 2003–2007, average water temperatures were 9.4
and 12.3◦C for Lake I-8 inlet and outlet, respectively, and 11.3
and 13.8◦C for Toolik inlet and outlet, respectively (Adams et al.,
2010). All of the lakes in the Toolik Lake catchment are olig-
otrophic, with mean primary productivity of ∼3.2 µmol C/L/day
and mean chlorophyll a (chl a) concentrations of ∼1.0 µg/L
(Kling et al., 2000). I-8 outlet had consistently greater summer
concentrations of chl a than the I-8 inlet (average of 1.0µg/L ver-
sus 0.31 µg/L, respectively; Supplementary Table S1). Similarly,
Toolik Lake, and thus Toolik outlet, had a greater chl a concen-
tration than Toolik inlet (average of 1.36 µg/L versus 0.55 µg/L;
Kling et al., 2000). All sites had low average concentrations
of NH4 (<0.8 µM) and PO4 (<0.08 µM); however, storm-
related pulses of higher concentration and loading did occur
(Supplementary Table S1). Both I-8 inlet and Toolik inlet had
higher mean concentrations of NO3 than I-8 outlet and Toolik
outlet (Supplementary Table S1). There are frequently 2–3 storm
events during the summer season, which begins after snow-melt
runoff in May.

Field Measurements
In order to detect patterns of bacterial response to natural varia-
tions in temperature and nutrient concentrations, temperature,
dissolved organic carbon (DOC), inorganic nutrients, and BP
were measured weekly in Lake I-8 inlet, I-8 outlet, and Toolik
inlet from approximately June 15 to August 20, 2003–2007, and
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FIGURE 1 | Sampling locations at Lake I-8 and Toolik Lake, Alaska.
Hatched areas are gravel pads, dashed lines are roads, black lines are
streams, and the gray line is the northern edge of the watershed of Toolik
Lake.

was measured five times in Toolik outlet in summer 2004. Chl
a was sampled 3–21 times at each site (2003–2007) and DOM
measurements of Ultraviolet (UV) absorbance, protein, and phe-
nolics were measured at all sites starting in 2004 (through 2007).
Temperature at I-8 inlet (2005–2006) and I-8 outlet (2004–2006)
was measured continuously during summer with Onset HOBO
temperature loggers (Bourne, MA, USA). Stream discharge and
temperature were monitored in Toolik inlet using a Stevens
PGIII Pulse Generator (Portland, OR, USA) and a Campbell
Scientific Model 247 conductivity and temperature probe (Logan,
UT, USA) connected to a Campbell Scientific CR510 datalog-
ger. Temperature at all sites, including Toolik outlet, was also
measured during sample collection with a digital thermometer
(Fisherbrand Traceable; Thermo Fisher Scientific, Waltham,MA,
USA).

Dissolved organic carbon concentration was measured in
water collected in the field and immediately filtered through GF/F
filters (Whatman, GE Healthcare Life Sciences, Pittsburgh, PA,
USA) and acidified to pH∼3.5 and kept cold and dark until anal-
ysis on a Shimadzu TOC-5000 instrument (Columbia, SC, USA)
using high-temperature, platinum-catalyzed combustion to CO2
and infrared detection. UV absorbance of DOMwasmeasured on
unfiltered samples using a quartz cell with a 5 cm path length on
a Shimadzu 1601-UV scanning spectrophotometer in the wave-
length range of 220 to 400 nm, total proteins were measured
using a modified Bradford Reagent method (Bradford, 1976), and
total phenolics were measured using the Folin Ciocalteu assay

(Waterman and Mole, 1994) and comparing samples to humic
acid standards. Chl a concentration was determined on GF/F
filters and corrected for phaeophytin following Kling et al. (2000).

Inorganic nutrient concentrations were measured in water
samples filtered through ashed (450◦C, 4 h) GF/F filters
(Whatman) upon collection and stored in the dark at 4◦C (NH4
and PO4) or frozen (NO3) until analysis. Ammonium concen-
trations were determined within 48 h using a fluorometric OPA
method modified from Holmes et al. (1999), and phosphate con-
centrations were determined within 48 h spectrophotometrically
using the molybdenum ascorbic acid assay (Murphy and Riley,
1962). Frozen nitrate samples were analyzed on an Alpkem Flow
system 3000 Autoanalyzer (Alpkem, Saskatoon, SK, Canada,
now OI Analytical, College Station, TX, USA) using flow injec-
tion with a cadmium reduction coil method modified from
Armstrong et al. (1967).

Bacterial production was measured using 14C labeled-leucine
uptake following Kirchman (1994) assuming an isotopic dilu-
tion of 1 resulting in a conversion factor of 1.55 kg C (mol
leu)−1. Each measure was calculated from the incubation with
14C leucine of three unfiltered 10 mL subsamples, and one 10 mL
control killed with trichloroacetic acid (TCA), for ∼3 h before
ending with 5% TCA (final concentration). Samples were filtered
onto 0.2 µm nitro-cellulose filters, extracted using ice-cold 5%
TCA, placed in scintillation vials, dissolved using ethylene gly-
col monoethyl ether, flooded with Scintisafe scintillation cocktail
and counted on a liquid scintillation counter (Packard Tri-Carb
2100TR; Perkin Elmer, Waltham, MA, USA).

Mesocosm Experiments
Experiments were conducted to test the response of BP and
community composition to enhanced nutrient concentrations
typical of storm events under different temperature conditions.
All experiments used temperature treatments that matched sum-
mer mean (12◦C) and high (17◦C) water temperatures. One
experiment tested the response of bacteria to low-level nutrient
additions over a 4-day period using nutrient concentrations sim-
ilar to average natural concentrations measured in Toolik inlet
during storm events. A second experiment tested the response
of bacteria to higher levels of nutrients for up to 2 weeks using
nutrient concentrations similar to the maximum natural concen-
trations measured in Toolik inlet (Supplementary Tables S2 and
S3). This high-level nutrient experiment was repeated six more
times. In four of these experiments the source of bacterial com-
munities and incubation water was varied. In two experiments
the source of bacterial communities was varied.

Each experiment was a factorial design of manipulated tem-
perature (12 and 17◦C) and nutrients with an inoculum of natural
bacterial communities (Supplementary Tables S2 and S3). For all
experiments, triplicate incubations of each of the four treatments
(12 incubations per experiment) were initiated within 4 h of water
collection, and all contained by volume 10% of 1.0 µm filtered
water (bacterial inoculum) and 90% of 0.2 µm filtered water col-
lected concurrently. All mesocosms were incubated in the dark
(to exclude photosynthesis) in incubators or water baths set to
treatment temperature ±1◦C. Starting volumes for each experi-
ment varied from 1 to 3 L (Supplementary Table S3) due to the
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logistical constraints of transporting large volumes of water to
the field station. Experiments were conducted in plastic contain-
ers that were acid-washed and rinsed with 0.2 µm filtered sample
water. Most experiments were conducted in 4 L LDPE cubitainers
(Thermo Fisher Scientific) except Experiments 4a,b, which were
conducted in 1 L HDPE bottles (Nalgene, Rochester, NY, USA).

Experiment 1
The experiment conducted with low-level nutrient addition used
water and bacteria from Toolik inlet collected on June 22, 2007.
This experiment, which was conducted last in our sequence of
experiments, was used to determine if there was a threshold
of response to added nutrients, and to track the responses of
bacterial activity and BCC to temperature and nutrient treat-
ments. Bacterial communities in Toolik inlet represent mixed
communities of bacteria from headwater streams and lakes in
the Toolik watershed, including nearby Lake I-8 (Crump et al.,
2012). Inorganic nutrients were added to nutrient treatments to
achieve the average concentration typically observed in Toolik
inlet during a storm event (1.5 µM NH4NO3 and 0.25 µM
KH2PO4; Figure 2; Supplementary Table S1). BP was measured
in all replicates and treatments at approximately 0, 2, 4, 6, 8,
10, 14, 21, 26, 32, 39, and 49 h, and BP was also measured
in the 12◦C treatments at 60, 72, 83, and 98 h. Samples for
DNA and cell counts were collected at 26 and 49 h and the
12◦C treatments were also sampled at 72 and 98 h. Sampling
of the 17◦C treatments was discontinued after BP stopped
increasing.

Experiment 2
One experiment with high-level nutrient addition used water and
bacteria from Lake I-8 inlet starting on June 27, 2006. This experi-
ment was conducted to track the response of bacterial activity and
community composition at different temperatures to the maxi-
mum nutrient concentrations typically observed in Toolik inlet
during storm events. Inorganic nutrients were added to nutri-
ent treatments to achieve these concentrations (6.4 µMNH4NO3
and 0.45 µM KH2PO4). BP was measured at 2, 4, 6, 9, 11, and
14 days, and samples for DNA and cell abundance were collected
at 2, 4, 9, and 14 days.

Experiments 3a–d
Four high-level nutrient experiments were conducted varying the
source of bacterial communities and incubation water starting
on July 12, 2005 to examine community-specific responses (that
is, the effect of different initial community compositions). These
experiments were performed with bacteria and water from Lake
I-8 inlet and Lake I-8 outlet in factorial combination. Bacterial
communities from Lake I-8 inlet are headwater stream com-
munities with no contribution of bacteria from lakes, whereas
communities from Lake I-8 outlet are lake communities (Crump
et al., 2007). BP was measured at 2, 4, 6, 9, 12, and 14 days, and
samples for DNA and cell abundance were collected at 14 days.

Experiments 4a,b
Two high-level nutrient experiments were conducted varying the
source of bacterial communities starting on July 18, 2006 to con-
firm the changes in BCC identified in Experiments 3a–d. One

FIGURE 2 | Toolik inlet stream during summer 2004 from June 8 to
August 27. (A) Temperature (thin line) and stream discharge (thick line);
(B) DOC (�); (C) NH4 (•), PO4 (�), and NO3 (�); (D) BP at Toolik inlet (�) and
outlet (•).

experiment was performed with bacteria and water from Lake I-8
inlet, and the other with bacteria and water from Lake I-8 outlet.
Samples for DNA and cell counts were collected at 6 and 11 days.
BP was not measured.

Bacterial Abundance and Community
Composition Analyses
Samples for cell counts were preserved with 2.5% of glu-
taraldehyde (final concentration) and stored at 4◦C until anal-
ysis. Samples from 2005 were counted on a FACSCalibur (BD
Biosciences, San Jose, CA, USA) flow cytometer following del
Giorgio et al. (1996). Sub-samples were stained with SYBR green
(Life Technologies, Grand Island, NY, USA) in the dark for a
minimum of 15 min (Marie et al., 1997; Lebaron et al., 1998).
The concentration of beads in the standard 1 µm bead solution
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and concentration of cells in multiple confirmatory samples were
measured by epifluorescence microscopy. Samples from 2006 and
2007 were counted on a LSR II flow cytometer (BD Biosciences)
as described by Ewart et al. (2008) with data acquired in log mode
for at least 60 s and until 20,000 events were recorded, with the
minimum green fluorescence (channel 200) set as the threshold.

DNA samples were collected from laboratory mesocosms by
filtering ∼500 mL of sample through a Sterivex-GP 0.2 µm
filter (EMD Millipore, Billerica, MA, USA). Filters were pre-
served using a DNA extraction buffer as described by Crump
et al. (2003) and stored at −80◦C until extraction. DNA was
extracted using phenol–chloroform (Crump et al., 2003, 2007)
and PCR amplified using 357f with a G-C clamp and 519r
universal 16S rDNA bacterial primers on a Bio-Rad thermo-
cycler (Hercules, CA, USA) following (Crump et al., 2003,
2007). DNA was then separated using denaturing gradient
gel electrophoresis (DGGE) with an 8% acrylamide gel cast
with either a 40 to 60% or 35 to 55% gradient of urea and
formamide (Crump et al., 2003, 2007). Gels were run on a
CBS scientific DGGE system (Del Mar, CA, USA) for 18 to
24 h at 75 volts and 65◦C. A DGGE ladder, previously con-
structed from PCR-amplified clones of 16S rRNA genes from
Toolik Lake (Crump et al., 2003) was run every six lanes in
order to accurately assess the vertical position of bands across
each gel.

Imaging of DGGE banding patterns was performed with
Quantity One software (Bio-Rad) on a Chemi-Doc gel docu-
mentation system (Bio-Rad), gel bands were identified using
GelCompar II software (Bionumerics, Applied Maths, Austin,
TX, USA) to create a presence–absence matrix as described by
Crump and Hobbie (2005). DGGE is capable of detecting bac-
terioplankton populations that make up at least 0.1 to 0.4% of
bacterioplankton in a sample, depending on copy number of
rRNA operons per cell and PCR primer specificity (Muyzer et al.,
1993; Kan et al., 2006). Each band represents an operational tax-
onomic unit (OTU) of bacteria, although occasionally multiple
sequences may be present within a band (Crump et al., 2003,
2004) or bacteria may differ in a more variable region of the
16S gene; therefore, changes detected here are considered to be
a conservative index of shifts of community composition.

Statistical Analyses
Pairwise similarity values of the DGGE bands were calcu-
lated using the Dice equation in order to condense presence–
absence data into percent community similarities between
samples. PROXCAL was used to create non-metric multi-
dimensional scaling (NMDS) graphs of sample similarities. Two-
way, between-subjects ANOVAwere performed in which percent
similarity between samples was designated as the dependent vari-
able with categorical dummy variables indicating the same or
different treatment types of incubation temperature or nutri-
ent addition as predictors. Both normal distribution of data
and homogeneity of variance were verified using a Shapiro–
Wilk test with data log-transformed where necessary. On the
two datasets that did not meet ANOVA assumptions following
data transformations (temperature and nutrients on day 1), the
non-parametric Kruskal–Wallace test was performed to verify the

significance of ANOVA results (Table 1). All statistical analyses
were performed with SPSS (version 17, IBM, Armonk, NY, USA).

Results

Field Measurements: Storm Events,
Nutrients, and Bacterial Production
During the summer of 2004, there were three large storm events
characterized by rain and subsequent increases in stream dis-
charge (>4 m3/s at Toolik inlet; Figure 2A). The events occurred
on 9–15 July, 18–24 July, and 30 July – 7 August (two combined
events). Ammonium concentrations at Toolik inlet spiked either
at the initiation of or immediately after each of the three storm
events, while phosphate concentrations increased only imme-
diately after the first event; nitrate concentrations were diluted
during these events (Figure 2C). At Toolik inlet, peaks in BP
corresponded with the occurrence of the three storm events
(Figure 2D). There was also a small increase of BP at the outlet of
the lake after the first storm event.

Mesocosm Experiments – Bacterial Activity
BP was elevated by increased temperature and nutrients in all
mesocosm experiments, but the timing and magnitude of these
treatment responses varied with the concentration of nutrients
and, when tested, the initial composition of the bacterial com-
munity. When a relatively low level of nutrients was added to
water from Toolik inlet (Experiment 1), the bacteria grew more
rapidly in the high temperature (17◦C) incubations than the

TABLE 1 | Experiment 1.

Dependent variable: community similarity

Significance (p-value)

df 1 day 2 days 3 days 4 days

Corrected model 3 0.051 0.000 0.001 0.020

Intercept 1 0.000 0.000 0.000 0.000

Temperature 1 0.437∗ 0.002

Nutrients 1 0.747∗ 0.001 0.001 0.020

Temperature ∗ nutrients 1 0.006 0.163

Degrees of freedom

Error 62 62 13 13

Total 66 66 15 15

Corrected total 65 65 14 14

R Squared = 0.12 (Adjusted R Squared = 0.08) 1 day
R Squared = 0.25 (Adjusted R Squared = 0.21) 2 days
R Squared = 0.59 (Adjusted R Squared = 0.56) 3 days
R Squared = 0.35 (Adjusted R Squared = 0.30) 4 days
Results of the tests of significance (ANOVA) for the impact of incubation temper-
ature and low-level nutrient addition on the % similarity of bacterial community
composition (BCC) between samples in Experiment 1 at Toolik inlet. The p-value
for the main effects (temperature and nutrients) and the interaction term is given
for each day of the experiment; days 3 and 4 are for low-temperature treatments
only. A Kruskal–Wallace test for day 1 data (∗ in Table) confirmed non-significance
with p = 0.907 for temperature and p = 0.969 for nutrients. The overall model
R-squared is given for each day of the experiment.
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low temperature (12◦C) incubations regardless of nutrient treat-
ment. For example, the 17◦C treatments had ∼10-fold higher BP
(Figure 3A) and cell-specific carbon uptake (Figure 3C) after
1 day in both nutrient treatment and control incubations. At
17◦C, nutrient treatment increased BP by 1.8 times over the con-
trol by day 2, but at 12◦C this treatment effect was much greater,
increasing BP by 6.1 times over the control by day 3. Similarly,
at 12◦C, the cell-specific carbon uptake continued to increase
with the nutrient addition when allowed to respond longer than
2 days compared to the 17◦C incubation response at days 1 and 2.
Peak BP was similar at both temperatures in the fertilized treat-
ments, but was elevated at 17◦C in the unfertilized treatment. The

FIGURE 3 | Experiment 1. Bacterial production (A), cell abundance (B), and
cell-specific carbon uptake (C) in water from Toolik inlet incubated for 4 days
at 12 and 17◦C with and without low-level nutrient amendments. Error bars
are SE of the mean of experimental replicates (n = 3). Samples are designated
by incubation temperature (� = 12◦C and � = 17◦C) with open symbols for
no nutrients added and closed symbols for nutrients added.

number of bacterial cells increased roughly exponentially in all
treatments after an initial decrease (Figure 3B).

When a higher level of nutrients was added to water from
Lake I-8 inlet (Experiment 2), the treatments with added nutri-
ents grew more rapidly than unfertilized controls regardless of
temperature (Figure 4), showing elevated BP and cell-specific
carbon uptake after 2 days at both temperatures (Figures 4A,C).
At both temperatures, high-level nutrient treatment increased
BP by 7 times over controls, although this treatment effect was
observed more rapidly at 17◦C (2 days) than at 12◦C (4 days).
Cell-specific carbon uptake peaked after 2 days in all treatments,
similar to Experiment 1 with low-level nutrient treatment, and

FIGURE 4 | Experiment 2. Bacterial production (A), cell abundance (B), and
cell-specific carbon uptake (C) in water from Lake I-8 inlet incubated for
2 weeks at 12 and 17◦C with and without high-level nutrient amendments.
Error bars are SE of the mean of experimental replicates (n = 3). Samples are
designated by incubation temperature (� = 12◦C and � = 17◦C) with open
symbols for no nutrients added and closed symbols for nutrients added.
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then decreased during the extended incubation period due to
increased cell abundances and decreased BP. Peak BP was the
same for both temperatures in the fertilized treatment, but was
elevated at 17◦C in the unfertilized controls. Cell abundance, BP,
and cell-specific carbon uptake in the fertilized treatments were
greater than unfertilized controls and were greater in this exper-
iment compared to those in the low-level nutrient treatments
described above. In both experiments (high-level and low-level
nutrients), elevated temperatures increased the speed of the BP
response to nutrient additions (Figures 3 and 4) and increased
the maximum rate of BP in unfertilized controls, but did not
greatly change the maximum rate of BP in fertilized treatments.

This high-level nutrient experiment was repeated with two
sources of water and two sources of bacterial communities
(Experiments 3a–d) to test the influence of initial BCC and ini-
tial water chemistry on treatment responses to temperature and
fertilization. Water chemistry was different at the two sites used
for these experiments, Lake I-8 inlet and Lake I-8 outlet. Water
at Lake I-8 inlet contained 706 µM DOC, 0.76 mg protein L−1,
1.16 µM total phenolics, and 0.09 µg chl a L−1, and had a
UV absorbance of 154.3 (scanning from 220 to 400 nm, 5 cm
quartz cell). Water at Lake I-8 outlet had lower concentrations
of dissolved organics and a much higher concentration of chl a
(514 µM DOC, 0.57 mg protein L−1, 0.65 µM total phenolics,

0.77 µg chl a L−1, UV absorbance of 98.9). BCC at the two sites
also differed, with 50% community similarity at the time of initial
collection. The treatment response of BP to fertilization was sim-
ilar regardless of the source of incubation water or the source of
bacterial inocula, increasing more rapidly in the 17◦C treatment
but reaching approximately the same maximum productivity at
both temperatures in all experiments after 4 days (Figure 5).
However, in the unfertilized experiments, the response of BP to
source waters and temperature was different for the two bacte-
rial communities. The bacterial community from the inlet had
elevated BP after 2 days, but the bacterial community from the
outlet had lower BP after 2 days; this rate remained low, partic-
ularly when the outlet community was incubated in “unfamiliar”
water from the inlet stream.

Mesocosm Experiments – Communities
Bacterial community composition shifted quickly during
regrowth following initial dilution in the experimental meso-
cosms, and the composition of these communities varied with
treatment. After 1 day bacterial communities in the experiment
with low-level nutrient additions (Experiment 1) were not
significantly different among treatments, but by day 2 a two-way
ANOVA of percent similarity between bacterial communi-
ties in different treatments indicated that both temperature

FIGURE 5 | Experiment 3. Bacterial production in water from Lake I-8 inlet
(A,C) and Lake I-8 outlet (B,D) inoculated with bacterial communities from
Lake I-8 inlet (A,B) and Lake I-8 outlet (C,D) and incubated for 2 weeks
at 12◦ and 17◦C with and without high-level nutrient amendments. Error

bars are SE of the mean calculated from analytical replicates (n = 3).
Samples are designated by incubation temperature (� = 12◦C and
� = 17◦C) with open symbols for no nutrients added and closed symbols
for nutrients added.
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and nutrient addition were statistically significant indica-
tors of percent similarity (Table 1). The pairwise similarities
between fertilized and unfertilized treatments at 12◦C declined
steadily from 85–76 to 68–64% over the 4 days (Figure 6;
Supplementary Figure S1), compared to the relatively constant
and high pairwise similarities within replicates of the same
treatment over the same time period (95, 82, 92, 93%, days
1–4).

Similar patterns in BCC were found in the experiment
with high-level nutrient additions to water from Lake I-8 inlet
(Experiment 2). BCC clustered by nutrients and temperature
in the NMDS analysis for days 2, 4, 9, and 14 (Figure 7;
Supplementary Figure S1). Nutrients and temperature were sta-
tistically significant predictors of community similarity for all
time points during the incubation, but the interaction term
between temperature and nutrients ceased to be significant on
day 14 (Table 2). As in the experiment with low level nutrient
additions, the average pairwise similarities between fertilized and
unfertilized treatments at 12◦C declined over time from 79–71 to
54–59% at 2, 4, 9, and 14 days, respectively, while pairwise simi-
larities within replicates of each treatment remained similar (92,
82, 88, 81% over the same time period). At 17◦C there was also
a substantial change in BCC when nutrients were added (mean
difference between controls and nutrient additions of 18 ± 3.6%,
SE), but unlike at 12◦C there was little change over time. The shift
in BCC at 17◦C occurred very rapidly, and within 2 days the pair-
wise similarity between fertilized and unfertilized treatments was
only 69%, and this value remained steady over the 14 days experi-
ment (69, 67, 64, 67% at 2, 4, 9, and 14 days, respectively; Figure 7;
Supplementary Figure S1).

Replicate high-level nutrient experiments tested the influence
of initial BCC and initial water chemistry on BCC response
to nutrient and temperature treatments. BCC was assessed

FIGURE 6 | Experiment 1. Non-metric multi-dimensional scaling (NMDS)
plot of community similarity on collection (starting community, day 0) and day
2 of the low-level nutrient experiment. The bacterial community collected from
collection site is designated by �. Samples are designated by incubation
temperature (� = 12◦C and � = 17◦C) with open symbols for no nutrients
added and closed symbols for nutrients added.

FIGURE 7 | Experiment 2. NMDS plots of bacterial community composition
on days 4, 9, and 14 of the high-level nutrient experiment. Samples are
designated by incubation temperature (� = 12◦C and � = 17◦C) with open
symbols for no nutrients added and closed symbols for nutrients added.

after 14 days during the four experiments (Experiments 3a–d)
conducted with bacteria and water from Lake I-8 inlet and Lake
I-8 outlet in factorial combination. In these experiments, the
initial bacterial community was the only statistically significant
predictor of community similarity at the end of the experiment
(Table 3), but nutrient addition was nearly significant (p = 0.058)
and the interaction term between initial bacterial community and
nutrients was significant (p = 0.007). For the inlet community
(Experiments 4a,b), a two-way ANOVA indicated that temper-
ature and nutrients were both statistically significant predictors
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TABLE 2 | Experiment 2.

Dependent variable: community similarity

Significance (p-value)

df 2 days 4 days 9 days 14 days

Corrected model 3 0.000 0.000 0.000 0.000

Intercept 1 0.000 0.000 0.000 0.000

Temperature 1 0.000 0.022 0.000 0.002

Nutrients 1 0.000 0.000 0.000 0.000

Temperature ∗ nutrients 1 0.001 0.001 0.003 0.210

Error 62

Total 66

Corrected total 65

R Squared = 0.63 (Adjusted R Squared = 0.61) 2 days
R Squared = 0.62 (Adjusted R Squared = 0.60) 4 days
R Squared = 0.53 (Adjusted R Squared = 0.51) 9 days
R Squared = 0.41 (Adjusted R Squared = 0.38) 14 days
Results of the tests of significance (ANOVA) for the impact of incubation tempera-
ture and high-level nutrient addition on the % similarity of BCC between samples
in Experiment 2 at Lake I-8 inlet. The p-value for the main effects (temperature and
nutrients) and the interaction term is given for each day of the experiment. The
overall model R-squared is given for each day of the experiment.

TABLE 3 | Experiments 3a–d.

Dependent variable: community similarity

df Significance (p-value)

Corrected model 14 0.008

Intercept 1 0.000

Bacteria source 1 0.000

Incubation water source 1 0.813

Temperature 1 0.182

Nutrients 1 0.058

Starting community ∗ nutrients 1 0.007

Error 105

Total 120

Corrected total 119

R Squared = 0.24 (Adjusted R Squared = 0.14)
Results of the tests of significance (ANOVA) for similarity of bacterial community
composition on day 14 of four replicate high-level nutrient experiments in which the
source of bacteria and incubation water was varied. The p-value for the main effects
(bacteria source, water source, temperature, and nutrients) and the interaction term
is given, along with the overall model R-squared.

of the similarity of community composition between treatments,
with no significant interaction terms (Table 4). A comparable
analysis of the outlet BCC similarities indicated that only nutri-
ent addition was a significant predictor of BCC similarity between
samples.

Discussion

Storm events can cause dramatic changes in arctic stream temper-
ature and flushing of soil nutrients and DOC into streams (e.g.,
Kling et al., 2014), and these changes directly impact the growth
and composition of bacterial communities (e.g., Judd et al., 2006).
In this study we demonstrate that temperature affects the speed of

TABLE 4 | Experiments 4a,b.

Dependent variable: community similarity

Significance (p-value)

df inlet,
6 days

inlet,
11 days

outlet,
6 days

outlet,
11 days

Corrected model 3 0.000 0.000 0.000 0.049

Intercept 1 0.000 0.000 0.000 0.000

Temperature 1 0.000 0.001 0.217∗ 0.088

Nutrients 1 0.000 0.000 0.000∗ 0.037

Temperature ∗ nutrients 1 0.070 0.163 0.622 0.097

Degrees of freedom

Error df 51 42 62 41

Total df 55 46 66 45

Corrected total df 54 45 65 44

R Squared = 0.44 (Adjusted R Squared = 0.41) inlet 6 days
R Squared = 0.66 (Adjusted R Squared = 0.64) outlet 6 days
R Squared = 0.49 (Adjusted R Squared = 0.46) inlet 11 days
R Squared = 0.18 (Adjusted R Squared = 0.12) outlet 11 days
Results of the tests of significance (ANOVA) for similarity of bacterial community
composition after 6 and 11 days in two replicate high-level nutrient experiments
conducted with bacteria and water from Lake I-8 inlet and Lake I-8 outlet. A
Kruskal–Wallace test for outlet day 6 data (∗ in Table) confirmed non-significance
with p = 0.619 for temperature and significance of p = 0.000 for nutrients. The
p-value for the main effects (temperature and nutrients) and the interaction term is
given for day 6 and day 11, along with the overall model R-squared for these days.

response to nutrient subsidies, and show how bacterial commu-
nities respond to the individual and combined effect of these two
drivers. Observations of BP at Toolik inlet showed that stream
discharge, DOC, nutrient concentrations, and BP all changed in
response to summer storm events (Figure 2). Water tempera-
ture was inversely related to stream discharge but did not appear
to strongly constrain bacterial response to substrate additions
of DOC and nutrients washed in from soil water at these tem-
peratures, as has been previously observed (Adams et al., 2010).
DOC also increased with peaks in discharge, but after an ini-
tial threefold increase with the first event, concentrations later
in the summer varied by only ∼20% (Figure 2). Although the
increases in DOC with storm events were lower later in the sum-
mer, bacteria could be sensitive to small variations in labile DOC
supply particularly if storms also brought in pulses of ammonium
from soil waters (Figure 2, day ∼220) that enable the bacteria
to access previously unavailable carbon (Harder and Dijkhuizen,
1983; Kirchman, 1994; Gasol et al., 2009). However, the gen-
eral covariance of discharge, nutrients, and DOC along with an
inverse relationship with water temperature during the storm
events makes it difficult to identify the main control of bacterial
activity in natural systems, requiring the isolation of these factors
in experiments.

Mesocosms – Bacterial Activity
Bacterial activity responded rapidly to added nutrients in all
experiments indicating strong nutrient limitation of bacterial
communities in the Toolik Lake region. High-level nutrient
treatments approximating maximum natural levels had a larger

Frontiers in Microbiology | www.frontiersin.org 9 March 2015 | Volume 6 | Article 250

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Adams et al. Aquatic bacterial nutrient and temperature limitation

impact on BP than did elevated temperature. Low-level nutrient
treatments also boosted BP, but the effect was limited com-
pared to the effect of elevated temperature, which increased BP
more quickly than did nutrients. While the high-level nutrient
effect was observed across different bacterial communities col-
lected at different times, it is possible that some of the response
seen with the lower level of nutrients could be attributed to
community-specific responses (as discussed below). This sug-
gests that nutrient concentrations at the upper range of those
found in the environment are required to overcome the restric-
tion of low temperature on bacterial activity. For example, BP
in high-level nutrient treatments reached similar magnitudes of
activity regardless of temperature. This is in contrast with Vrede’s
(2005) finding that low temperatures superseded any other con-
trol, including P limitation. Temperature did control the cellular
response to added nutrients in all of our experiments, with higher
temperatures increasing the speed at which bacterial activity
increased. This is likely due to the increased speed of biochemical
reactions and higher affinity for substrates at warmer temper-
atures (Nedwell, 1999), and increased response to nutrients at
higher temperatures has been observed in other studies (Mindl
et al., 2007; Säwström et al., 2007). The faster response of BP to
nutrients at higher temperature occurred regardless of sampling
location, initial community composition, or DOM concentration
and source, indicating that this temperature–nutrient interaction
may be a robust feature controlling bacterial activity in many
aquatic environments.

Several studies have identified interacting effects of tempera-
ture and substrate on heterotrophic bacterial growth (reviewed
in Pomeroy and Wiebe, 2001), and in many of these studies
the effect of substrate addition on growth rate was enhanced at
low-temperature and minimal at high temperatures, presumably
because of reduced substrate affinity at low temperatures (e.g.,
Wiebe et al., 1992). This pattern was detectable in our low-level
nutrient experiment in which increases in BP and cell-specific
carbon uptake due to nutrient addition were greater at 12◦C
than at 17◦C. However, these patterns were not detectable in
the high-level nutrient experiments (Figures 4 and 5), suggest-
ing that storm-related nutrient pulses in arctic freshwaters must
be of sufficient magnitude to overcome temperature limitation on
bacterial growth and substrate affinity.

Cell numbers mirrored the corresponding BP measurements
for all the experiments. For example, in the experiment with
low-level nutrient addition, the cell-specific carbon uptake was
more rapid at warmer temperatures, as found in other stud-
ies (White et al., 1991; Adams et al., 2010). In contrast, when
greater amounts of nutrients were added, cell-specific carbon
uptake was greater in fertilized treatments regardless of tem-
perature. In the high-level nutrient experiments, cell-specific
uptake was particularly high after 2 days and declined after-
ward once cell numbers reached a maximum. The same was
not observed for the low-level nutrient experiment, possibly
because the experiment was not extended until cell num-
bers reached a maximum or perhaps because of differences
in initial community composition. Nevertheless, during the
early phases of the experiments when cell numbers were still
increasing, cell-specific carbon uptake reached a peak in all

treatments and that peak was higher in incubations amended
with nutrients.

Elevated cell-specific carbon uptake in nutrient treatments
suggests elongation or growth in size of cells. Bacteria differ in
size and shape by community and by growth stage (Lebaron et al.,
2002).When nutrients are present, bacteria can delay cell division
to take advantage of the resources and increase in size (Shiomi
and Margolin, 2007). This interpretation is supported by obser-
vations in our experiments indicating a large number of long,
filamentous bacteria appearing in the nutrient addition treat-
ments. Apparently when large amounts of inorganic nutrients
were added, both growth and reproduction of the filamentous
portion of the bacterial community were stimulated, regardless
of incubation temperature.

Mesocosms – Communities
The fast response of bacteria to nutrient inputs was also observed
in community dynamics. Both incubation temperature and nutri-
ent addition changed community structure in as little as 2 days
(Tables 1 and 2; Figure 6). The composition of communities cre-
ated by nutrient addition steadily diverged from the controls in all
experiments, especially in the 12◦C treatments (Supplementary
Figure S1). However, in the 17◦C treatment BCC changed rapidly
when nutrients were added, but then stayed similar over time.
We interpret this to be a function of the higher rates of bacterial
activity at warmer temperatures, which could lead to faster shifts
in population or species dominance by the superior competitors
under nutrient-enhanced conditions. This interpretation is sup-
ported by the elevated BP rate observed within 1–2 days in all
experiments at 17◦C compared to 12◦C (Figures 3 and 4).

Despite the observed role of temperature in controlling the
rate of change in BCC, under some conditions nutrients may be
stronger drivers of community structure than temperature. This
was demonstrated in the experiments using water and bacteria
from I-8 inlet. This stream is not buffered by upstream lakes, and
it had variable temperature and slightly higher nutrient concen-
trations than did I-8 outlet, which had more stable and higher
temperatures than did I-8 inlet (Supplementary Tables S1 and
S2). Communities from I-8 inlet responded to both tempera-
ture and nutrient additions (Tables 2 and 4), while communities
from I-8 outlet responded to nutrients but not to temperature
(Table 4). Bertoni et al. (2008) also found that shifts in BCC in
response to nutrient additions were dependent on initial com-
munity composition, and this dependence may have reflected the
in situ temperatures of different seasons. The different response of
communities at the I-8 inlet and outlet to nutrient addition sup-
ports the hypothesis of community-specific nutrient limitation;
in other words, communities that develop in separate, different
habitats can respond uniquely to nutrient enrichment over time.
These varied responses also suggest that natural site variability
of temperature and nutrient concentrations are poor predictors
of the stability of community composition in the face of rapid
environmental change. Thus we suggest that community-specific
responses to temperature and nutrients are not limited to BP and
cell counts, but they also influence the stability of the commu-
nity composition itself through competition between populations
within the community.
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Water temperature also impacts bacterial response to nutri-
ents, particularly when these two factors are decoupled during
storm events. As observed in the mesocosm experiments, colder
temperatures can delay or diminish the response of bacterial
activity to pulsed inorganic nutrients, and changing water tem-
perature can shift bacterial communities to different populations
than those stimulated by inorganic nutrients. Hall et al. (2009)
also suggest that the bacterial response to temperature and nutri-
ents changes seasonally, with summer and winter communities
having different nutrient efficiencies relative to water tempera-
ture. According to this model, warm-adapted summer commu-
nities use nutrients more efficiently than winter communities.
Here we show that the overall bacterial response to the interac-
tion between temperature and nutrients is constrained by low
temperatures, but that temperature constraints can be overcome
by high levels of nutrients typical of storm-water pulses. We also
show that population shifts resulting from differential responses
to temperature or nutrients play an important role in the rapid
shifts in community composition we observed.

Conclusion

We demonstrate that aquatic bacteria in an arctic tundra envi-
ronment can be nutrient limited, as predicted by theory, given
that the processing of allochthonous, terrestrial carbon entering
oligotrophic lakes, and streams requires additional nutrients for
enzyme formation beyond regular cellular function. Experiments
showed that inorganic nutrient additions and raised tempera-
ture increased bacterial productivity and growth rates rapidly, but
nutrients above certain levels moderated the restrictive influence
of low temperature on bacterial growth. Similarly, temperatures
above certain levels drove very rapid shifts in BCC through
the mechanism of enhanced activity accelerating the outcome
of competition between species under new environmental con-
ditions, such as altered nutrient concentrations during storm
events. In addition, it appears that DOM characteristics (terres-
trial versus algal, DOC concentrations) and initial environmental
temperature and nutrient concentrations were poor predictors
of the bacterial response to increased temperature and nutri-
ents. We suggest that the resulting complex response to shifting
temperature and nutrients occurs because different members of
these communities are limited by different environmental factors.
Consistent with this suggestion is our observation that shifts in
community composition can occur very rapidly (∼2 days), and
the resulting community can vary depending on the tempera-
ture and nutrient conditions during the pulse. A fast response
of BP was also observed in the field following storm events

during which discharge, ammonium, and BP peaked together.
Bacterial communities in these habitats can respond rapidly to
nutrient pulses through increased growth and shifting commu-
nity composition, particularly at higher temperatures. Overall,
these results suggest that under steady or slightly changing envi-
ronmental conditions (e.g., temperature and nutrients), the initial
BCChas a strong effect on the function of the community asmea-
sured by BP. As temperature or nutrient concentrations increase,
BCC shifts rapidly but the influence of the initial community
composition as a driver of community function diminishes, and
the environmental controls on bacterial activity dominate. Thus
the interaction between community composition (diversity) and
function can shift rapidly as the environment changes, as exem-
plified by the often dramatic storm events that commonly affect
aquatic ecosystems.
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