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Microbes are ubiquitous in our biosphere, and inevitably live in communities. They
excrete a variety of metabolites and support the growth of other microbes in a
community. According to the law of chemical equilibrium, the consumption of excreted
metabolites by recipient microbes can accelerate the metabolism of donor microbes.
This is the concept of syntrophy, which is a type of mutualism and governs the
metabolism and growth of diverse microbes in natural and engineered ecosystems.
A representative example of syntrophy is found in methanogenic communities, where
reducing equivalents, e.g., hydrogen and formate, transfer between syntrophic partners.
Studies have revealed that microbes involved in syntrophy have evolved molecular
mechanisms to establish specific partnerships and interspecies communication,
resulting in efficient metabolic cooperation. In addition, recent studies have provided
evidence suggesting that microbial interspecies transfer of reducing equivalents also
occurs as electric current via biotic (e.g., pili) and abiotic (e.g., conductive mineral
and carbon particles) electric conduits. In this review, we describe these findings as
examples of sophisticated cooperative behavior between different microbial species.
We suggest that these interactions have fundamental roles in shaping the structure and
activity of microbial communities.

Keywords: symbiosis, mutualism, interspecies electron transfer, communication, signal transduction,
methanogenesis, microbial fuel cell

Introduction

The pure culture-based techniques developed by Robert Koch and Louis Pasteur have been success-
fully used for identifying pathogens (Woolhouse and Gaunt, 2007) and obtaining industrially
useful microbes (Steele and Stowers, 1991). However, it is generally considered that such method-
ology has limited capacity for studying the ecology of microbes in natural environments (Amann
et al., 1995; Watanabe and Baker, 2000), which markedly differ from pure cultures with respect to
nutrient conditions and the presence of interspecies interactions.

Different types of interspecies interactions operate in the biosphere. One of the most common
interactions is mutualism, in which two or more different species living in close proximity rely
on each other for nutrients, protection, and/or other life functions (Boucher, 1985). A repre-
sentative case is rhizobial bacteria which fix nitrogen for leguminous plants in return for
energy-containing carbohydrates (Long, 1989). Mutualistic relationships are often established
between specific partners that are able to sense each other through mechanisms that have evolved
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to make their interactions more efficient and robust; for
instance, plant-produced flavonoids function as signals for initi-
ating legume-rhizobia mutualism (Shaw et al., 2006). Ecologists
consider that such specific interactions are more widespread in
nature than was previously thought (Doebeli and Knowlton,
1998).

Mutualism also serves as an essential element for shaping
microbial communities (Nemergut et al., 2013). Among the
different types of mutualistic relationships, syntrophy is a
particularly important interspecies interaction that is based
on providing trophic benefits for both partners (McInerney
et al., 2009). A well-characterized syntrophic interaction occurs
between fermentative bacteria (syntrophs) and methanogenic
archaea (methanogens), which cooperatively transform organic
compounds, such as volatile fatty acids (VFA, including butyrate,
propionate, and acetate) into methane (Schink, 1997). This
syntrophic interaction is based on the transfer of reducing equiv-
alents, such as hydrogen and formate, between these microbes
and is also termed “interspecies electron transfer (IET)” (Schink,
1997). Extensive research has been done to demonstrate the
importance of hydrogen/formate-mediated IET in anaerobic
digesters (Schink, 1997;McInerney et al., 2009; Stams and Plugge,
2009).

Recently, breakthrough findings, related to interspecies
communication (Shimoyama et al., 2009) and direct IET in
the form of electric currents (Summers et al., 2010; Kato
et al., 2012b), have been reported for microbial interspecies
interactions in syntrophic consortia. In the present article,
we summarize these findings as examples of the sophisticated
microbial interspecies interactions that are fundamental for shap-
ing the composition and structure of microbiota. We do not
aim at summarizing current knowledge on IET in methanogenic
communities, for which readers are referred to other articles
(Sieber et al., 2012; Morris et al., 2013; Shrestha and Rotaru,
2014).

Interspecies Communication between
Specific Partners

Microbes are able to communicate with specific partners
for promoting metabolic cooperation. As an example of
this phenomenon, this chapter focuses on how interspecies
communication is established in a syntrophic consortium and
contributes to methanogenesis.

Methane is attracting considerable attention for two
different reasons, namely, as a potent greenhouse gas
and as a potential source of sustainable energy. Microbial
activity is the primary source of methane emission on
Earth. Cooperative interactions among microbes belong-
ing to diverse trophic groups, including primary/secondary
fermentative bacteria, homoacetogenic bacteria, and
hydrogenotrophic/aceticlastic methanogenic archaea; are
essential for methanogenesis of organic matter (Schink,
1997). In particular, the close syntrophic interaction that is
established between secondary fermentative bacteria (i.e.,
syntrophs) and hydrogenotrophic methanogens is regarded

as the rate-limiting step of methanogenesis, as its stagnation
leads to the accumulation of unfavorable metabolites and
decay of the entire methanogenic process (Van Lier et al.,
1996).

The key reaction for establishing the mutualistic interaction
between syntrophs and methanogens is the intercellular transfer
of reducing equivalents. For example, syntrophic propionate-
oxidizing bacteria acquire energy through the oxidation of propi-
onate into acetate. The reducing equivalents generated through
propionate oxidation are used for the reduction of protons to
produce H2 (Eq. 1).

CH3CH2COO− + 3H2O → CH3COO− +
HCO−

3 + H+ + 3H2

�G◦′ = + 76.1 kJ (per mol of propionate) (1)

As the Gibbs free energy change of this reaction under the
standard condition is positive (endergonic), this reaction is unfa-
vorable as a catabolic reaction and only proceeds when the
concentrations of the products (especially H2) are maintained
at a very low level (McInerney et al., 2008). In methanogenic
environments, hydrogenotrophic methanogens efficiently scav-
enge available hydrogen to produce CH4 as a part of their energy
metabolism (Eq. 2).

3H2 + 3/4HCO3
− + 3/4H+ → 3/4CH4 + 9/4H2O

�G◦′ = − 101.7 kJ (per 3 mol of hydrogen) (2)

As the growth of hydrogenotrophic methanogens is dependent
on the supply of H2 by hydrogen-producing syntrophs, these
two groups of organisms have a mutual nutritional dependence.
When the two reactions (Eqs 1 and 2) occur concomitantly,
the syntrophic degradation of propionate becomes exergonic
(Eq. 3).

CH3CH2COO− + 3/4H2O → 3/4CH4 + CH3COO− +
1/4HCO3

− + 1/4H+
�G◦′ = − 25.6 kJ (per mol of propionate) (3)

Although syntrophic propionate degradation is sufficient
to sustain the growth of syntrophs and hydrogenotrophic
methanogens, the Gibbs free energy change of the overall reac-
tion is less than the energy required for the synthesis of ATP
from ADP (40–70 kJ per mol of ATP). This feature suggests that
syntrophs and methanogens have acquired specific mechanisms
for efficient interspecies interaction that enable their survival
under such thermodynamically extreme conditions (Jackson and
McInerney, 2002).

The transfer of reducing equivalents (i.e., H2) from syntrophs
tomethanogens is regarded as the rate-limiting step of syntrophic
methanogenesis (de Bok et al., 2004). The flux of H2 between two
microbial cells can be estimated based on the Fick’s diffusion law:

J = A · D · Cp − Cc

d
(4)
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In this equation, J is the flux of H2, A is the surface area of
the H2-producing microbial cells, D is the diffusion coefficient
of H2, Cp and Cc are the concentrations of H2 at the surfaces
of the H2-producing and H2-consuming microbial cells, respec-
tively, and d is the average distance between H2-producing and
H2-consuming microbial cells. This equation clearly shows that
the efficiency of interspecies hydrogen transfer increases with
decreasing d. Thus, the close proximity or direct physical contact
between syntrophs and methanogens is regarded as a critical
factor for efficient methanogenesis (Stams, 1994; de Bok et al.,
2004; Ishii et al., 2006).

Microbial aggregates, such as granules and biofilms, are
frequently observed in methanogenic microbial communi-
ties, including those in methanogenic wastewater treatment
systems (Skiadas et al., 2003). Fluorescence microscopy has
revealed that syntrophs are often found in close proximity to
methanogens within such microbial aggregates (Grotenhuis
et al., 1991; Imachi et al., 2000). Co-aggregation has also been
observed in defined co-cultures of syntrophs and methanogens
that do not form aggregates in pure cultures (Ishii et al.,
2005). For example, the propionate-oxidizing bacterium
Pelotomaculum thermopropionicum and hydrogenotrophic
methanogen Methanothermobacter thermautotrophicus co-
aggregate under syntrophic methanogenic conditions (Ishii
et al., 2005, 2006). In addition, such studies have shown that
the degree of co-aggregation, which is characterized by the
abundance and size of aggregates, is influenced by the available
growth substrates. Specifically a large number of cell aggregates
were observed when the syntrophic cultures were grown on
energetically poor substrates, such as propionate, whereas rela-
tively few aggregates were formed in cultures supplemented with
energetically rich substrates, such as ethanol. This phenomenon
can be explained by the fact that syntrophic methanogenesis
from energetically unfavorable substrates requires more efficient
interspecies hydrogen transfer than that required for the degra-
dation of energetically favorable substrates, as extremely low
hydrogen concentrations are required for syntrophic bacteria to
acquire energy through the oxidation of energetically unfavorable
substrates.

The spatial organization of syntrophs and methanogens is
considered to be crucial for efficient methanogenesis. As the close
or direct interaction of these microbes is necessary for efficient
hydrogen transfer, random cell-to-cell associations with other
microbial species may cause the deterioration of methanogenic
metabolism. To discriminate their syntrophic partners from
other microbial species, syntrophs and methanogens may exploit
specific interspecies cell-to-cell recognition systems. This hypoth-
esis has been demonstrated in a syntrophic consortium consist-
ing of P. thermopropionicum and M. thermautotrophicus, in
which conceptually novel interspecies recognition and signal-
ing mechanisms were also found (Shimoyama et al., 2009; Kato
and Watanabe, 2010). As stated above, these two microbes
produce large co-aggregates that can exceed several 100 mm
in diameter during syntrophic methanogenesis from propionate
(Figure 1A; Ishii et al., 2005). Furthermore, scanning elec-
tron microscopy (SEM) has revealed that cells of these two
species are often interconnected via filament-like structures
in the early- and mid-logarithmic growth phases (Figure 1B;
Ishii et al., 2005). Database searches using available genomic
data of P. thermopropionicum (Kosaka et al., 2008) identified
putative genes for filamentous appendages in P. thermopropi-
onicum (flagella and pili), but not in M. thermautotrophicus.
The filamentous structures connecting these two microbes were
confirmed to be flagella of P. thermopropionicum by purifica-
tion, gel electrophoresis, and N-terminal amino-acid sequencing
of the protein derived from the filaments (Shimoyama et al.,
2009). Microscopic observation with fluorescently labeled anti-
sera against the major flagellum protein (FliC) of P. thermo-
propionicum further confirmed the origin of these filaments
connecting the two species. Although the primary function of
flagella is to confer motility, recent studies have demonstrated
that flagella have other roles, including adhesion to solid surfaces
and environmental sensing (Anderson et al., 2009). As P. ther-
mopropionicum is reported to be non-motile (Imachi et al.,
2002), it is speculated that P. thermopropionicum flagella are
specifically utilized for the recognition and/or entrapment of
its syntrophic partners (i.e., methanogenic archaea), rather than
locomotion.

FIGURE 1 | Scanning electron micrographs of co-cultures of the syntrophic propionate-oxidizing bacterium Pelotomaculum thermopropionicum and
the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus in the middle (A) and early logarithmic growth phase (B).
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Certain pathogenic bacteria recognize and adhere to
mammalian cells using their flagella (Girón et al., 2002; Guerry,
2007). Among the diverse component proteins that comprise
flagella, the major body protein FliC and cap protein FliD
have the capacity to attach to mammalian cells (Tasteyre et al.,
2001). To examine whether P. thermopropionicum FliC and FliD
proteins mediate adherence to its syntrophic partner, recom-
binant FliC and FliD proteins of P. thermopropionicum were
purified, fluorescently labeled, and mixed with phylogenetically
diverse microbial cells (Shimoyama et al., 2009). Flagellar
protein-dependent fluorescence was only observed in association
with two species of methanogens, M. thermautotrophicus and
Methanosaeta thermophila, which are syntrophic partners of
P. thermopropionicum. Fluorescent signals were not detected
for other microbes, including other methanogens and any
of the examined bacterial species, including P. thermopro-
pionicum itself. Interestingly, as M. thermautotrophicus and
M. thermophila have major cell-surface components that differ
markedly with respect to chemical structures (pseudomurein
and glycoprotein, respectively), these results suggest that FliC
and FliD of P. thermopropionicum adhere to partner organisms
via specific cell-surface components, such as cell-surface proteins
and/or carbohydrate moieties, rather than major cell-surface
structures.

Mammalian immune cells recognize FliC proteins of
microbial pathogens using Toll-like receptors and activate
intracellular signaling pathways to induce innate immunity
(Akira and Takeda, 2004). The existence of such a sensing and
signaling network suggests a possibility that the adherence
of P. thermopropionicum flagellar proteins with the cell-
surface components of syntrophically associated methanogens
communicates a signal that modifies gene expression and cellular
functions in the methanogens. Global transcriptomic analyses
of M. thermautotrophicus cells demonstrated that the exposure
to P. thermopropionicum FliD, but not FliC, affects the expres-
sion of genes involved in the central metabolism and energy
acquisition (Shimoyama et al., 2009). Furthermore, the supple-
mentation ofM. thermautotrophicus cultures with FliD enhanced
methanogenic activity, whereas FliC had no significant effect.
Taken together, these findings suggest that the adherence of flag-
ellar cap protein FliD to M. thermautotrophicus cells induces the
transcription of central catabolic genes, leading to the activation
of hydrogenotrophic methanogenesis. As described above, H2
in the immediate vicinity of P. thermopropionicum cells must
be efficiently scavenged for propionate oxidation to proceed.
Thus, the specific adherence to its hydrogen-scavenging partner
and subsequent activation of hydrogenotrophic methanogenesis
is considered to be a sophisticated strategy of propionate-
oxidizing syntrophs for survival in competitive microbial
communities.

We have described the model that represents one of primary
means by which microbes accelerate interspecies hydrogen
transfer for syntrophic methanogenesis. In this novel symbi-
otic relationship, the P. thermopropionicum flagellum appears
to have two unique functions: it specifically entraps syntrophic
partners and mediates specific interspecies signaling. In contrast
to well-characterized diffusible chemical signals, such as those

involved in quorum sensing, the flagellum-mediated system can
only transmit signals to the specific partners. We consider that
this specific interspecies signaling is not possible without the high
structural diversity of proteins. The molecular mechanism for
signaling between P. thermopropionicum andM. thermautotroph-
icus is the first example of protein-based interspecies communi-
cation between prokaryotes, and we expect that protein-based
interspecies communication will also be discovered for diverse
microbes in future.

Direct IET Via Electric Currents

In recent years, researchers have provided evidence suggesting
that syntrophy in anaerobic microbiota proceeds not only via
the diffusion of electron carriers (e.g., hydrogen and formate),
but also via direct IET in the form of electric current between
electron-donating and -accepting microbes. A number of dissim-
ilatory iron-reducing bacteria, including Geobacter metallire-
ducens (Summers et al., 2010; Rotaru et al., 2014a,b) and
G. sulfurreducens (Bond and Lovley, 2003; Kato et al., 2012b),
have been shown to transfer electrons extracellularly and to
generate current in microbial fuel cells (Lovley and Phillips, 1988;
Bond and Lovley, 2003). Studies on microbial current genera-
tion and extracellular electron transfer (EET) have revealed that
outer membrane c-type cytochromes and electrically conduc-
tive pilus-like structures, called nanowires, play important roles
in these processes in G. sulfurreducens (Lovley, 2012). On the
other hand, electron-accepting microbes include iron-oxidizing
bacteria, such as Thiobacillus denitrificans (Kato et al., 2012b),
and methanogenic archaea, such as Methanosaeta harundinacea
(Rotaru et al., 2014b) and Methanosarcina barkeri (Rotaru et al.,
2014a). G. sulfurreducens can accept and use electrons from
G. metallireducens for fumarate reduction (Summers et al.,
2010). Studies have also shown that many of these microbes
are capable of accepting electrons from electrodes in bioelectro-
chemical systems (Gregory et al., 2004; Strycharz et al., 2011;
Kato et al., 2012b; Lohner et al., 2014); however, the under-
lying molecular mechanisms by which these microbes accept
electrons from their syntrophic partners and electrodes are
less clear than those involved in EET by electron-donating
microbes.

The first evidence supporting IET via electric currents was
provided by a study using co-cultures of G. metallireducens
and G. sulfurreducens grown in medium containing ethanol
as the electron donor and fumarate as the electron accep-
tor (Summers et al., 2010). In pure culture, G. metallire-
ducens is able to metabolize ethanol, but is unable to utilize
fumarate as an electron acceptor, whereas the opposite is true
for G. sulfurreducens. In co-culture, however, these bacteria
cooperatively oxidize ethanol with the concomitant reduction
of fumarate, and form spherical cell aggregates that are electri-
cally conductive. Fluorescence in situ hybridization has revealed
that the two Geobacter species are closely associated with each
other within the aggregates. Notably, cell growth and ethanol
consumption proceeded even when co-cultures were inocu-
lated with a G. sulfurreducens strain that was unable to utilize

Frontiers in Microbiology | www.frontiersin.org 4 May 2015 | Volume 6 | Article 477

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Kouzuma et al. Interspecies interactions in syntrophic consortia

hydrogen and formate due to deletion of the genes encod-
ing formate dehydrogenase (fdnG) and uptake hydrogenase
(hybL), demonstrating that syntrophic ethanol metabolism by
G. metallireducens and G. sulfurreducens can occur without
interspecies transfer of hydrogen and/or formate. In addition,
it was found that a mutation that enhances the production
of OmcS, a pili-associated c-type cytochrome that promotes
EET to insoluble Fe(III) oxides and electrodes, was selec-
tively introduced into the genome of G. sulfurreducens under
co-culture conditions, resulting in the acceleration of aggre-
gate formation. In contrast, deletion of the gene encoding
OmcS or the structural pilin protein PilA impaired cell growth
in the co-cultures. These findings suggest that IET between
these Geobacter species in cell aggregates occurs via electri-
cal networks comprised of conductive pili and extracellular
cytochromes.

Studies have also indicated that IET via direct cell contact
is required for syntrophic methanogenesis by Geobacter and
Methanosaeta species (Morita et al., 2011; Rotaru et al.,
2014b). Morita et al. (2011) found that microbial aggregates
derived from an anaerobic digester converting beer-brewery
waste to methane were electrically conductive and exhibited
a temperature-dependent response similar to that of conduc-
tive biofilms and purified pili preparations of Geobacter species.
Microbial community analysis of the aggregates using 16S
rRNA gene clone library sequencing revealed that Geobacter
and Methanosaeta species were the most abundant bacte-
ria and archaea, respectively, suggesting that these microbes
play important roles in syntrophic methanogenesis coupled to
ethanol oxidation in the brewery digester. Recently, Rotaru
et al. (2014b) have revealed that ethanol is stoichiometrically
converted to methane in defined co-cultures of G. metallire-
ducens and M. harundinacea in accordance with the equation:
2CH3CH2OH → 3CH4 + CO2. The complete conversion of
ethanol to methane indicates that methanogenesis byM. harudi-
nacea occurs not only via the conversion of the acetate produced
from ethanol by G. metallireducens, but also via the reduction of
carbon dioxide by the electrons produced from ethanol oxidation
(8H+ + 8e− + CO2 → CH4 + 2H2O). However, it is unlikely
that the reduction of carbon dioxide occurs via interspecies

hydrogen transfer, asG. metallireducens does not produce hydro-
gen during ethanol metabolism, and because M. harudinacea
cannot utilize hydrogen as an electron donor for the reduction
of carbon dioxide. Consistent with this speculation, metatran-
scriptomic analysis of cells in the co-culture and digester aggre-
gates revealed that the genes for the putative carbon dioxide
reduction pathway in M. harudinacea and the gene encoding
PilA, the structural protein for electrically conductive pili in
Geobacter species, were highly expressed. Taken together, these
results suggest that M. harudinacea is capable of directly accept-
ing electrons from G. metallireducens for the reduction of carbon
dioxide to methane. A recent study by Rotaru et al. (2014a)
reported that M. barkeri is also able to accept electrons from
G. metallireducens through the formation of cell aggregates. In
addition, the study also revealed that whenM. barkeri was grown
in co-cultures with hydrogen-producing Pelobacter carbinolicus,
M. barkeri utilized hydrogen as an electron donor for carbon
dioxide reduction, but did not aggregate with P. carbinolicus.
These observations demonstrate that close physical contact is
needed for direct IET via electric current but not for interspecies
hydrogen transfer.

Syntrophic cooperation via IET is also facilitated by elec-
trically conductive substances, including mineral particles and
carbon materials (Kato et al., 2012a,b; Liu et al., 2012; Aulenta
et al., 2013; Chen et al., 2014a,b; Cruz Viggi et al., 2014).
The first experimental evidence for IET mediated by conduc-
tive materials was provided by Kato et al. (2012b), who
demonstrate that magnetite nanoparticles facilitate IET from
G. sulfurreducens to T. denitrificans, thereby promoting the
oxidation of acetate coupled to nitrate reduction (Figure 2A).
Although syntrophic acetate catabolism by these two bacte-
rial species also occurred in the presence of Fe ions, which
functioned as diffusive redox species, the electron transfer
rate in the presence of magnetite nanoparticles was more
than 10-fold higher than that for the Fe ion-supplemented
co-cultures. This finding suggests that conductive magnetite
particles serve as electron conduits between G. sulfurreducens
and T. denitrificans, and therefore facilitate direct IET and
syntrophic acetate catabolism. In that experiment, the possibil-
ity of interspecies hydrogen or formate transfer was excluded

FIGURE 2 | Schematic diagrams showing electric syntrophy between Geobacter and Thiobacillus denitrificans (A) and Methanosarcina (B).
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by the fact that T. denitrificans cannot use these compounds
as electron donors. Syntrophic acetate catabolism did not
proceed in the absence of iron-oxide nanoparticles and Fe
ions, indicating that IET via direct cell contact and conduc-
tive biological appendages, such as extracellular cytochromes
and pili, did not occur in co-cultures of G. sulfurreducens and
T. denitrificans.

Recent studies have demonstrated that syntrophic methano-
genesis is also promoted by the presence of (semi)conductive
mineral particles (Kato et al., 2012a; Cruz Viggi et al., 2014).
For example, Kato et al. (2012a) found that when magnetite
or hematite nanoparticles were added to mixed cultures
containing acetate or ethanol as a substrate and rice paddy
field soil as inoculum, methanogenesis was significantly
accelerated with respect to lag time and production rate.
Community analyses based on 16S rRNA genes revealed that
Geobacter and Methanosarcina species were predominant
in the enrichment cultures supplemented with magnetite or
hematite nanoparticles, suggesting that these (semi)conductive
minerals facilitated IET between these microbes, thereby
promoting their growth and syntrophic methanogene-
sis (Figure 2B). This notion was further supported by the
observation that addition of a specific inhibitor of methano-
genesis to the enrichment cultures suppressed not only
the growth of the methanogens, but also that of Geobacter
sp. Cruz Viggi et al. (2014) also reported that the supple-
mentation of methanogenic sludge with magnetite particles
enhanced the methane-production rate from propionate,
which is a key intermediate in the anaerobic digestion of
organic matter, by up to 33%. Based on theoretical calcu-
lations, the authors have proposed that IET via electric
currents through the magnetite particles is an intrinsically
faster electron transfer mechanism compared to interspecies
hydrogen transfer. It was also found that methanogene-
sis in the presence of magnetite particles was less sensitive
to external hydrogen partial pressure than that in non-
supplemented controls, further supporting the presence
of an electron transfer mechanism other than interspecies
hydrogen transfer (i.e., IET via electric currents). Given that
(semi)conductive minerals are ubiquitously and abundantly
present in nature, the findings presented in these reports
suggest the possibility that (semi)conductive minerals substan-
tially contribute to microbial catabolic processes, including
methanogenesis, in the natural environment by serving as
electron conduits.

Conductive carbon materials, including graphite particles
(Kato et al., 2012b), granular activated carbon (GAC; Liu
et al., 2012; Rotaru et al., 2014b), biochar (Chen et al., 2014b),
and carbon cloth (Chen et al., 2014a), are capable of facili-
tating IET. Although certain carbon materials, such as GAC
(Liu et al., 2012) and carbon cloths (Sasaki et al., 2010),
are used for enhancing and stabilizing methanogenesis from
wastes in anaerobic digesters, it is not fully understood how
these materials stimulate methanogenesis. Liu et al. (2012)
have reported that the stimulatory effect of GAC on methano-
genesis is likely attributable to the high electrical conductiv-
ity of this material, which allows electrical connections to be

formed between syntrophs and methanogens. In that study,
the authors found that the addition of GAC to the co-cultures
of G. metallireducens and G. sulfurreducens markedly accel-
erated syntrophic ethanol metabolism coupled to fumarate
reduction, suggesting that GAC served as an electron conduit,
thereby facilitating IET via electric current. A similar stimu-
latory effect on IET was also observed when M. barkeri was
grown in co-culture with G. metallireducens. In the presence
of GAC, co-cultures of G. metallireducens and an omcS-deleted
strain of G. sulfurreducens were able to metabolize ethanol
with the concomitant reduction of fumarate. It was also found
that in GAC-supplemented co-cultures of G. metallireducens
and G. sulfurreducens or M. barkeri, cells were tightly asso-
ciated with GAC, but were not in close contact with each
other. These findings indicate that GAC can substitute biolog-
ical conductive networks that connect electron-donating and
-accepting microbes.

Although the above-described studies indicate that certain
methanogens, including Methanosaeta and Methanosarcina
species, can accept electrons from their syntrophic part-
ners via direct cell contact and conductive materials, the
molecular mechanisms mediating electron uptake by these
methanogens are largely unknown. As members of the genera
Methanosaeta and Methanosarcina have membrane-bound
cytochromes (Thauer et al., 2008), it is possible that such
cell surface-associated conductive proteins may be involved
in extracellular electron uptake. Lohner et al. (2014) have
provided genetic evidence that Methanococcus maripaludis
can use electrons accepted from cathode electrodes and use
them for the reduction of carbon dioxide to methane in a
hydrogenase-independent manner. Methanogenesis from
cathodic electrons has also been observed in several undefined
enrichment cultures (Cheng et al., 2009; Villano et al., 2010;
Villano et al., 2011), suggesting that mechanisms for extracel-
lular electron uptake might be widespread in methanogens.
Further studies of genetically accessible methanogens, such as
M. maripaludis (Moore and Leigh, 2005) andM. barkeri (Kohler
and Metcalf, 2012), are needed to elucidate the molecular mech-
anisms underlying methanogenesis involving IET via electric
currents.

The finding that IET proceeds via electrical current indicates
that microbes can share available energy during anaerobic
catabolism in a more direct and efficient manner than previ-
ously thought, as electric current-mediated IET allows electrons
to be transferred between syntrophic partners at higher rates
than interspecies hydrogen/formate transfer (Kato et al., 2012b).
Multiple lines of evidence suggest that although conductive
pili and extracellular cytochromes play key roles in mediating
IET, conductive materials, including mineral and carbon parti-
cles, can substitute these biological conductive appendages in
IET processes. Given that the synthesis of such biological
conduits (e.g., multi-heme cytochromes) requires a large
energy investment, it is reasonable to speculate that anaerobic
microbes preferentially utilize natural conductive minerals, such
as magnetite, as electron conduits for IET. This notion is
supported by the observation that the supplementation of
culture medium with hematite or magnetite particles suppressed
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the formation of conductive biofilms during current generation
by G. sulfurreducens (Kato et al., 2013). These findings indicate
that the construction of efficient electrically conductive networks
in microbial communities can greatly facilitate methanogenesis
and other useful biological processes. A deeper understanding
of the complex microbial interactions involving IET will not
only help elucidate syntrophic microbial behavior under energy-
limited conditions, but will also provide novel strategies for the
development of more efficient bioenergy processes.

Conclusion

Microbes never live alone in natural ecosystems, where their cells
are physically and trophically interacting with each other. This
article overviewed two fascinating strategies, flagellum-mediated
communication and direct IET, which microbes have evolved to
facilitate interspecies interactions. Although numerous studies

have been done on microbial interspecies interactions, particu-
larly on syntrophy inmethanogenic communities, these examples
suggest a possibility that there still exist as-yet-unidentifiedmech-
anisms that increase the efficiency and robustness of microbial
interspecies interactions. In addition, these findings provide us
with new opportunities to engineer microbial processes used for
environmental protection and bioenergy production. Given the
great diversity of microbes in nature, it is likely that there exist a
huge repertoire of unique molecular mechanisms for facilitating
interspecies interactions. We expect that microbial interspecies
interactions will begin to be more prominent in microbiological
studies and the potential extent of their influence on microbial
ecology, physiology, and evolution is tremendous.
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