AUTHOR=Aguirre-von-Wobeser Eneas , Eguiarte Luis E. , Souza Valeria , Soberón-Chávez Gloria TITLE=Theoretical analysis of the cost of antagonistic activity for aquatic bacteria in oligotrophic environments JOURNAL=Frontiers in Microbiology VOLUME=6 YEAR=2015 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2015.00490 DOI=10.3389/fmicb.2015.00490 ISSN=1664-302X ABSTRACT=

Many strains of bacteria produce antagonistic substances that restrain the growth of others, and potentially give them a competitive advantage. These substances are commonly released to the surrounding environment, involving metabolic costs in terms of energy and nutrients. The rate at which these molecules need to be produced to maintain a certain amount of them close to the producing cell before they are diluted into the environment has not been explored so far. To understand the potential cost of production of antagonistic substances in water environments, we used two different theoretical approaches. Using a probabilistic model, we determined the rate at which a cell needs to produce individual molecules in order to keep on average a single molecule in its vicinity at all times. For this minimum protection, a cell would need to invest 3.92 × 10−22 kg s−1 of organic matter, which is 9 orders of magnitude lower than the estimated expense for growth. Next, we used a continuous model, based on Fick's laws, to explore the production rate needed to sustain minimum inhibitory concentrations around a cell, which would provide much more protection from competitors. In this scenario, cells would need to invest 1.20 × 10−11 kg s−1, which is 2 orders of magnitude higher than the estimated expense for growth, and thus not sustainable. We hypothesize that the production of antimicrobial compounds by bacteria in aquatic environments lies between these two extremes.