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Marta Piotrowska and Magdalena Popowska*
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The mobilome is a pool of genes located within mobile genetic elements (MGE),
such as plasmids, IS elements, transposons, genomic/pathogenicity islands, and
integron-associated gene cassettes. These genes are often referred to as “flexible” and
may encode virulence factors, toxic compounds as well as resistance to antibiotics.
The phenomenon of MGE transfer between bacteria, known as horizontal gene transfer
(HGT), is well documented. The genes present on MGE are subject to continuous
processes of evolution and environmental changes, largely induced or significantly
accelerated by man. For bacteria, the only chance of survival in an environment
contaminated with toxic chemicals, heavy metals and antibiotics is the acquisition of
genes providing the ability to survive in such conditions. The process of acquiring and
spreading antibiotic resistance genes (ARG) is of particular significance, as it is important
for the health of humans and animals. Therefore, it is important to thoroughly study
the mobilome of Aeromonas spp. that is widely distributed in various environments,
causing many diseases in fishes and humans. This review discusses the recently
published information on MGE prevalent in Aeromonas spp. with special emphasis on
plasmids belonging to different incompatibility groups, i.e., IncA/C, IncU, IncQ, IncF, IncI,
and ColE-type. The vast majority of plasmids carry a number of different transposons
(Tn3, Tn21, Tn1213, Tn1721, Tn4401), the 1st, 2nd, or 3rd class of integrons, IS
elements (e.g., IS26, ISPa12, ISPa13, ISKpn8, ISKpn6) and encode determinants such
as antibiotic and mercury resistance genes, as well as virulence factors. Although the
actual role of Aeromonas spp. as a human pathogen remains controversial, species of
this genus may pose a serious risk to human health. This is due to the considerable
potential of their mobilome, particularly in terms of antibiotic resistance and the possibility
of the horizontal transfer of resistance genes.

Keywords: Aeromonas, mobilome, plasmid, transposon, integron, virulence factor, antibiotic resistance gene,
horizontal gene transfer

Introduction

Bacteria of the genusAeromonas are common in a variety of environments. They have been isolated
from water, mammals, fish, invertebrates, birds, insects, soil (Palumbo et al., 1985; Ceylan et al.,
2009) as well as from food (Neyts et al., 2000; Kingombe et al., 2004). However, they mainly
inhabit all kinds of aquatic environments, such as rivers, lakes, ponds, estuaries of marine waters,
drinking water and groundwater as well as wastewater at various stages of purification (Gordon
et al., 2008; Reith et al., 2008; Moura et al., 2012). The genus Aeromonas is composed of a large
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number of species (31 species and 12 subspecies Martin-
Carnahan and Joseph, 2005; http://www.bacterio.net/aeromonas.
html) but only a few of them have been found to be primarily
pathogens of fish and warm-blooded animals, including humans.
In fish, mainly mesophilic A. hydrophila, A. veronii bv. sobria
and psychrophilic strains of A. salmonicida are predominantly
responsible for fish infections, e.g., furunculosis (Burr et al.,
2005; Dallaire-Dufresne et al., 2014), but A. caviae, A. jandaei,
A. sobria, A. bestiarum have also been reported to cause several
known types of diseases as well as unusual infections, e.g.,
epizootic ulcerative syndrome (Rahman et al., 2002). Mesophilic
A. hydrophila, A. caviae, and A. veronii bv. sobria strains
are important human pathogens, responsible for a variety
of infectious complications in both immunocompetent and
immunocompromised individuals. They cause various types
of infections of the digestive system, such as gastroenteritis
(Holmberg and Farmer, 1984; Figueras, 2005; Edberg et al.,
2007), respiratory (Bossi-Küpfer et al., 2007) and genitourinary
infections (Al-Benwan et al., 2007; Huang et al., 2007), wound
infections, infections of skin and soft tissue (Jorge et al., 1998;
Vally et al., 2004; Chim and Song, 2007), sepsis (Ko et al., 2000;
Lau et al., 2000; Tsai et al., 2006), eye infections (Khan et al.,
2007), and meningitis (Seetha et al., 2004).

The mechanisms of the pathogenicity of Aeromonas spp. are
not yet well understood, this being a concern because of recent
reports of antibiotic resistant clinical strains (Ghenghesh et al.,
2008; Wu et al., 2015). Moreover, cases of isolation of pathogenic
strains from the environment are increasingly frequent, which
can pose a serious threat to public health during natural disasters
(Lin et al., 2013). Taking into account the pathogenicity potential
ofAeromonas spp. and differences in antibiotic resistance profiles
it seems reasonable to study the genetic background of these
phenomena. In our study we have decided to focus on the
mobile part of the Aeromonas spp. genome, that is the mobilome,
since this topic has not yet been comprehensively reviewed.
Based on the current knowledge we have focused in this review
on plasmids, which carry a number of transposons, integron-
associated gene cassettes and IS elements, and encode such
determinants as antibiotic and heavy metal resistance, as well as
virulence factors.

Mobile Genetic Elements and Mechanisms
of Horizontal Gene Transfer

The mobilome is the total pool of mobile genes in the
genome and consists of mobile genetic elements (MGE), such
as plasmids, insertion sequences (IS), transposons, integron-
associated gene cassettes and bacteriophages. Plasmids are
mostly double-stranded and circular independent replicons of
extrachromosomal DNA. They cover a variety of sizes from small,
often cryptic plasmids to large megaplasmids with many features
allowing them to adapt to different environmental conditions
(Table 1). Other MGE are transposable elements (TE) such as
the insertion sequences (IS) and transposons (Tn) (Table 2).
IS are the most simple TE that reach about 0.5–3 kb and very
often are flanked by short sequences of inverted repeats (IR).

A transposase gene, encoding the transposition of an IS, is
usually located between IRs. Transposons have a more complex
structure, because in addition to the transposase, they also harbor
various genes responsible for specific phenotypes (Oliver et al.,
2013). Integrons are non-replicative genetic elements, which are
able to capture and incorporate gene cassettes by site-specific
recombination. They are composed of three main elements: the
intI gene, coding for a site-specific recombinase of the integrase
family, specific recombination site attI, where a gene cassette may
be inserted, and the Pc promoter, managing the transcription of
the captured gene (Stokes and Hall, 1989).

MGE are ubiquitous among all prokaryotes and play
a significant role in horizontal gene transfer (HGT) and
interspecies dissemination of resistance and virulence
determinants (Brouwer et al., 2011; Oliveira et al., 2014).
HGT occurs mainly by three mechanisms: DNA transformation,
conjugative transfer involving plasmids, and other conjugative
elements (conjugative transposons) and transduction by phages
(Thomas and Nielsen, 2005). In the case of Aeromonas spp. until
now gene transfer by transduction has never been observed.
However, Aeromonas spp. phages have been identified in various
environments, such asA. hydrophila phages Aeh1 and Aeh2 from
sewage (Chow and Rouf, 1983), A. hydrophila phage CC2 from
sewage in China (Shen et al., 2012), A. salmonicida phage phiAS4
from river in Korea (Kim et al., 2012a), and A. salmonicida
phage PAS-1 from aquaculture in Korea (Kim et al., 2012b).
Additionally, prophages have been also detected in Aeromonas
spp.: �O18P (Myoviridae) in A. media isolated from a pond
in Germany (Beilstein and Dreiseikelmann, 2008), AH1, AH2,
AH3, AH4, and AH5 in A. hydrophila isolated from epidemic
outbreak of catfish in the USA (Hossain et al., 2013). Hossain
et al. (2013) detected five putative prophages (AH1-5) located in
epidemic-associated regions in the genome. Unfortunately, their
studies have not shown the ability of the prophages to transduce
any bacterial genes. The other two mechanisms of HGT (DNA
transformation and conjugative transfer by plasmids) are
ubiquitous among Aeromonas spp. and will be the subject of
this review. Various MGE, such as plasmids, transposons, or
insertion sequences have been isolated from aeromonads, and
many of them, regardless of the strain origin, have been found
to carry resistance or virulence determinants (Sørum et al., 2003;
Dallaire-Dufresne et al., 2014).

Antibiotic Resistance Genes on MGE
Over the years, there has been very little research on the in vitro
susceptibility of Aeromonas bacteria isolated from clinical
material to various chemotherapeutic agents. Most of the
available information is focused on antibiotics used to treat
infections caused by A. hydrophila, A. caviae, and A. veronii
bv. sobria, and it is not yet certain whether these results can
be extrapolated to other species of this genus (Fricke et al.,
2009; Girlich et al., 2011; Maravić et al., 2013). The Clinical and
Laboratory Standards Institute (CLSI) has recently published
guidelines for the assessment of the sensitivity of clinical isolates
of Aeromonas spp. using disk diffusion and MIC tests, but these
data are based on testing of the three above- mentioned-, most
clinically relevant species of Aeromonas (Jorgensen and Hindler,
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TABLE 2 | Other than plasmid borne mobile genetic elements of Aeromonas spp.

Mobile genetic element Characteristics References

Tn3 - Tn3-tnpR/ISKpn8/blaKPC−2/ISKpn6 Picão et al., 2013

Tn21 - qacH, blaOXA−10, aadA1, sul1, intI
- IS4321, IS26, intI, aadA, sul1, mer
- mer

Reith et al., 2008; del Castillo et al., 2013;
Vincent et al., 2014

Tn1721 - tetA, tetR Rhodes et al., 2000; Sørum et al., 2003;
del Castillo et al., 2013

Tn4401 - blaKPC−2 Picão et al., 2013

IS26 - Sulfonamide resistance gene
- blaPER−1 (between ISPa12 and ISPa13 which
composed part of Tn1213)

Fricke et al., 2009; Girlich et al., 2011

IS6100 mphA-mrx-mphR Marti and Balcázar, 2012

ISVsa3 - sul2 Fricke et al., 2009

ISKpn9 - qnrS2 Marti and Balcázar, 2012

Class I integrons - 10.5 kb class I complex integron (intI, sul1, catA2,
aadA2, qacE�1, IS6100)
- 0.75 kb integron (sul1)
- blaGES−7, aacA4
- aadA7
- blaVEB−1
- blaSHV−12

Kulinska et al., 2008; McIntosh et al.,
2008; Girlich et al., 2011; Dobiasova et al.,
2014

IN2-like integron (class I) - Resistance to streptomycin/spectinomycin, quaternary
ammonia compounds, sulfonamides (sul2) and
chloramphenicol

Reith et al., 2008

IN4-like (class I) - intI, dfrA16, qacE�1, sul1, IS6100
- intI, aadA2, qacE�1, sul1, IS6100

Sørum et al., 2003; Rhodes et al., 2004

IN6-like (class I) intI, sul1, catA2, aadA2, qacE�1 Kulinska et al., 2008

IN37-like (class I) - intI, aac(6’)-Ib-cr, blaOXA−1, catB3
- intI, aac(6¢)-Ib-cr, blaOXA−1, catB3 and arr-3, qacE�1,
sul1

Picão et al., 2008; Marti and Balcázar,
2012

SXT - floR gene flanked upstream by a complete and
downstream by a truncated ISCR2 element

Gordon et al., 2008

Mobile insertion cassette (mic) - qnrS2 Cattoir et al., 2008; Picão et al., 2008; Han
et al., 2012a

2007) plus A. jandaei and A. schubertii (Clinical and Laboratory
Standards Institute, 2006). The most commonly administered
antibiotics In the treatment of Aeromonas infections are
ciprofloxacin, levofloxacin, sulfamethoxazole/trimethoprim,
amikacin, gentamicin, ciprofloxacin, and trimethoprim (Jones
and Wilcox, 1995). Sensitivity analysis of clinical strains
demonstrated that more than half of the strains tested were
resistant to antibiotics of the following groups: antifolates
(sulfamethoxazole), cephalosporins, penicillins (amoxicillin,
ampicillin, ampicillin-sulbactam, oxacillin, penicillin, ticarcillin.
The susceptibilities were determined by agar dilution or disc
diffusion method, respectively, according to CLSI guidelines,

but the ARG were not pin-pointed (Lamy et al., 2009; Aravena-
Román et al., 2012). However, the susceptibility profile of
individual strains can also vary depending on the particular
species, different geographical localization and environment
in which they occur (Ghenghesh et al., 2008). Such differences
could be related to the recommended approach for the treatment
of Aeromonas infections in different countries.

On the basis of fairly abundant literature data concerning
the antibiotic resistance of environmental Aeromonas strains, it
can be concluded that this phenomenon mostly concerns strains
isolated from various water environments, including wastewater
(Figueira et al., 2011), natural waters such as rivers (Girlich et al.,
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2011), lakes (Picão et al., 2008), and estuaries (Fiorentini et al.,
1998; Henriques et al., 2006), aquacultures (Schmidt et al., 2001;
Jacobs and Chenia, 2007; Yi et al., 2014a,b), and urban drinking
water (Carvalho et al., 2012). ARG recently found in water strains
encoded resistance to four major groups of antibiotics: β-lactams,
quinolones, aminoglycosides, tetracyclines and less frequently
to sulfonamides and trimethoprim, chloramphenicol, florfenicol,
macrolides, streptogramins, streptothricin, and ansamycins. In
general, the resistance profile and the presence of specific
resistance genes depends on the particular aquatic environment
(Piotrowska and Popowska, 2014). Given the risk to human
health, the incidence of ARG is alarming, particularly among
A. hydrophila, A. caviae, and A. sorbia, which are considered
opportunistic pathogens responsible for infections in both fish
and humans (Alcaide et al., 2010; Ottaviani et al., 2011; Shak et al.,
2011; Dias et al., 2012; Yi et al., 2014b). The localization of ARG
and virulence determinants of Aeromonas spp. on MGE such as
plasmids, insertion sequences, transposons and mobile integron
gene cassettes have been determined by many environmental
studies. There is some literature data on the localization of
ARG among clinical Aeromonas strains. However, in the recent
publications, the presence of ARG on plasmids (e.g., MOX, TEM,
PSE, and CTX-M β-lactamase genes, sul1 and sul2) has been
confirmed, but no characteristics have been provided (Ye et al.,
2010; Puah et al., 2013). Moreover, among clinical strains three
cases of β-lactamases genes located within integrons: blaVIM
from A. caviae (Adler et al., 2014), blaVIM−4 from A. hydrophila
(Libisch et al., 2008) blaIMP which also was located on 35-kb
plasmid from A. caviae have been identified (Neuwirth et al.,
2007). Also (Wu et al., 2011) identified the ESBL gene blaPER−3 in
twoA. caviae isolates. The gene was located in both chromosomes
and plasmids. Additionally, there is only one clinical report of
gene qnrS2 that has been found on a plasmid isolated from A.
veronii (Sánchez-Céspedes et al., 2008). However, all these reports
are still sufficient enough to look for any gene-MGE correlation
and consequently research on a larger scale should be conducted.

Plasmids
Analysis of a number of studies on Aeromonas spp. showed
the prevalence of different incompatibility groups of plasmids,
i.e., IncA/C, IncU, IncQ, IncF, IncI, and ColE-type, with the
greatest frequency of the first two groups (Table 1). The vast
majority of plasmids carry a number of different determinants
such as antibiotic and metal resistance genes or virulence
factors. Aeromonas spp. very often carry resistance plasmids (R-
plasmids) of various length belonging to different incompatibility
groups and of worldwide spread. Furthermore, numerous R-
plasmids contain multidrug-resistance (MDR) to three or more
antimicrobial classes (according to the European Centre of
Disease Prevention and Control, Magiorakos et al., 2012). Of
particular concern is the fact that most of the isolated plasmids
are broad-host-range (BHR), capable of conjugative transfer (tra
genes) or capable of mobilization (mob genes).

Plasmids of the IncA/C incompatibility group have been
described as conjugative and BHR, and capable of spreading
multidrug-resistance. A variety of isolates among different
bacterial genera, such as Escherichia, Salmonella, Vibrio, or

Yersinia (Winokur et al., 2001; Pan et al., 2008; Guo et al.,
2014) of environmental, animal and human origin have been
reported to carry these plasmids, which increases public health
concerns worldwide (Mataseje et al., 2010). The first member
of the IncA/C family was the pRA1 plasmid isolated in 1971
from A. hydrophila derived from Japan (Hedges et al., 1985).
The complete DNA sequence of this large plasmid (144 kb)
revealed that pRA1 and other members of the IncA/C family
shared 100 kb of a highly conserved plasmidic backbone with
more than 80% nucleotide sequence identity. Among the most
important core genes are those that encode type IV secretion-
like conjugative transfer operons. A complete set of the type
IV secretion system operons was also found on pR148 (MDR
plasmid) of IncA/C group isolated from diseased fish from
Thailand (del Castillo et al., 2013). Another interesting feature
was the hipAB toxin-antitoxin gene cluster, which was also
partially (hipAB-related gene cluster) described in the IncA/C-
related plasmid pAsa4, isolated from the fish pathogen A.
salmonicida subsp. salmonicida (Fricke et al., 2009). According
to the BLAST database, integrating conjugative elements (ICE)
were identified as the closest relatives of IncA/C plasmids
(Fricke et al., 2009). Antimicrobial resistance profile of pRA1 is
reduced compared with all other IncA/C plasmids sequenced of
Aeromonas spp., as it is limited to tetracyclines (tetRA cluster)
and sulfonamides (sul2) (McIntosh et al., 2008; del Castillo et al.,
2013). The sul2 gene was located next to the truncated ISVsa3
element, which has been observed previously in an IncA/C
plasmid isolated from a Spanish S. enterica strain (García et al.,
2011). Class D tetRA gene cluster was found within two IS26
elements that played a key role in the distribution of ARG on
different plasmids (Cullik et al., 2010). In addition to antibiotics,
heavy metals are also implicated as potential substances that
can co-select antibiotic resistance in the environment, resulting
in a frequent presence of heavy metal resistance genes on the
same MGE as ARG (Lazar et al., 2002). Mercury resistance
operons (mer) have been found on IncA/C plasmids such as
pR148 or pAsa4 in Aeromonas spp. The plasmid isolated from
A. salmonicida subsp. salmonicida showed 100% nucleotide
sequence homology to the mer operon carried by S. enterica
IncA/C plasmid pSN254 (McIntosh et al., 2008; del Castillo et al.,
2013). The pR148 plasmid also carries genes encoding resistance
to quaternary ammonium compounds. Moreover, phylogenetic
comparative studies revealed that pR148 is the most closely
related to human pathogenic E. coli and Acinetobacter baumanii.
This similarity indicates that the IncA/C group of plasmids
was transferred between different genera (McIntosh et al., 2008;
Moura et al., 2012). Furthermore, the IncA/C MDR plasmid
isolated by McIntosh et al., 2008 carried floR, tetA, sul2, and
strA/strB sequences on a cassette that had 99.9% nucleotide
sequence homology to that of the pSN254 plasmid isolated from
S. enterica. Recently Vincent et al. (2014) identified a 152-kb
pSN254b plasmid which is a different variant of pSN254. This
MDR plasmid provides resistance to chloramphenicol (floR),
florfenicol (floR), streptomycin (aadA), spectinomycin (aadA),
tetracycline (tet), sulfonamide (sul1), beta-lactam antibiotics
(blaCMY−2), quaternary ammonium compounds (sugE2), and
mercury (merA, merB, merD, merE, merP, merR, merT). There
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is no strong correlation between IncA/C plasmids and other
MGE, but suggestive associations have been observed and will be
described in the next chapter.

Plasmids of the IncU group have been isolated from
many clinical and environmental strains of Esherichia coli and
Aeromonas spp. Conjugative and BHR plasmids are members of
this group and are also involved in the dissemination of antibiotic
resistance among Aeromonas spp. This group of plasmids is
widely distributed around the world (Table 1) and it has been
postulated that they share a conserved backbone structure with a
variable region limited to resistance-determining genes (Rhodes
et al., 2000; Sørum et al., 2003). The RA3 plasmid (45.9 kb) was
isolated from A. hydrophila in Japan and serves as the reference
plasmid of the IncU group (Kulinska et al., 2008). Functional
analysis demonstrated that RA3, as a BHR plasmid, could self-
transfer, replicate and be stably maintained in Alpha-, Beta-,
and Gammaproteobacteria. RA3, similarly to other members
of the IncU group, is a MDR plasmid and contains a 10.5-
kb antibiotic resistance region that comprises class I integron
with sul1, catA2, aadA2, qacE resistance genes. The pAr-32
plasmid, isolated from A. salmonicida in Japan in 1970 is very
similar to the RA3 plasmid and carries the same integron
cassette, which is highly similar to the In6 integron of the pSa
plasmid (Sørum et al., 2003). Another IncU plasmid (pRAS1)
was isolated from A. salmonicida from Norway in 1989 and had
the same backbone structure as pAR-32. The region controlling
drug resistance in pRAS1 contains two main elements: the
complete class 1 In4-like integron with dfrA16, qacE, sul1 gene
cassette and a fragment of the Tn1721 transposon carrying tetA
resistance gene. The study of Schmidt et al. (2001) demonstrated
a positive correlation between oxytetracycline resistant strains of
Aeromonas spp. containing large plasmids, and the presence of
tetA genes. Among IncU R-plasmids, such as pRAS1, pASOT, or
pFBOAT, tetracycline resistance determinants were observed in
the complete or truncated Tn1721 (Adams et al., 1998; Rhodes
et al., 2000). In all cases the TetA determinant was located
within a 5.5-kb EcoRI restriction fragment. Based upon RFLP
assessment, antibiotic resistance, and frequency of transfer all
these tetracycline resistance encoding plasmids are considered
to be closely related to plasmid pIE420 isolated from a German
hospital strain of E. coli (Rhodes et al., 2000). The study of
Rhodes et al. (2004) showed that plasmids pRAS1 and pIE420
are probably identical. These results support the hypothesis that
IncU is an evolutionarily narrow group. However, Rhodes et al.
(2004) also characterized plasmid pFBOAT6 (84.7 kb), which had
a 31-kb region of core genes and a 54-kb region of genetic load,
which made this plasmid almost twice as large as the other IncU
plasmids. This was due to the presence of a 43-kb resistance
region flanked by Tn1721. This region is highly similar to those
of the pXF51, pIPO2, and pSB102 plasmids found in a plant-
associated bacterial hosts. Nevertheless, only several nucleotide
differences in the core genes were found between RA3 and
pFBAOT6 plasmids.

Many IncU plasmids also harbor quinolone resistance
determinants–qnrS2 and aac(6′)-Ib-cr (Table 1). Plasmid-
mediated qnr genes have been identified in many
Enterobacteriaceae isolates (Nordmann and Poirel, 2005;

Kehrenberg et al., 2006; Pasom et al., 2013) and recently also in
Pseudomonas spp. (Cayci et al., 2014). In addition, the qnrS2
gene has been recently detected in A. caviae clinical strain
isolated from a stool sample collected from a patient with
gastroenteritis (Arias et al., 2010). Among the environmental
isolates of Aeromonas spp., the qnrS2 gene was found in the
following plasmids: pAS37 and p42 from French strains of
A. punctata and A. media (Cattoir et al., 2008), p34 from a
Swiss strain of A. allasacharophila (Picão et al., 2008), pP2G1
from a Spanish strain (Marti and Balcázar, 2012) and recently
isolated unnamed plasmids from Thai strains of A. sorbia and A.
hydrophila (Dobiasova et al., 2014). All of the described plasmids
are medium to large in size (20–80 kb) and have an interesting
genetic descent. The first two plasmids, pAS37 and p34, contain
the qnrS2 gene as a part of a novel transposon-like genetic
structure called the mobile insertion cassette (mic) instead of
the transposase gene. Moreover, this specific mobile element
has been previously found in a Bacillus cereus strain, which
makes mic a possible vector of ARG between environmental and
clinical pathogens (de Palmenaer et al., 2004). Furthermore, the
study of Han et al. (2012a) revealed two small (6.9 kb) plasmids
(pAQ2-1 and pAQ2-2) carrying the mic-qnr2S structure. These
ColE-type plasmids were 99% identical and genes for plasmid
replication were organized in a similar way to ColE2-type cryptic
plasmids pAsa1, pAsa2, and pAsa3, isolated from A. salmonicida
subsp. salmonicida (Boyd et al., 2003). This observation suggests
that these mic-type structures are potential vehicles of plasmid-
mediated quinolone resistance determinants among different
groups of plasmids in various geographical locations, and more
importantly in clinically relevant strains.

Plasmids of the IncQ group are also strongly associated
with quinolone resistance that have been identified among
Aeromonas spp. These small, mobilizable plasmids (5.1–14.2-kb)
are BHR and are found in many bacterial species worldwide
(Loftie-Eaton and Rawlings, 2009). Among Aeromonas spp., two
plasmids (pBRST7.6 and pAHH04) isolated from A. hydrophila
strains from diseased fish and water samples harbored qnrS2
genes (Majumdar et al., 2011; Han et al., 2012c). In addition,
the exogenous pGNB2 plasmid obtained from the wastewater
treatment plant in Germany also harbored the qnrS2 gene
(Bönemann et al., 2006). In contrast to IncU plasmid-mediated
qnr genes, quinolone determinants of the IncQ plasmids were
not associated with any mic or integron, and did not harbor
any additional resistance determinants. Moreover, the pJA8102-
1 plasmid found in A. salmonicida from Japan, and pRAS3.1
and pRAS3.2 of Norwich A. salmonicida strains carried tetAR(C)
genes (L’Abée-Lund and Sørum, 2002). However, it is worth to
emphasize that pRAS3.1 and pRAS3.2 are considered variants of
the same plasmid pRAS3, which was also identified in a Scottish
A. salmonicida strain and appears to be identical to the R-plasmid
pJA8102-2.

In addition to the frequently occurring BHR plasmids that
were discussed earlier (IncA/C, IncU, IncQ), plasmids belonging
to IncFrepB, IncFIB, IncFIC and IncI groups were also observed
in the genus Aeromonas (Han et al., 2012b; Moura et al., 2012;
Maravić et al., 2013). The study of Maravić et al. (2013) found
40-kb conjugative plasmids described as narrow host range
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IncFIB group in 11 A. caviae strains isolated from Croatian
mussels. All the vectors carried the blaCTX−M−15 gene, encoding
ESBL β-lactamase. The same β-lactamase was also identified in
IncFIB plasmids isolated from E. coli, and a large (210 kb), non-
conjugative IncFIA plasmid identified in an A. hydrophila strain
(Dolejska et al., 2011; Gómez-Garcés et al., 2011).

Insertion Sequences and Transposons
Aeromonas spp. often contain transposons located on plasmids
and chromosomes (Tn3, Tn21, Tn1213, Tn1721, Tn4401) as
well as insertion sequences (e.g., IS26, ISPa12, ISPa13, ISKpn8,
ISKpn6) (Tables 1, 2). This makes the mobilome an even more
complex structure that likely plays an important role in the
dissemination of various resistance and virulence determinants.

McIntosh et al. (2008) found a transposon-like element
that contained the blaCMY−2 β-lactamase gene. This element is
known to be widely distributed among foodborne and clinical
Salmonella strains as well as other Enterobacteriaceae in Asia and
the United States. Other transposons (e.g., Tn21) are involved
in the dissemination of ARG and mercury resistance genes
(as in pAsa4) between gram-negative bacteria (Liebert et al.,
1999). Transposon Tn21 located on the pR148 plasmid carried
qacH, blaOXA−10, aadA1, and sul1 cassette, which showed 100%
similarity (when the last gene is excluded) to Acinetobacter
baumanii AYE genome. A Tn1721-like transposon, conferring
tetracycline resistance via tetA/R genes, was identified on the
same plasmid. Tn1721 belongs to the Tn501 subfamily and the
Tn3 family of transposons. The involvement of Tn1721 and
Tn1721-like elements in the dissemination of the tetA gene
has been observed in many other studies (Rhodes et al., 2000;
Pasquali et al., 2005; Girlich et al., 2010). This transposon is also
ubiquitous among IncU plasmids, which form another important
group within Aeromonas spp.

Furthermore, many transposons and various insertion
sequences were identified among Aeromonas spp. in association
with β-lactamases. The study of Girlich et al. (2011) revealed
many ESBL β-lactamases of different genetic backgrounds. The
blaSHV−12 gene was preceded by IS26 while the blaPER−1 gene
was located between ISPa12 and ISPa13, thus forming a part
of a composite transposon Tn1213. It is also alarming that
blaKPC−2 genes encoding carbapenemases have been isolated
from Aeromonas spp. recovered from hospital sewage (Picão
et al., 2013). The blaKPC−2 gene was found on the Tn4401
transposon and Tn3-tnpR/ISKpn8/blaKPC−2/ISKpn6 array.

Integrons
Integrons are widely distributed bacterial genetic elements
that are able to acquire gene cassettes frequently containing
ARG. Most of them belong to the 1st, 2nd, or 3rd class of
integrons and contain intI1, intI2, or intI3 integrase genes,
respectively (Hall et al., 1999). Integrons harbored by plasmids,
transposons and other mobile structures are called “mobile
integrons” (MI), because MGE promote their dissemination.
For this reason, MI are also involved in spreading antibiotic
resistance in the environment (Laroche et al., 2009). Integrons
found in Aeromonas spp. mainly belong to the class 1 and
carry a number of antibiotic resistance gene cassettes (Tables 1,

2). Schmidt et al. (2001) demonstrated that class 1 integrons
frequently occurred on oxytetracycline resistance plasmids (most
often tetA), but they did not observe any strong correlations
between integrons and tet genes or any other group of plasmids.
Similar results were reported by Jacobs and Chenia (2007), who
observed class 1 integrons and tet genes in 68.4% isolates that
also harbored different types of plasmid profiles. However, the
study of Moura et al. (2012) demonstrated a positive correlation
between integrons and FrepB and I1 plasmids isolated from
Aeromonas spp. from wastewater. Furthermore, Schmidt et al.
(2001) reported a close association of sulfadiazine/trimethoprim
resistance and class 1 integrons, whichmanifested in the presence
of sul1 and dfr gene cassette inserts in class 1 integrons.
Henriques et al. (2006), detected intI genes in 21% of Aeromonas
and 29.6% of Enterobacteriaceae isolates. The most often found
resistance gene cassettes contained various aadA genes, which
were also observed in later studies (Moura et al., 2007; Koczura
et al., 2014; Sarria-Guzmán et al., 2014). Integrons are also
correlated with β-lactamase genes, e.g., genes blaVEB−1 and
blaSHV−12were located in class 1 integrons on plasmids of
different sizes (30–170 kb) (Jacobs and Chenia, 2007; Carvalho
et al., 2012). Integrons of class 2 were found in a couple of studies
that indicated putative chromosomal location of these integrons
(Carvalho et al., 2012). Other integrons belonging to class 1, such
as IN2-like, IN4-like, IN6-like, IN37-like, or SXT, as well as many
undescribed integrons, have been also reported on Aeromonas
spp. plasmids (Table 1).

Virulence Factors on MGE
The role of potential virulence factors in the pathogenesis
of Aeromonas spp. is not yet fully understood. However,
several factors probably play important roles in the host
infection process. In addition to adhesive factors, the capsular
polysaccharide ofAeromonas (Khan et al., 2008), bacterial flagella
and pili are needed for the first stage of infection. Lysis proteases,
which are involved in the second step (metalloproteases, serine
proteases, and aminopeptidases) are capable of degrading
complex proteins present in the serum and connective tissue
(Merino et al., 1996; Han et al., 2008; Imamura et al., 2008;
Ottaviani et al., 2011; Puthucheary et al., 2012; John and Hatha,
2013).Many other factors are also likely to play important roles in
infections, including specific proteins required for adaptive acid
tolerance, biofilm formation and synthesis of autoinducers (e.g.,
acyl-homoserine lactone) in the quorum sensing process (Jangid
et al., 2007) and type three secretion systems (Vanden Bergh et al.,
2013). S-layers are also important, as they have the ability to
bind different proteins, such as the extracellular matrix proteins
fibronectin, laminin, and vitronectin, which provide a defense
against the components of the serum and protease digestion
(Noonan and Trust, 1997). The main pathogenic factors of
Aeromonas spp. have also been observed on several plasmids
(Table 1). Genes coding for the AexT toxin and three types of
secretion systems—type III (T3SS), type IV (T4SS), and type VI
(T6SS) have been identified on virulence plasmids (Table 1).

Six virulence plasmids were isolated from strains of the
fish pathogen A. salmonicida i.e., pASvirA from diseased fish,
pAsa4 and pAsa5 from the same French strain, pAsa6 from
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diseased fish in Portugal (Stuber et al., 2003; Reith et al., 2008;
Najimi et al., 2009) and pAsal1 and pAsal1B (Fehr et al., 2006;
Jones et al., 2012; Trudel et al., 2013). Three plasmids were
large (140–166.7 kb), i.e., pASvirA, pAsa4 and pAsa5, and in
addition the latter two harbored conjugative transfer genes.
Plasmid pAsa5 contained most of the T3SS genes that have
been shown to be required for virulence in A. salmonicida.
Three putative effector proteins (AopH, AopO, Ati2) and their
associated chaperones (SycH, SycO, Ati1) were identified in it.
The recommended temperature for growth of A. salmonicida by
Bergey’sManual of Systematic Bacteriology is 22–28◦C. However,
several studies demonstrated that culturing at 25◦C resulted in
a lack of virulence due to the loss of virulence factors, such as
the A-layer (Ishiguro et al., 1981), T3SS region (Stuber et al.,
2003), or AexT toxine (Najimi et al., 2009). The mechanism
of this phenomenon is not fully understood, but Stuber et al.
(2003) explained it as a result of the loss of a virulence plasmid.
As an example, the loss of plasmid pASvirA is accompanied
by the inability of A. salmonicida to secrete AexT and loss of
virulence toward RTG-2 cells. However, Tanaka et al. (2013)
proposed a mechanism of the loss of virulence mediated by
IS, wherein rearrangements are caused by recombination of
three IS from thermolabile plasmids, e.g., pAsa5 or pASvirA. A
consequence of the recombination of ISAS1, ISAS2, and ISAS11
is the deletion of the T3SS region in A. salmonicida, resulting
in the loss of virulence. This is consistent with a previous study
that showed a large number of IS in A. salmonicida genome
being involved in virulence gene disruption with the formation of
pseudogenes (Reith et al., 2008). Sequencing and analysis studies
of the total genome of A. salmonicida subsp. salmonicida A449
revealed the occurrence of 88 complete IS sequences of different
types: ISAs1, ISAs2, ISAs3, ISAs4, ISAs5, ISAs6, ISAs7, ISAs8,
ISAs9, ISAs10, ISAs11 and a significant number of pseudogenes
(170). Many putative transposons and IS sequences, as well
as AopH and SycH proteins are also present on pAsa6. This
vector is a non-mobilizable 18-kb plasmid with characteristic
strong homology to many pAsa5 genes (Najimi et al., 2009).
Comparative analyses suggested that pAsa6 might be derived
from pAsa5 through a deletion of numerous genes, or conversely,
pAsa5 might have been formed as a fusion of a pAsa6-like
plasmid with another megaplasmid. This is evenmore interesting
when one considers the fact that both plasmids were isolated
in different countries. Three genes of T6SS (vgrG, icmF, hcp)
were found on pAsa4, but the majority of them were located
on the chromosome of A. salmonicida subs. salmonicida or A.
hydrophila (Reith et al., 2008). It has been demonstrated that
T6SS plays an important role in the pathogenesis of Aeromonas
strains, in the translocation of hemolysin protein (Hcp) into the
host cells (Suarez et al., 2008). In addition, two small mobilizable
plasmids, pAsal1 and pAsal1B (6.7 and 9.0 kb, respectively)
encoding T3SS effector protein AopP, were recently discovered
(Trudel et al., 2013). AopP has been reported to have a inhibitory
activity against the NF-κB pathway in cultured cells (Fehr et al.,
2006) and has potent pro-apoptotic activity when expressed in
cultured mammalian macrophage or epithelial cells (Jones et al.,
2012). Trudel et al. (2013) showed that pAsalB is a combination
of pAsal1 and ISAS5, where this 2614 bp IS belongs to the

IS21 family inserted in the mobA gene sequence of the pAsal1
plasmid.

Conclusions

Bacteria from the genus Aeromonas have a complex mobilome
consisting of many different MGE. This review presents
the characteristics of more than 26 plasmids belonging to
different incompatibility groups, all of which were isolated from
environmental strains. Resistance genes have been detected in 21
of them, and 7 meet the MDR criteria for the isolated Aeromonas
strains. Of particular note are the conjugative broad-host-range
plasmids, belonging to the incompatibility group IncA/C, IncU,
IncQ, IncF, IncI, and ColE-type. These plasmids are primarily
responsible for multi-drug resistance among bacteria both in
clinical and natural environments. They harbor resistance genes
against antibiotics of key importance in clinical therapy, such
as the quinolones, β-lactams, aminoglycosides, tetracyclines and
sulfonamide. Aeromonas strains causing infections in humans
may transfer MGEs carrying resistance genes to pathogenic or
opportunistic bacteria in the human microbiome, and thus pose
a threat to public health. This in vivo transfer has been reported
from two clinical outbreaks in France where a 180-kb plasmid
carrying the blaTEM−24 gene has been isolated from Enterobacter
aerogenes and two Aeromonas species: A. hydrophila and A.
caviae (Marchandin et al., 2003; Fosse et al., 2004). The same
plasmid has been previously characterized in the case ofKlebsiella
pneumonia and Pseudomonas aeruginosa (Giraud-Morin and
Fosse, 2003; Marchandin et al., 2000) indicative of their broad
host range potential among pathogenic bacterial species. Studies
of antibiotic resistance in clinical strains focus solely on the
determination of susceptibility using disk diffusion tests and
subsequent classification to the R (resistant) or S (susceptible)
groups according to the guidelines of such organizations as CLSI
(Clinical and Laboratory Standards Institute, 2006). Publications
concerning such strains rarely explain the molecular mechanisms
of resistance, i.e., the identification of specific genes by PCR
amplification or hybridization. There are also no studies on
the correlation between the presence of these genes and MGE,
in contrast to studies on environmental Aeromonas strains.
Hence, the comparison of the mobilome of environmental and
clinical isolates of Aeromonas at this stage of research is virtually
impossible. One can only compare the phenotypic profiles of
resistance. The resistance profile of Aeromonas clinical and
environmental strains is very similar, but additional resistance
to chloramphenicol and florfenicol can be found in the latter
(Michel et al., 2003). However, resistant profiles differ depending
on species and geographical localization. The main reason for
this is the serious lack of sufficient data about the contribution
of antibiotic resistant clinical strains of Aeromonas that are not
under epidemiological surveillance in most parts of the world. At
this point it is worthwhile to refer to the term “clinical strain”
itself, and answer the question what the difference between
“clinical” and “environmental” strain is. While in the case of
environmental strains an explanation arises spontaneously, it is
no longer so obvious for clinical strains. Based on an analysis
of the literature data, it can be said that the site of isolation is
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the essence of the definition of a clinical strain and the ability to
cause disease in humans. Thus, clinical strains may be the same
as environmental ones, while the opposite is not always true. The
aquatic environment seems to be a “hot spot” for the transmission
of antibiotic resistance caused by the selective pressure associated
with excessive use of antimicrobial compounds. A wide range of
ARG have been found in Aeromonas spp., as described in the
preceding chapters. Although numerous ARG have been found
on plasmids and other MGE, sulfonamide (sul), tetracycline
(tet), quinolone (qnr), and β-lactam (bla) resistance genes are
most common. Nevertheless, there is no correlation between one
definite group of plasmids and any particular ARG. In addition,
among heavy metal resistance genes, only mercury resistance
genes (mer) have been found on MGE. They were identified
among several R-plasmids that belong to IncA/C. It is worth
noticing that the co-localization of heavy metal resistance and
ARG on the same MGE can promote a co-selection mechanism
(Pérez-Valdespino et al., 2014; Yi et al., 2014b).

It should also be noted that other MGE, such as IS,
transposons or mobile integrons form a complex mobilome
and may play a significant role in the dissemination of ARG.
This can be explained by natural transformation, which is
a general property of Aeromonas spp. in the environment
(Huddleston et al., 2013). Frequent transformation of exogenous
DNA may indicate different genetic structures of Aeromonas
populations, including the participation of various MGE. This is
consistent with previous observations in that there is no clear,
detectable association between Aeromonas species, virulence
pattern, source or origin (Tanaka et al., 2013; Martino et al.,
2014). However, a review of the literature data shows a clear
association between mobilome and ARG. This makes the genus

Aeromonas a complex one and highlights the fact that there
are many mechanisms of antibiotic resistance dissemination
among prokaryotes. The situation is different for virulence
factors. As knowledge about virulence factors and infection is
incomplete, there is no clear evidence of their association with
MGE. However, it has been demonstrated that the genomic
plasticity of A. salmonicida is dependent on various IS. The
majority of clinical strains, especially of A. caviae are considered
pathogenic to humans, but they did not present all of the main
known virulence factors (Janda and Kokka, 1991; Khajanchi
et al., 2010; Ottaviani et al., 2011). The low prevalence of these
factors suggests that pathogenicity may not depend on these
virulence markers, but primarily on adaptation toward specific
habitats. It should be noted that these processes also play a
significant role in the distribution of strains in the environment.
Originally, Aeromonas spp. were described as fish pathogens.
Currently, these bacteria are considered emerging human
pathogens, but their effective role in virulence toward humans
remains controversial. This does not change the fact that the
mobilome ofAeromonas has a considerable potential, particularly
in terms of antibiotic resistance, the possibility of horizontal
transfer of resistance genes, and the threat it may pose to
humans.
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