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Probiotic bacteria offer a number of potential health benefits when administered in
sufficient amounts that in part include reducing the number of harmful organisms in
the intestine, producing antimicrobial substances and stimulating the body’s immune
response. However, precisely elucidating the probiotic effect of a specific bacterium
has been challenging due to the complexity of the gut’s microbial ecosystem and
a lack of definitive means for its characterization. This review provides an overview
of widely used and recently described probiotics, their impact on the human’s gut
microflora as a preventative treatment of disease, human/animal models being used
to help show efficacy, and discusses the potential use of probiotics in gastrointestinal
diseases associated with antibiotic administration.
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Microbial Ecology of the Human Gastrointestinal Tract

The human intestinal microbiota is a complex ecosystem with considerable impact on human
health and well-being, contributing to maturation of the immune system and providing a direct
barrier against pathogen colonization (Doré and Corthier, 2010). It consists of bacteria, archaea,
some protozoa, anaerobic fungi, and different bacteriophages and viruses, and it has been estimated
that more than 1000 species of microbes inhabit the human intestine (Tuohy et al., 2012). The
presence of a great number of microbes (up to 5 × 1011 bacterial cells per gram of intestinal
contents) suggests strong regulatory effects on the human host, and recent findings suggest that
gut microbiota can have a considerable impact on both our weight and mood (Duca et al.,
2014; Naseribafrouei et al., 2014). The composition and function of human microbial populations
associated with various body sites have been studied with the help of metagenomic tools as
part of two recent initiatives – the NIH Human Microbiome Project (HMP) and the European
Metagenomics of the Human Intestine (metaHIT) project (NIH HMPWorking Group et al., 2009;
Dusko Ehrlich andMetaHITConsortium, 2011). Thesemassivemolecular approaches have already
revealed the presence of three different clusters, or enterotypes, which correspond to one of three
most abundant genera of human intestine – Bacteroides, Prevotella, and Ruminococcus (Arumugam
et al., 2013).

Bacteria that initially colonize the large gut of an infant are facultative anaerobes, such as
Escherichia coli and Streptococcus sp. These species metabolize oxygen in the gut, thereby creating
anaerobic conditions. Subsequent colonization largely depends on food profile and environmental
factors (i.e., sanitary conditions). After the full formation of the gastrointestinal microflora, its
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composition has been shown to include such genera as
Bacteroides, Bifidobacterium, Eubacterium, Clostridium,
Lactobacillus, Fusobacterium, and various Gram-positive
cocci (Fooks et al., 1999; Wallace et al., 2011).

Within the gastrointestinal tract (GIT), the microbiota
provides various functions, such as digestion of essential
nutrients and maturation of intestinal epithelial cells. Studies on
mice have shown a number of significant effects of microbiota
on the host: in ex-germ-free reconventionalized mice, their
intestinal epithelium was thicker, kinetics of enterocytes – faster,
short-chain fatty acids were produced at significantly higher
concentrations, and there was a normal level of immunological
activity present, compared to germ-free animals (Aureli et al.,
2011). Microbes also have the ability to affect physiologic
parameters, providing systemic effects on blood lipids and
generally influencing the immune system, as well as inhibiting
harmful bacteria (Mikelsaar, 2011). Pathogen inhibition by
human intestinal microbiota may provide significant human
health benefits through protection against infection as a natural
barrier against pathogen exposure in the GIT (Wallace et al.,
2011). Factors such as food contamination by pathogens, as
well as the high load of antibiotics in soil and animal feed,
can influence the microbial ecology of human GIT (Sapkota
et al., 2007). Using molecular genetic tools, it has been shown
that antibiotics could induce significant alterations in the
dominant colonic microbiota that are not detectable using
bacteriological (culture-based) techniques, with effects lasting
for up to 2 months (Mangin et al., 1999). Several more
specific disorders involve disruption of the human microflora
ecology: acute gastroenteritis, Clostridium difficile infection
(CDI), necrotising enterocolitis in neonates, irritable bowel
syndrome and Helicobacter pylori infection (Kotzampassi and
Giamarellos-Bourboulis, 2012). Probiotics are currently being
examined for their potential treatments of these aforementioned
disorders.

Probiotic Bacteria

According to the popularized definition by the Food and
Agriculture Organization/World Health Organization, and
as grammatically modified by Hill et al. (2014), probiotics
are defined as “Live microorganisms that, when administered
in adequate amounts, confer a health benefit on the host”
(FAO/WHO, 2001). The most common probiotics include
representatives of lactobacilli, enterococci, bifidobacteria,
and yeasts (Table 1). In addition, bacterial mixtures may be
used to achieve the complex beneficial effect of probiotics
(Caballero-Franco et al., 2007).

Presumed health benefits of probiotics include reducing
harmful organisms in the intestine, producing antimicrobial
factors, and stimulating the body’s immune response (Collado
et al., 2007; Foligné et al., 2010; Konieczna et al., 2013).
Some of the beneficial effects of probiotics (e.g., lowering of
cholesterol level) are yet to be substantiated by well-controlled
clinical trials. However, there are a growing number of studies
providing data on effects of probiotic bacteria on the human

immune system and on microflora of the GIT (Holzapfel
and Schillinger, 2002; Foligne et al., 2007; Verdú et al., 2009;
Wen et al., 2012). Increasingly, reports of the human/animal
microbiome playing a central role in other key aspects of
health functionality are emerging, including beneficial impacts
on the treatment of metabolic disorders, such as obesity and
type 2 diabetes, improvement of bowel function in patients
with colorectal cancer, potential cognitive, and mood-enhancing
benefits, antidepressant, and anxiolytic (antianxiety) activity
(Desbonnet et al., 2008; Bravo et al., 2011; DiBaise et al., 2012;
Lee et al., 2014a; Owen et al., 2014). The latter anxiolytic effect has
even led to the emergence of the new term, psychobiotic, coined
by Dinan et al. (2013) as a “live organism that, when ingested in
adequate amounts, produces a health benefit in patients suffering
from psychiatric illness.”

Products containing probiotic bacteria generally include
supplements and foods. Live probiotics are commonly available
in fermented dairy products and probiotic-fortified foods. These
bacteria are added into numerous foods and beverages, ranging
from yogurts to breakfast cereals. There are also tablets, capsules,
powders, and sachets containing probiotics in freeze-dried form.
Functional foods, defined as food preparations with various
health-related properties, often include bacterial strains with
declared probiotic properties (Turroni et al., 2011). The scientific
interest in probiotics is growing exponentially: the search for
published papers featuring the keyword “probiotic” in NIH
PubMed database revealed 7265 articles for the period from
2000 to 2010, with 953 of them being clinical trials. Within
the following 5 years (up to May 20th 2015), the frequency
of publications doubled with 7979 papers being published,
including 778 clinical trials.

Lactic Acid Bacteria
Lactic acid bacteria (LAB) are Gram-positive, non-spore forming
cocci, coccobacilli, or rods, which generally have non-respiratory
(fermentative) metabolism and lack true catalase. Unlike
bifidobacteria, which are active in lower parts of the colon,
lactobacilli are prevalent in the upper GIT (Turroni et al.,
2011). This group is also a normal member of the human
microflora, found in the oral cavity, the small intestine, and
the vaginal epithelium, where it is thought to play beneficial
roles (Gomes and Malcata, 1999). Among the beneficial effects,
lactobacilli can improve digestion, absorption, and availability of
nutrients (Wallace et al., 2011). Furthermore, LAB are capable of
hydrolyzing compounds that limit the bioavailability of minerals,
like tannin and phytate, due to tannin acylhydrolase and phytase
activities (Turpin et al., 2010). In addition, it was shown that some
lactobacilli strains could enhance mineral absorption in Caco-2
cells and improve the nutritional status of the host by producing
B-group vitamins. More recently, the role of lactobacilli in energy
homeostasis, particularly in obese patients, has been the object of
an increased interest (Guo et al., 2010;Mikelsaar, 2011). A further
potential positive impact of LAB is their ability to inhibit or kill
H. pylori, which is now regarded as the major cause of gastritis
and peptic ulcers and is a risk factor for gastric malignancy
(Hamilton-Miller, 2003). In addition, both Lactobacillus sp. and
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TABLE 1 | Microorganisms with reported probiotic potential.

Probiotic
group

Species Details of a representative study Reference

Bifidobacteria Bifidobacterium
animalis

Fermented oat milk with B. animalis sp. lactis BB-12 R©; double-blind randomized
placebo-controlled clinical trial; n = 209; 35% improvement in bowel movement.

Pitkala et al. (2007),
Jungersen et al. (2014)

B. breve B. breve M16-V powder with or without starch; F344/Du rat pups; n = 46;
downregulation of the expression of inflammatory molecules.

Shimakawa et al. (2003)

B. adolescentis B. adolescentis ATCC 101; female germ-free rats; n = 30; significant modulation of
both systemic and the intestinal immune response to Bacteroides thetaiotaomicron
DSMZ 2079.

Scharek et al. (2000)

B. longum B. longum, isolated from human GIT; double-blind randomized placebo-controlled
clinical trial; n = 29; significant inhibitory effect on viral gastroenteritis symptoms.

Lee et al. (2014b)

B. infantis B. infantis 35624 was administered by gavage; C57BL/6 mice; n = 64; decrease in
the severity of dextran sulfate sodium-induced colitis, immunomodulation.

Konieczna et al. (2013)

Lactobacilli L. acidophilus L. acidophilus – SDC, administered in capsules; double-blind randomized
placebo-controlled clinical trial; n = 40; 23.6% reduction (compared to placebo) in
the severity (pain, discomfort) of Irritable Bowel Syndrome.

Sinn et al. (2008)

L. fermentum,
L. amylovorus

Microencapsulated bacteria; double-blind randomized placebo controlled clinical
trial; n = 28, obese adults; L. fermentum – 3% loss in total fat mass,
L. amylovorus – 4% loss in total fat mass, a significant reduction in the abundance
of Clostridial cluster IV.

Omar et al. (2013)

L. rhamnosus L. rhamnosus GG powder; double-blind randomized clinical trial; n = 559; decrease
in frequency and duration of acute watery diarrhea.

Basu et al. (2009)

L. paracasei L. paracasei ST11, lyophilized form; double-blind randomized placebo-controlled
clinical trial; n = 230, male infants and young children; significant benefit in the
management of children with non-rotavirus-induced diarrhea.

Sarker et al. (2005)

L. johnsonii L. johnsonii La1 in dietary product; double-blind randomized placebo-controlled
clinical trial; n = 326, children, found positive for Helicobacter pylori; significant
decrease in σ13CO2 above baseline values (outcome of a test for H. pylori).

Cruchet et al. (2003)

L. reuteri L. reuteri SD 2112; randomized controlled clinical tral; n = 40, infants and children;
significant decrease in diarrhea symptoms.

Shornikova et al. (1997)

Pediococcus
pentosaceus

P. pentosaceus NB-17; mouse spleen cells were co-cultivated with heat-killed
bacteria; in vitro investigation of the production of cytokines; effective stimulation of
immune activities and allergic inhibitory effects.

Jonganurakkun et al. (2008)

Oenococcus oeni O. oeni 9115; female BALB/c mice with 2, 4, 6-trinitrobenzene sulfonic
acid-induced experimental colitis; n = 20; significant decrease in severity of colitis.
Several O. oeni strains were able to modulate the immune response of
immunocompetent cells in vitro.

Foligné et al. (2010)

Enterococci E. durans E. durans LAB18s; in vitro study; antimicrobial activity, antioxidant ability, evidenced
in both culture supernatants and intracellular extracts; resistance to acidic
conditions (pH 3) and bile salts.

Pieniz et al. (2014)

E. faecium E. faecium MMRA; in vitro study; genes, coding enterocins A, B, P and X; high
survival rates under stress caused by acidic pHs (2-5) or bile salts (0.3%), and a
high adhesive potential.

Rehaiem et al. (2014)

E. faecalis E. faecalis UGRA10; in vitro study; production of AS-48 enterocin; ability to form
biofilms and to adhere to Caco 2 and HeLa 229 cells.

Cebrián et al. (2012)

E. lactis E. lactis IITRHR1 was administered by gavage; male Wistar rats with
acetaminophen-induced hepatotoxicity; n = 42; pretreatment with the bacterium
lowered the level of biomarkers of hepatotoxicity in serum; significant increase in the
level of antioxidants; modulation of key apoptotic/anti-apoptotic proteins
(cytochrome-c, Bcl2, Bax, expression of caspases).

Sharma et al. (2012)

Yeasts Saccharomyces
boulardii

Granulated S. boulardii; double-blind randomized placebo-controlled clinical trial;
n = 200, children with acute diarrhea; significant decrease in severity of symptoms
and duration of hospital stay.

Kurugol and Koturoglu (2005),
Kelesidis and Pothoulakis
(2012)

Bifidobacterium sp. strains can reduce the side effects of H. pylori
eradication therapy (Canducci et al., 2002).

Pediococci are also related to the LAB group and are utilized
in industrial fermentations of foods and silage (Raccach, 2014).
Pediocin-producing Pediococcus sp. strains are of potential

interest to food safety (Raccach, 2014), with three of them
potentially possessing probiotic properties – Pediococcus
pentosaceus, P. parvulus, and P. acidilactici. Osmanagaoglu
et al. (2010) comprehensively studied the potential of a
human P. pentosaceus isolate for probiotic use, and reported
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that the strain produced an anti-Listerial bacteriocin, had
excellent autoaggregation characteristics and was also able to
co-aggregate with Salmonella enterica serotype typhimurium
and enterotoxigenic Escherichia coli (Osmanagaoglu et al., 2010).
Antagonistic activity against Listeria monocytogenes was also
discovered in P. acidilactici (Guerra and Pastrana, 2002). Clinical
trials employing another strain of Pediococcus sp. revealed
that the administration of P. parvulus decreased the serum
cholesterol levels and increased counts of fecal Bifidobacterium
sp. (Mårtensson et al., 2005).

Another group of LABpromoted as probiotics are enterococci,
which reportedly help in the maintenance of normal intestinal
microflora and stimulate the immune system (Bhardwaj et al.,
2008). Studies of potential probiotic properties of E. faecium
showed its efficacy in reducing the recovery period of acute
diarrhea (Benyacoub et al., 2003). Another study by Pieniz et al.
(2014) showed that E. durans possessed antimicrobial activity
and antioxidant ability and was resistant to simulated gastric
juice and bile salts. Though enterococci have probiotic potential,
they are considered opportunistic pathogens for humans as they
might cause nosocomial infection and are also known to possess
resistance to vancomycin (Tambyah et al., 2004). Due to these
controversial properties, the use of enterococci as probiotics
remains under debate.

Bifidobacteria
Bifidobacteria are major constituents of the GIT microbiota
of animals and humans. They are Gram-positive, non-motile
anaerobic saccharolytic bacteria (Gomes and Malcata, 1999).
In the gut environment, bifidobacteria have a commensal
relationship with their hosts, and contribute to host nutrition
by utilizing complex carbohydrates, which are important sources
of carbon and energy, but are not degraded in the stomach
or intestine (Biavati, 1994). These substances include plant-
derived dietary fiber and diet-related carbohydrates, such as
starch, galactan, sucrose, amylopectin, and pullulan (Ventura
et al., 2007, 2012). The capacity of bifidobacteria to metabolize
non-digestible host dietary carbohydrates (prebiotics) can be
used for selective stimulation of certain strains colonizing
the intestinal tract. Bifidobacteria used as probiotics include
strains belonging to species of Bifidobacterium lactis, B.
bifidum, B. animalis, B. thermophilum, B. breve, B. longum,
B. infantis, and B. adolescentis (Table 1). These bacteria
have been shown to inhibit the adherence of enterotoxigenic
E. coli, enteropathogenic E. coli, and C. difficile to intestinal
epithelial cells, an important trait for use of these bacteria
as probiotics (Tsai et al., 2008). Additional beneficial effects
of bifidobacterial strains include the prevention or alleviation
of infectious diarrhea and the improvement of inflammatory
bowel disease symptoms (Sanz, 2007). Bifidobacteria have also
been shown to modulate the host’s immune response against
other indigenous microflora (e.g., B. adolescentis down-regulates
humoral immunity to Bacteroides thetaiotaomicron; Scharek
et al., 2000). Some bifidobacterial strains suppress H. pylori-
induced genes in human epithelial cells (Shirasawa et al., 2010)
while other Bifidobacterium sp. cells and culture supernatants
exerted inhibitory effects against Streptococcus mutans and

Streptococcus sobrinus, important etiological agents in human
dental caries (Lee et al., 2011).

Yeasts
Saccharomyces boulardii is one of the best-studied probiotic
species, with a long history of successful use in treatment of
multiple gastrointestinal disorders. The administration of this
probiotic in lyophilized form was found effective in cases of
diarrhea by decreasing the duration of the disease, regardless of
its cause (McFarland, 2007; Dinleyici et al., 2012; Shan et al.,
2013). It has also been reported that S. boulardii prevented
and treated relapses of inflammatory bowel disease, including
moderate cases of ulcerative colitis (Guslandi et al., 2000;
Guslandi et al., 2003; Choi et al., 2011). Interesting results
have also been reported by Lim et al. (2015), suggesting
that yeasts can enhance the growth of other probiotics under
acidic conditions: Saccharomyces cerevisiae EC-1118 was found
to significantly enhance the viability of the probiotic strain
Lactobacillus rhamnosus HN001 at pH 2.5–4.0. The use of
S. boulardii in reduction of C. difficile infection relapse is still
under debate due to controversial results of clinical trials (Flatley
et al., 2015). Among other yeasts species, Torulaspora delbrueckii,
Debaromyces hansenii, Yarrowia lipolytica, Kluyveromyces lactis,
Kluyveromyces marxianus, and Kluyveromyces lodderae have
shown strong antagonistic effect against pathogenic bacteria
and high acid tolerance (Kumura et al., 2004; Psani and
Kotzekidou, 2006; Chen et al., 2010). Despite an excellent
record of safe use, yeasts may still be the cause of localized
infections in immunocompromised patients (Thygesen et al.,
2012).

Akkermansia muciniphila
Another recently described microorganism with possible
probiotic potential is Akkermansia muciniphila – a mucin-
degrading bacterium that resides within intestinal mucus layers
(Derrien et al., 2004). According to several studies, obese patients
have significantly lower amounts of this bacterium in their
GIT (Collado et al., 2008; Karlsson et al., 2012). The genome
sequence of A. muciniphila suggests the ability of this bacterium
to metabolize a variety of complex carbohydrates, as well as
synthesize multiple amino acids, vitamins, and cofactors (van
Passel et al., 2011). Its influence on metabolic processes in the
GIT is not fully investigated; however, it has already been shown
that this bacterium may be a potential treatment for type II
diabetes. Shin et al. (2014) have shown that oral administration
of A. muciniphila to mice induced Foxp3 regulatory T cells
in the visceral adipose tissue, which attenuated adipose tissue
inflammation. Based on these results it has been suggested
that pharmacological manipulation of the gut microbiota in
favor of A. muciniphila might be beneficial in the treatment of
diabetes.

Faecalibacterium prausnitzii and Other
Clostridia
Another bacterium that has been demonstrated to have a
considerable impact on human gastrointestinal microbiota is
Faecalibacterium prausnitzii of the Clostridium sp. cluster IV.
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This microorganism accounts for 5–15% of the total fecal
microbiota, making it one of the most abundant butyrate-
producing bacteria in the GIT (Hold et al., 2003; Flint et al.,
2012). Since butyrate is a primary energy source for intestinal
epithelial cells, it is essential for maintenance of epithelial
barrier integrity. Multiple beneficial effects of butyrate for health
also include reduction of cancer progression, protection against
pathogens, and stimulation of the immune system (Macfarlane
and Macfarlane, 2011). The reduction of F. prausnitzii counts
in fecal and biopsy samples has been observed in multiple
studies of inflammatory bowel disease (especially, ileal Crohn’s
disease and ulcerative colitis), suggesting that the presence
of this species is important for normal GIT function (Wang
et al., 2007; Swidsinski et al., 2008; Andoh et al., 2012). The
first gnotobiotic rodent model with F. prausnitzii showed that
it could influence gut physiology through the production of
mucus O-glycans, thereby affecting the quality and quantity of
produced mucus (Wrzosek et al., 2013). Though F. prausnitzii
dysbiosis might be an important marker in the development
of disease, routine diagnostic tools have not been developed
mainly due to the extreme sensitivity of this species to
oxygen.

Other bacteria of the class Clostridia might also find use as
potential probiotics, since they are highly abundant in human
GIT microbiota and may play an important role in metabolism
and immune system function. Atarashi et al. (2013) have shown
that a mixture of 17 strains of Clostridium sp., belonging to
clusters IV, XIV, and XVIII, were able to suppress experimental
colitis in mice through induction of interleukin-10-producing
regulatory T cells. A similar mechanism of colitis suppression,
via IL-10 production by induced macrophages, was observed
using strain C. butyricum MIYAIRI 588 (Hayashi et al., 2013).
According to another recent study, when mixed with B. infantis,
C. butyricum was effective in treatment of experimentally-
induced antibiotic-associated diarrhea in mice, and the beneficial
effect of the mixture was superior to single strains (Ling et al.,
2015). However, though clostridia have potential for use as
probiotics, there is still not enough evidence to support their
medical efficacy and safety for humans.

Use of Probiotics in Prevention and
Treatment of Antibiotic-Associated
Diseases

Although most antibiotics are generally safe, some have the
potential to cause life-threatening side effects. Antimicrobial
side effects are adverse drug reactions involving one or
more organ systems. Moreover, even a short-term course of
antibiotics may have a long-term negative impact on the
normal human gut microbiota (Jernberg et al., 2010). The
most commonly used classes of antibiotics include penicillins,
cephalosporins, aminoglycosides, fluoroquinolones, macrolides,
and tetracyclines; each of these compounds can cause their own
specific side-effects (Cunha, 2001). In fact, most traditionally
used antibiotics are able to cause health problems in the
GIT, and are commonly related to disturbances in microflora

composition caused by survival and spread of resistant strains.
For instance, penicillins, which are known for having the
least-frequent and -severe side effects, may cause diarrhea,
and nausea, vomiting, and upset stomach. Fluoroquinolones
are also considered relatively safe, but may similarly induce
nausea, vomiting, diarrhea, and abdominal pain (Bertino and
Fish, 2000). Side-effects of macrolides include GIT-associated
nausea, vomiting, and diarrhea, whereas adverse effects of the
tetracyclines depend on the concentration of the antibiotic in
the affected organ. Their common side-effects include cramps
or burning of the stomach, diarrhea, sore mouth, or tongue
(Rubinstein, 2001). Research in this field is ongoing and
has already provided evidence for efficacy of probiotic use
for prevention of health problems emerging as a result of
antibiotic use. Examples of such diseases are antibiotic-associated
diarrhea (AAD) and C. difficile-associated diarrhea (CDAD;
pseudomembranous colitis).

Antibiotic-associated diarrhea is defined as “otherwise
unexplained diarrhea that occurs in association with the
administration of antibiotics” (Friedman, 2012). However, mild
cases of C. difficile infection are sometimes also considered as
the cause of AAD (Kelly et al., 1994). The disease comes as
one of the most frequent side effects of antibiotic use: 5–39%
of patients, depending on the type of antibiotic (e.g., certain
β-lactam antibiotics are more likely to cause diarrheal side-
effects than cephalosporins) and is associated with increased
length and cost of hospitalization (Videlock and Cremonini,
2012). There are several mechanisms of antibiotic effect on
humans that can result in AAD. These include osmotic diarrhea,
caused by suppression of anaerobic bacteria and a reduction
in carbohydrate metabolism, disruption of protective effect of
commensal bacteria and reduction of colonic mucosal resistance
to pathogenic opportunistic bacteria. Full restoration of the
normal gut microbiota may take several weeks or even months
(Friedman, 2012; Kaier, 2012).

Many studies have been conducted assessing the efficacy
of probiotics in the treatment of AAD and have provided
data supporting the usage of both single-strain and mixed-
probiotics for diarrhea treatment (Surawicz, 2003; Szajewska
et al., 2006; McFarland, 2009). A meta-analysis by Hempel
et al. (2012) revealed 82 studies that provided evidence of
probiotic efficiency in treatment of AAD. Microorganisms
used in these studies included the genera Lactobacillus,
Bifidobacterium, Saccharomyces, Streptococcus, Enterococcus, and
Bacillus. According to Friedman (2012), several mechanisms
of action of probiotics contribute to the prevention and
treatment of diarrhea: enhancing mucosal barrier function
by secreting mucins, increasing tight junctions in epithelial
cells, providing colonization resistance, producing bacteriocins,
increasing production of secretory lgA, producing balanced
T-helper cell response, increasing production of IL-10 and
transforming growth factor beta. Collectively, these factors
contribute to the restoration of a normal gastrointestinal
balance following damage by antibiotics (Friedman,
2012).

Clostridium difficile-associated diarrhea or pseudo-
membranous colitisis is an inflammation of the intestine
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walls caused by toxins produced by C. difficile. CDAD is one of
the most common hospital-acquired infections and is a frequent
cause of morbidity and mortality among elderly hospitalized
patients. Complications include shock, need for colectomy, toxic
megacolon, and in severe cases, perforation of the colon wall.
C. difficile colonizes the GIT after the alteration of normal gut
flora by antibiotic therapy (Bergogne-Bérézin, 2000; Ndegwa
and Nkansah, 2008). Extremely high rates of CDAD have been
reported in Quebec from 2002 to 2005, totaling 14000 cases (a
4.5-fold increased incidence compared with 1991), with evidence
suggesting the emergence of a highly-virulent strain of C. difficile
(Pepin et al., 2004, 2005).

Several studies have shown that probiotics aid in prevention
and treatment of CDAD. Gao et al. (2010) reported lower risk
of disease occurrence after intake of a preparation based on two
Lactobacillus strains. S. boulardii has also been successfully used
for treatment of CDAD (McFarland et al., 1994). However, a
large multi-center study is needed to build sufficient evidence in
support of probiotic use as a treatment for C. difficile-associated
infections.

Problems Associated with Transfer of
Antibiotic Resistance Determinants
Many probiotic strains have naturally acquired resistance toward
one or several antimicrobial agents (Table 2). Though intrinsic
resistance of probiotic bacteria to certain antibiotics might offer

TABLE 2 | Intrinsic antibiotic resistance of several widely used probiotic
species.

Probiotic species Antibiotic resistance Reference

B. longum JDM301 Ciprofloxacin, amikacin,
gentamicin, streptomycin

Wei et al. (2012)

B. longum2 Kanamycin Temmerman et al. (2003)

B. lactis2 Kanamycin Temmerman et al. (2003)

L. rhamnosus1

L. casei1

L. paracasei1

L. plantarum1

L. acidophilus1

Vancomycin, teicoplanin,
bacitracin, aminoglycosides

Charteris et al. (1998),
Danielsen and Wind (2003)

L. reuteri2 Kanamycin, tetracycin,
penicillin, vancomycin

Temmerman et al. (2003)

L. casei2 Kanamycin, vancomycin Temmerman et al. (2003)

L. acidophilus2 Kanamycin Temmerman et al. (2003)

E. faecalis1 Beta-lactams Yamaguchi et al. (2013)

Vancomycin Werner et al. (2008)

B. adolescentis2

B. animalis2

B. longum2

B. bifidum2

Kanamycin, neomycin,
streptomycin, nalidixic acid

Kheadr et al. (2004)

P. pentosaceus Vancomycin, teicoplanin Biavasco et al. (1997)

P. acidilactici Vancomycin Temmerman et al. (2003)

1Antibiotic resistance is indicated for more than 50% of isolates/strains used in the
study, which were related to the species.
2Antibiotic resistance is indicated for 100% isolates/strains used in the study, which
were related to the species.

benefits for their use in the prevention and treatment of AAD,
the issue of possible transfer of resistance determinants has been
raised (Pflughoeft and Versalovic, 2012), particularly for strains
that carry plasmids.

Courvalin (2006) specified two distinct types of acquired
antibiotic resistance in bacteria: (i) initially non-transferred
resistance that occurred as a result of one or several mutations
in indigenous gene(s), and (ii) transferred resistance, acquired
from a different organism by horizontal gene transfer. Antibiotic
resistance (both intrinsic and acquired) can occur as a result
of three major mechanisms: (i) altering the outer- and/or inner
membrane permeability and transport activity, which leads to
lower accumulation of the antibiotic within the cell, (ii) using
enzymes to detoxify the antibiotic, and (iii) modifying the
antibiotic target site (Guardabassi and Courvalin, 2006). The
gene responsible for acquisition of antibiotic resistance often
resides on a plasmid or transposon, which might be easily
transferred (Bennett, 2008). In fact, transposon-mediated transfer
of genetic material between species was recently described
as the most frequent mechanism contributing to the spread
of antibiotic resistance in bacteria (Wozniak and Waldor,
2010).

Multiple studies have already shown that antibiotic resistance
can be transferred between different bacterial species that reside
in the human GIT. For instance, it has been reported that
both Lactobacillus lactis and Streptococcus thermophilus are
able to transfer erythromycin resistance [erm(B) gene, located
on a plasmid] to L. monocytogenes under in vitro conditions
(Toomey et al., 2009). Another study provided the evidence of
in vivo transfer of ampicillin resistance between two strains of
E. coli co-residing in human gut: it was demonstrated that a
plasmid carrying a β-lactamase gene had been transferred from
an ampicillin- resistant E. coli strain to an initially susceptible
strain (Karami et al., 2007). Devirgiliis et al. (2009) reported the
transfer of a tet(M) gene (tetracycline resistance; located on broad
host range Tn916 transposon) from L. paracasei to E. faecalis
in vitro. In another set of experiments, the erythromycin
resistance pLFE1 plasmid of L. plantarum strain M345 was
successfully transferred to five different species: L. rhamnosus,
Lc. lactis, Listeria innocua, E. faecalis, and L. monocytogenes
(Feld et al., 2009). These and other examples raise a safety
concern; strains to be used as probiotics should be carefully
selected, and only those free of transferrable antibiotic-resistance
determinants ought to be considered safe (Radulovic et al.,
2012).

In Vitro and In Vivo Systems Used to
Study Probiotic Effects

Novel probiotic-based strategies for therapeutic and prophylactic
use against multiple GIT diseases are gaining popularity
worldwide. Their effectiveness has been predicted by numerous
animal model studies and proven by extensive research involving
humans. However, the initial step in confirming probiotic effects
is the extensive characterization of a bacterial strain to be
used as a probiotic, which is usually performed under in vitro
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conditions by studying bacterial acid resistance, bile resistance,
carbon source utilization, and aggregative properties, or ex vivo
for their ability to adhere to mammalian cells (Kotikalapudi
et al., 2010; Wood et al., 2012). Similarly, probiotic delivery
methods, such as lyophilization or encapsulation, are also tested
for their protective potential in vitro under simulated gastric
conditions (Klemmer et al., 2011; Wood et al., 2012; Khan et al.,
2013; Wang et al., 2014, 2015a). The most popular materials
used for encapsulation of bacteria are alginate, carrageenans
and gums, since they are easy to process, resistant to low
pH and freezing, and are generally recognized as safe (Gbassi
and Vandamme, 2012). We have recently reported the efficient
delivery of B. adolescentis, encapsulated for this purpose in an
alginate-pea protein protective matrix, into the lower gut of rats
(Varankovich et al., 2015).

Apart from basic synthetic gastric juice solutions (low pH,
37◦C), more complex systems have been developed, such
as SHIME (Simulator of the Human Intestinal Microbial
Ecosystem), designed to simulate different parts of the human
GIT (Cook et al., 2012). Probiotic strains and methods for their
delivery, preselected in vitro, are subsequently tested in animal
models.

Traditionally used animal models include mice and rats.
Larger animals like rabbits, dogs, and pigs are generally
considered to have more common features with the physiology
and microflora of the human GIT (Kararli, 1995). However,
rodents are cheap, standardized, and have short life-cycles;
thus, their extensive use in large-scale research. Investigation
of probiotic effects on animal microflora may be approached
by: (i) examining the quantitative and qualitative characteristics
of bacterial microflora in animals using cultivation and/or
molecular biology techniques, such as real-time polymerase
chain reaction (qPCR), next-generation sequencing (NGS),
and fluorescence in situ hybridization (FISH), or (ii) evaluating
treatment efficiency indirectly by using it to cure an artificially
induced disease.

Distribution of specific species of microorganisms is still
being studied in healthy humans and compared with those
of patients with various gastrointestinal diseases. Perturbations
of microbiota, even in case of alterations in numbers of a
single species (i.e., A. muciniphila), might be a cause (and
an indicator) of the development of disease (Karlsson et al.,
2012). In this case, probiotic treatment might be useful
in restoring microbiota balance in the gut. An interesting
example of quantitative/qualitative analysis of animal gut
microbiota after probiotic administration can be found in the
study by Wang et al. (2015b): 454 pyrosequencing of fecal
bacterial 16S rRNA genes in obese vs. lean mice showed
that the probiotic strains shifted the overall structure of
the gut microbiota of obese animals toward that of lean
mice fed a normal diet, with significant changes observed
in 83 operational taxonomic units. Due to complicated
analyses required to understand specific mechanisms of disease
development, as well as the mode of action of a certain probiotic
microorganism, the use of disease models is generally more
widespread.

Rodent Models of GIT Diseases
Generally, in order to establish a disease model, mice are infected
with the pathogen or irritant either one time or continuously
(Pawlowski et al., 2010; Bhinder et al., 2013). Subsequently,
animals are treated with probiotics with concomitant monitoring
of the disease symptoms and evaluation of changes in the gut
microflora. Following this approach, Verdú et al. (2008) infected
mice with H. pylori for 4–6 months to investigate the effect of
probiotic therapy on upper gastrointestinal dysfunction induced
by chronic H. pylori infection. The authors reported that with
probiotic treatment delayed gastric emptying in mice normalized
significantly faster post-eradication, compared to control groups,
where the dysfunction was observed during 2 months after
pathogen administration was ceased. Mice and rats have also
been used to evaluate the efficacy of probiotics for the treatment
of Salmonella and E. coli O157:H7 infections (Asahara et al.,
2001, 2004), inflammatory bowel disease (Shiba et al., 2003) and
immune suppression (Lollo et al., 2012). Asahara et al. (2001)
showed that intestinal growth and subsequent extra-intestinal
translocation of orally-infected Salmonella typhimurium in mice
were inhibited during administration of probiotic B. breve.
Later, the same group reported B. breve was also effective in
protecting mice against Shiga toxic-producing E. coli 0157:H7
(Asahara et al., 2004). Extrapolation of results achieved in animal
studies and in vitro experiments to humans remains a difficult
challenge. Many factors, such as differences in physiology and
microflora composition of respective gastrointestinal systems,
must be considered before interpreting the outcome.

The majority of in vivo experiments investigating the effects
of probiotics on pathogenic bacterial populations use gnotobiotic
mice (usually with human microflora systems in their GIT;
Bernet-Camard et al., 1997; Aiba et al., 1998; Gill et al., 2001;
Pawlowski et al., 2010). For instance, in a study by Shiba et al.
(2003), probiotic B. infantis 1222 was found to significantly
suppress the systemic antibody response raised by Bacteroides
vulgates, a representative pathogenic Bacteroides sp. species, in
a gnotobiotic mice model of inflammatory bowel disease. The
use of conventional mice as a model for investigating human
diseases is more problematic due to significant differences in
animal and human gut microflora. Nevertheless, it is possible
to use murine-specific organisms as models for the study of
human pathogens. For instance, Ge et al. (2001) usedH. hepaticus
infection as an animal model for examining the pathogenesis
of gastrointestinal diseases in humans caused by H. pylori.
More recently, Bhinder et al. (2013) described the Citrobacter
rodentium mouse model for the study of pathogen and host
contributions during infectious colitis. C. rodentium is a murine-
specific bacterial pathogen, closely related to enteropathogenic
and enterohaemorrhagic strains of E. coli (Borenstein et al., 2008).
Several C. rodentium infection studies involving mice models
have shown probiotics to reduce the severity of symptoms and
prevent death caused by the pathogenic agent (Chen et al.,
2005; Gareau et al., 2010; Mackos et al., 2013). Chen et al.
(2005) successfully treated C. rodentium-induced murine colitis
with probiotic L. acidophilus. Gareau et al. (2010) similarly
reported that L. rhamnosus, combined with L. helveticus, were
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effective in prevention and treatment of the same disease state
in mice. Later, another group showed that L. reuteri was able to
attenuate the severity of murine colitis caused by C. rodentium
(Mackos et al., 2013). Further investigation of host–pathogen and
probiotic–pathogen interactions will likely provide better insight
into treatment of C. rodentium infection in mice, and possibly
E. coli infections in humans. However, confirmation of probiotic

benefits and possible side effects will ultimately require human
trials.

Human Clinical Trials
Human studies generally take the form of randomized clinical
trials involving participants with some type of intestinal disorder.
After assessment of eligibility and recruitment, participants

TABLE 3 | Some of the major human trials of probiotics for the treatment of gastrointestinal diseases.

Probiotic strain Disease Number of
participants

Reported outcome Reference

Lactobacillus
rhamnosus GG

H. pylori infection 60 Significant reduction (p = 0.04) of diarrhea, nausea and
taste disturbances in the treatment group.

Armuzzi et al.
(2001)

Antibiotic-associated
diarrhea in children

188 Significant reduction of the incidence of
antibiotic-associated diarrhea in children treated with oral
antibiotics for common childhood infections.

Vanderhoof et al.
(1999)

167 The treatment effect on the incidence of diarrhea (95%
confidence interval) was −11% (−21−0%).

Arvola et al. (1999)

B. bifidum Irritable bowel
syndrome

122 Overall responder rates (decrease in symptoms severity)
were 57% in the treatment group, but only 21% in the
placebo group (P = 0.0001).

Guglielmetti et al.
(2011)

B. infantis 362 The improvement in overall symptom assessment
exceeded the placebo by more than 20% (p < 0.02).

Whorwell et al.
(2006)

S. cerevisiae 179 The proportion of responders reporting improvement in
abdominal pain/discomfort was significantly higher
(p = 0.04) in the treated group than the placebo group
(63% vs. 47%, OR = 1.88, 95%, CI: 0.99–3.57).

Pineton de
Chamburn et al.
(2015)

VSL#3∗ Pouchitis 40 Three patients (15%) in the treatment group had relapses of
the disease within the 9-months follow-up period,
compared with 20 (100%) in the placebo group (P < 0.001).

Gionchetti et al.
(2000)

40 Two of the 20 patients (10%) in the treatment group had an
episode of acute pouchitis compared with 8 of the 20
patients (40%) treated with placebo (log-rank test,
z = 2.273; P < 0.05).

Gionchetti et al.,
2003

34 Treatment of patients with mild to moderate stages of
disease, not responding to conventional therapy, with
probiotic resulted in a combined induction of
remission/response rate of 77% with no adverse events.

Bibiloni et al.
(2005)

Ulcerative colitis 124 The efficacy of probiotic was significant (recurrence rate
34.6%, compared with 64.7% on placebo; p = 0.04) in
patients with recurrent CDD, but not in patients with initial
CDD (recurrence rate 19.3% compared with 24.2% on
placebo; p = 0.86).

McFarland et al.
(1994)

Saccharomyces
boulardii

Clostridium
difficile-associated
diarrhea (CDD)

168 A significant decrease in recurrence of CDD was observed
only in patients treated with high-dose vancomycin (2 g/day)
and probiotic (16.7%) compared with those who received
high-dose vancomycin and placebo (50%; p = 0.05).

Surawicz et al.
(2000)

211 The mean (+/−SD) duration of diarrhea was 1.69 days (0.6)
in patients given probiotic, compared with 2.81 days (0.9) in
those given placebo.

Buydens and
Debeuckelaere
(1996)

Enterococcus faecium
SF68

Antibiotic-associated
diarrhea

123 The probiotic was shown to be effective in reducing the
incidence of antibiotic-associated diarrhea (AAD) in
comparison with placebo (8.7% compared with 27.2%,
respectively).

Wunderlich et al.
(1989)

Mixture of lactobacilli,
bifidobacteria and
streprococci

Travelers’ diarrhea 94 Prophylaxis with the probiotic significantly decreased the
frequency of diarrhea from 71 to 43% (p = 0.019).

Black et al. (1989)

Mixture of B. infantis,
B. bifidum, B. longum
and L. acidophilus

Necrotizing enterocolitis
in newborns

186 Enteral administration of the probiotic in neonatal intensive
care setup significantly reduced morbidity due to
necrotising enterocolitis in very low birth weight newborn.

Samanta et al.
(2009)

∗A mixture of Lactobacillus casei, L. plantarum, L. acidophilus, L. delbrueckii subsp. bulgaricus, B. longum, B. breve, B. infantis, and Streptococcus salivarius sp.
Thermophiles.
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are given either probiotic treatment or a placebo as a control.
Results of these experiments have provided enough evidence
for considering probiotics an efficient treatment for multiple
GIT-associated diseases, such as acute gastroenteritis (Huang
et al., 2002), irritable bowel syndrome (Nikfar et al., 2008)
and necrotizing enterocolitis (Alfaleh and Anabrees, 2014).
Some trials showing the efficacy of bacteria of interest in
the treatment of specific gastrointestinal disorders are listed
in Table 3. In one recent trial aimed to assess the efficiency
of S. cerevisiae in treatment of irritable bowel syndrome,
179 adults, diagnosed with this condition, were randomized
to receive once-daily 500 mg of S. cerevisiae or placebo
for 8 weeks. Cardinal symptoms (abdominal pain/discomfort,
bloating/distension, bowel movement difficulty) were recorded
daily after a 2-week run-in period. The results showed that
abdominal pain/discomfort scores were significantly reduced
during probiotic intake (Pineton de Chamburn et al., 2015).
A major trial involving 362 participants was conducted by
Whorwell et al. (2006) in order to study the effect of B. infantis on
symptoms of irritable bowel syndrome: probiotic administration
lead to improvements in the majority of symptoms by more
than 20%, compared to placebo. Another human clinical
trial proved the efficacy of Lactobacillus GG in treatment of
H. pylori infection: daily administration of the probiotic led
to significant reduction in disease symptoms (diarrhea, nausea,
and taste disturbances; Armuzzi et al., 2001). In general, data
from multiple lines of research involving humans suggests
that probiotic bacteria suppress gastrointestinal pathogens by
simple competition by prevailing in numbers, and by producing
antibacterial factors (bacteriocins and small organic molecules,
such as fatty acids). Though more details into the mechanisms
of action of probiotics on gut microbiota are essential, the large
base of evidence already collected has proven the beneficial

role in prevention and treatment of various GIT diseases in
humans.

Conclusion

Many strains of genera Lactobacillus and Bifidobacterium, as well
as some enterococci and yeasts, have been shown to possess
probiotic properties with potential for prophylaxis and treatment
of a range of gastrointestinal disorders. The effectiveness of
probiotic bacteria in the treatment of these conditions is
supported by many clinical trials involving patients of all ages
and probiotic organisms chosen based on laboratory research
trials. Notably, most of the work in the probiotic field has
been conducted in vitro, as it is an essential step in the
investigation of bacterial growth, metabolite production, ability
to form biofilms, compete with pathogens, co-aggregate, and
produce antimicrobials. All of these characteristics are important
factors for identification of potential probiotic strains that possess
desirable properties along with the ability to establish itself in the
human gut. Intrinsic antibiotic resistance and transferability of
genetic determinants are two additional factors to account for
at the initial stage of a probiotic study. Novel putative probiotic
species, such as A. muciniphila, are yet to be tested in both animal
and human trials; however, the results achieved to date suggest
that they might be beneficial in treatment or diagnosis of GIT
diseases.
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