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Multiple studies confirm laccase role in fungal pathogenicity and lignocellulose
degradation. In spite of broad genomic research, laccases from plant wilt pathogen
Fusarium oxysporum are still not characterized. The study aimed to identify
F. oxysporum genes that may encode laccases sensu stricto and to characterize
the proteins in silico in order to facilitate further research on their impact on the
mentioned processes. Twelve sequenced F. oxysporum genomes available on Broad
Institute of Harvard and MIT (2015) website were analyzed and three genes that may
encode laccases sensu stricto were found. Their amino acid sequences possess all
features essential for their catalytic activity, moreover, the homology models proved the
characteristic 3D laccase structures. The study shades light on F. oxysporum as a new
source of multicopper oxidases, enzymes with possible high redox potential and broad
perspective in biotechnological applications.

Keywords: laccase, multicopper oxidase, Fusarium oxysporum, pathogen, in silico modeling

Introduction

Fusarium oxysporum is a known plant wilt pathogen that attacks various crops such as corn,
tomato, or banana. Most of the research involving these ascomycetes is focused on understanding
of its virulence and prevention of plants’ devastation. The Broad Institute proceeds with Fusarium
Comparative project and now 12 genomes of sequenced F. oxysporum strains are available on their
website. Despite of broad genomic studies, still not much is understood about its proteome and in
particular about its secreted enzymes. Extracellular laccases are one of the factors pointed out to
be responsible for fungal virulence, however, so far only single genes were investigated, but now,
with so many genomes available, broader analysis is possible (Ma et al., 2010; Broad Institute of
Harvard and MIT, 2015).

Laccases (EC 1.10.3.2) are oxidoreductases from multicopper oxidases family that catalyze
4-electron reduction of O2 to water with simultaneous oxidation of organic substrates. These
multicopper oxidases possess wide range of specificity and are able to oxidize both phenolic
substances and non-phenolic ones with presence of mediators. Nowadays laccases are one of the
most desired biocatalysts – they catalyze wide range of chemical reactions, thus can be applied
in various industrial areas – pulp and paper, textile, food industries, diagnostics, waste water
treatment, and chemical compounds synthesis. Their environmental friendly nature continuously
focuses attention on the enzyme (Alcalde, 2007; Kunamneni et al., 2008; Madhavi and Lele, 2009;
Giardina et al., 2010; Pezzella et al., 2015).

There are certain characteristics that distinguish laccases from other multicopper oxidases.
Firstly, they must contain multicopper oxidase domains (Pfam: PF00394, PF07731, and PF07732),
in fungi most of them contain all three domains. Moreover, signatures of laccases were
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distinguished – four 8–24 amino acid sequences characteristic
for these proteins, called L1, L2, L3, and L4. These signatures
comprise amino acids that coordinate copper atoms in T1 and
T2/T3 centers. Two serines and one arginine in the signatures
form SDS gate, a channel responsible for proton transfer. What is
more, it is said that the laccases from ascomycetes should contain
DSG[ILV] on the C-terminus (Kumar et al., 2003; Cázares-García
et al., 2013).

In the past, 15 potential laccase genes were discovered in
F. oxysporum f. sp. lycopersici 4287 and few of them studied in
the aspect of pathogenicity (Cañero and Roncero, 2008; Reyes-
Medina and Macías-Sánchez, 2015). Our study aimed to identify
and analyze potential laccases sensu stricto in all sequenced
F. oxysporum strains. Redundancy analysis of all multicopper
oxidases was done and sequence, structure, and phylogenetic
studies were performed on the chosen proteins.

Materials and Methods

Redundancy Analysis
All DNA and protein sequences used in the study were
obtained from “Fusarium Comparative Sequencing Project,
Broad Institute of Harvard and MIT (2015). The proteins
that possess Cu-oxidase, Cu-oxidase2, or Cu-oxidase3 (Pfam:
PF00394, PF07731, and PF07732) were selected using tools
available on the website. The protein sequences were downloaded
and subjected to further analysis (Step 1). ScanProsite was used
to select proteins with certain sequence features (de Castro et al.,
2006). In the following step (Step 2), Prosite patterns and L1 and
L3 signatures were found. In the third step, only those proteins
who possess all four L1–L4 signatures and MCO1 and MCO2
patterns were chosen (Step 3). Table 1 gathers the patterns used
for our search.

All protein sequences in the sequential steps were divided
into groups on the basis of sequence identity. The member of
a given group must have been identical in more than 95%.
It was assessed by multiple sequence alignment, tree building
and identity analysis. The following tools were used: ClustalW2,
Mega6, sequence identity and similarity (SIAS), interactive Tree
Of Life (iTOL), and CLC Sequence Viewer.

TABLE 1 | Characteristic sequence motifs.

Characteristic sequence

Cu-oxidase, Cu-oxidase2,
Cu-oxidase3 domain

Pfam: PF00394, PF07731, and PF07732

Prosite patterns: PS00079,
PS00080

G-x-[FYW]-x-[LIVMFYW]-x-[CST]-x-{PR}-{K}-
x(2)-{S}-x-{LFH}-G-[LM]-x(3)-[LIVMFYW],
H-C-H-x(3)-H-x(3)-[AG]-[LM]

L1 H-W-H-G-x(9)-D-G-x(5)-Q-C-P-I

L2 G-T-x-W-Y-H-S-H-x(3)-Q-Y-C-x-D-G-L-x-G-x-
[FLIM]

L3 H-P-x-H-L-H-G-H

L4 G-[PA]-W-x-[LFV]-H-C-H-I-D-A-E-x-H-x(3)-G-
[LMF]-x(3)-[LFM]

C-terminus D-S-G[LIV]

Analysis of Gene and Protein Sequences
Gene localization on chromosomes were visualized by Ensembl
website tools.

Subcellular localization of proteins were predicted by SignalP
4.0, TMHMM2.0, and Phobius (default settings; Käll et al., 2004;
Petersen et al., 2011; TMHMM Server, v. 2.0, 2015). Isoelectric
points and molecular weight were analyzed by ExPASy –
Compute pI/Mw Tool (2015). NetNGlyc 1.0 Server (2015;
ExPASy – Compute pI/Mw Tool, 2015) was used to find possible
glycosylation sites. The localization of the domains were found
by Pfam and the logo of L1–L4 sequences were obtained in
Meme (Bailey et al., 2009; Finn et al., 2014). The dendrograms
were created in Mega6 and edited in iTOL (Letunic and Bork,
2007; Tamura et al., 2013). The sequences were aligned by
ClustalW2 program and subjected to the tree building process
withMaximumLikelihoodmethod byMega6. The comparison of
four laccase-encoding genes was done with K2+Gmodel (Mega6
model test), while the strain tree was done on nucleotide sequence
of laccase orthologs (genes encoding for Gr1 and Gr5 proteins)
with T92+G model (1000 bootstrap). The orthologs were found
by Proteinortho v.5.11 (Lechner et al., 2011) and the chosen genes
had the algebraic connectivity of 0.915. Sequence similarities were
assessed by SIAS (2015).

Modeling
Homology models were obtained by I-Tasser (Yang et al., 2015),
the analysis of themodels were done in pyMOL,ModFOLD4, and
WinCoot (McGuffin et al., 2013).

Results and Discussion

Redundancy Analysis
Over 300 protein sequences that possess Cu-oxidase domains
were downloaded from Broad Institute website. In the first step of
the analysis, 214 sequences withMCO1 andMCO2were retained.
The sequences were divided into 20 groups, additionally there
were 9 proteins that could not be included in neither of the groups
as their identity was much below 95%. In the next step of the
analysis, only those proteins were taken into account in which
L1 and L3 could be found. Those 80 proteins were divided into
5 groups. Next, the group which does not have the L2 and L4
signature was excluded (Gr3). Deeper analysis was done with
proteins from the Step 2.

Molecular Characteristics
The length of F. oxysporum potential laccase genes varies between
1957 and 2471 nucleotides, while GC content of the genes
ranges between 47 and 51% (Table 2). There are 2–9 introns
in individual genes, which are not distributed similarly, thus
division into subgroups within the species cannot be done as
proposed in earlier scientific work (Kilaru et al., 2006; Cázares-
García et al., 2013). We may observe that Gr3 gene is far distinct
from other, which explains the exclusion of Gr3 in the last step of
the analysis. Gene encoding for potential laccase Gr1 is the same
gene that encodes for Gr5, although with an additional sequence
on 5′ end (Figure 1).
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FIGURE 1 | Putative laccase genes structures on the example of Fusarium oxysporum Fo47 genes.

TABLE 2 | Characteristics of putative laccases genes.

Protein Gene length cDNA length No. of introns GC content (%)

Gr1 2471 2064 9 47

Gr2 2241 1995 5 49

Gr3 1957 1854 2 51

Gr4 2238 1977 5 49

Gr5 2287 1980 6 47

Annotations of F. oxysporum strains genomes are in progress,
so far one of 12 genomes is assembled in chromosomes. All
potential multicopper oxidase-encoding genes are far from each
other and are located on different chromosomes (Figure 2).
Similar situation was observed before, for example in the genome
of Trichoderma species or Laccaria bicolor; however, clusters of
laccase genes were also discovered before (Courty et al., 2009).

The length of chosen proteins varies between 617 and
687 amino acids (Table 3), which is atypical for fungal
laccases (normally 500–600 amino acids). Putative laccases from
F. oxysporum seem to have 68–76 kDa, while the typical weight
of these protein ranges between 60 and 70 kDa; however, laccases

FIGURE 2 | Localization of laccase genes in F. oxysporum f. sp.
lycopersici 4287 genome. Grey, all multicopper oxidases genes; red,
FOXG_12706 (Chr9), FOXG_13227 (Chr12), and FOXG_14565 (Chr12) –
laccases sensu stricto (Ensembl).

TABLE 3 | Characteristics of proteins in the groups.

Gr Length (aa) pI MW (kDa) SL

1 687 5.81 70.8 E

2 664 5.32 75.6 E

3 617 5.66 68.2 T

4 658 6.19 74.8 E

5 659 5.73 75.2 I

SL, consensus subcellular localization: E, extracellular; T, transmembrane;
I, intracellular (ExpasyComputepI/mW; SignalP 4.0, TMHMM2.0, Phobius).

of 70–80 kDa were also reported (Slomczynski et al., 1995; Eggert
et al., 1996; Chefetz et al., 1998; Madhavi and Lele, 2009).

The consensus subcellular localization was determined for
all five groups of laccases using SignalP 4.0, TMHMM2.0, and
Phobius. Gr1, 2 are considered to be extracellular laccases (0.480
and 0.514, respectively, according to SignalP); moreover, Gr4
could also be an extracellular protein (0.439). Gr5 must be an
intracellular laccase, this protein possess identical amino acid

FIGURE 3 | Logo sequences for Gr1, 2, 4, and 5 for L1–L4 signatures
done in Meme.
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FIGURE 4 | MSA of five chosen enzymes performed by ClustalW2. L1, blue; L2, green; L3, red; and L4, violet. H residues involved in copper binding –
underlined, SDS-gate – yellow shaded, axial coordination – pink shaded. An asterisk indicates that the residus in a given position are identical, the colon indicates
conserved substitutions while a dot signifies semiconserved substitutions.
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FIGURE 5 | Phylogenetic tree of all 45 genes that may encode for
laccases. The colors signify division to four groups: grey, Gr1 and Gr5; green,
Gr2; blue, Gr3; and pink, Gr4 (Mega6, iTOL).

sequences to Gr1, however, without the first 28 amino acids,
which is a further sign of the extracellular nature of Gr1 laccase.
The putative signal sequence of extracellular laccases were about
25–26 amino acid long. N-glycosylation were predicted by
NetNGlyc 1.0. All of them seems to have 11–13 Asn–Xaa–Ser/Thr
sequons.

Three Cu-oxidase domains are present in proteins from
Gr1–5. The first domain from N-terminus is Cu-oxidase3, then
Cu-oxidase and the closest to C-termini Cu-oxidase2, which is

characteristic for ascolaccases. Although the proteins from Step
1 possess all three Cu-oxidase domains, their localization on the
sequence varies.

All proteins from Step 2 and 3 possess L1–L4 laccase
signatures; however, Gr3 is relatively distinct from the others. The
signatures of laccases from Step 3 are far more conservative than
those proposed earlier (Kumar et al., 2003; Cázares-García et al.,
2013), in L1 17/24aa are conserved in L2 20/22, in L3 7/9, and
in L4 15/22 (Figure 3). The signatures are composed of the most
important amino acids of laccases, those that coordinates copper
atoms. Multiple sequence alignment of chosen protein further
reveals differences between Gr3 and other sequences (Figure 4).
Gr3 somehow lacks the C-termini characteristic for GR1, 2, 4,
5, which signifies that either the D residue forming SDS gate is
located in different position or the proton transfer in this protein
would function distinctly.

Axial coordination is an important feature that affects redox
potential of laccases (Hakulinen et al., 2002; Kumar et al.,
2003; Garavaglia et al., 2004; Hakulinen and Rouvinen, 2015;
Jones and Solomon, 2015; Mate and Alcalde, 2015). It was
suggested that if laccase has Leu or Phe in around tenth position
downstream the conserved Cys residue in L4, then the enzyme
has a higher E0 –redox potential (700–800V), whereas the lower
E0 is observed whenMet is in this position. Laccases are classified
into Lac1 (Met), Lac2 (Leu), and Lac3(Phe) on the basis of axial
coordination. This would mean that the chosen putative laccases
should be classified as Lac2 (Gr1, 2, 4, 5) proteins and should
exhibit higher E0, while Gr3 should display a lower E0 (Lac1).

A classification with LccED database was performed with
usage of a blast tool available on the website (default settings).
With high probability Gr1, 2, 4, and 5 belong to H Family B1
(Ascomycetes-like MCO), while Gr4 is classified as H Family A2
(Basidiomycete laccases) (Sirim et al., 2011).

Multiple sequence alignments and dendrogram formation
were essential for the redundancy analysis. The Figure 5 presents
a dendrogram of all genes from Step 2 analysis, which visualize

FIGURE 6 | Number of genes coding for multicopper oxidases (Step 1), multicopper oxidases with certain features of laccases (Step 2), and laccases
sensu stricto (Step 3).
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clearly the relationship between all four chosen genes. The
identities between the 20 groups from Step 1 ranges between 20
and 97%. The groups with the highest identity are exactly Gr1 and
Gr5 from Step 2 which differ only with the signal peptide in Gr1
protein.

According to our analysis, the 12 F. oxysporum strains possess
in minimum 16–21 potential multicopper oxidase genes and at
least two putative laccase genes (Figure 6). Twelve F. oxysporum
strains are similar in context of laccase genes; however, three of
them seem to diverge evolutionary from the rest. F. oxysporum
melonis does not contain a gene encoding for the putative
transmembrane Gr3, while F. oxysporum f. sp. lycopersici4287 lost
three putative laccase genes. The human pathogen F. oxysporum
NRRL32931 lacks Gr1- and Gr2-encoding genes, those that may
encode for extracellular proteins, probably due to the fact that
it does not have to deal with lignocellulose during its virulence.
These three F. oxysporum strains form a subgroup on a strain
tree presented in the Figure 7. The mentioned subgroup is a part
of one of three clades that forms the strain tree. Interestingly,
the gene from F. oxysporum II5, pathogenic toward banana, has
the highest number of mutations and was not included in a
clade with other strains. F. oxysporum II5 as the only strain that
was isolated in Indonesia, which climate differ significantly from
weather conditions in Europe (Fo47, PHW815), America (Cl57,
Mn25, melonis, PHW808), or Australia (HDV247). The climate
may be an important factor for strain evolution.

Modeling
Three homologous models of potential laccases were successfully
created by I-Tasser server for Gr2, 3, and 4; Gr1 and 5 models
were built with an unsatisfactory effect. For protein Gr2 and 4
a potential signal peptides were removed and the modeling was
done again which led to better results. This is a further sign of
the extracellular nature of Gr2 and 4 proteins. The models are
assessed by ModFOLD4 server as good models with less that
1:1000 chance that the models are incorrect. All three models
have problematic region on their N-termini. It may suggest that
this region may be cleft off during maturation of the protein (pro-
peptide) and that is why the I-Tasser server could not find amatch
in the PDB database. Such pro-sequences important in protein
expression were detected for example inMelanocarpus albomyces
laccase (Bulter et al., 2003; Kiiskinen and Saloheimo, 2004;
Kiiskinen et al., 2004). However, ProP1 server did not discover
pro-peptide cleavage sites in these proteins. The Ramachandran
plots for the models show a relatively high number of amino acids
in disallowed regions (∼17%), which is an indication for further
model optimizations.

It was suggested that the 3D position of C-terminus of laccase
is important for its activity. C-terminus may act as a plug
that obturates the trinuclear (T2/T3) channel, thus preventing
oxygen to enter the channel and water to exit it. The trinuclear
channel is widely regarded as the oxygen channel, however, a
mutant of M. albomyces laccase (PDB code 3QPK ) suggest

FIGURE 7 | Relationship between 12 F. oxysporum strains and laccases.

FIGURE 8 | Gr2 (A), Gr4 (B), and Gr3 (C) models created by I-Tasser. Pink, Cu-oxidase domain; grey, Cu-oxidase2 domain; cyan, Cu-oxidase3 domain; and Cu
atoms (yellow) in an approximate location. Yellow cartoon in (C) represents transmembrane region of the protein, blue cartoon represents the outside part.
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FIGURE 9 | (A) L1–L4 signatures encirculating Cu atoms (yellow) (Gr4 model).
Pink, L1; grey, L2; cyan, L3; and blue, L4. (B) Surface of Gr4 model with DSGI
C-terminus sequence shown in red. Cu atoms shown in blue (approximate
location).

a different oxygen route. The models of Gr2 and 4 reveals
similar location of C-terminus as observed in M. albomyces
laccase (2Q90; Kiiskinen and Saloheimo, 2004; Bleve et al., 2013,
2014). Such a conformation was proposed to be a common
feature of ascolaccases. However, the amino acid sequences
of Gr2 and 4 lacks the additional 14 amino acids upstream
DSG[LIV] motif which is present in M. albomyces laccase. It
is hypothesized that incorrect processing of this sequence leads
to lack of enzyme activity. Among ascomycetes many laccases
share similar C-terminal sequence with M. albomyces, which is
cleft on a conserved site, while other are similar to our proteins
and their sequence is finished with DSG[LIV] motif (Botrytis
cinerea, Trichoderma reesei). It was suggested many times that
DSG[LIV] is a common conservative motif for all ascomycetes
laccase, which is a further reason for excluding Gr3 protein from
laccases sensu stricto group (Andberg et al., 2009; Cázares-García
et al., 2013). The studies onM. albomyces laccase proved that the
deletion of DSG[LIV] inactivates the enzyme, whereas the point
mutation in this region leads to lower thermostability, turnover
number and the structural changes in T2 centre.

All modeled proteins hold characteristic 3D architecture. The
domains are arranged in a typical greek-key motifs, the L1–L4
signatures encircle Cu atoms. A mononuclear site is located in
Cu-oxidase2 domain (third domain from N-terminus), while
trinuclear site is between Cu-oxidase3 and Cu-oxidase2 domains
(first and third domains from N-terminus) (Hakulinen and
Rouvinen, 2015; Pardo and Camarero, 2015). The architecture of
Cu centers is similar to those in other studied laccases. T1 copper
ion is coordinated by two His and one Cys residue, while T2/T3
center by eight His residues (Figures 8 and 9). The substrate
binding site is located close to the mononuclear site, close to
Cu-oxidase3 domain, whereas oxygen binding pocket is situated
at the trinuclear copper site.

Summary

Four proteins extracted in in silico analysis possess all
characteristics of laccases sensu stricto. Their sequences
contain L1–L4 signatures, three Pfam domains and conserved

C-terminus. Their structure, according to homologous models,
is similar to structures of known laccases. The rest of over 300
genes were not assigned as laccase-encoding genes due to the
lack of mentioned sequences. However, further analysis of the
proteins is important in their assessment to specific enzyme
groups.

Genome-wide structural and phylogenetic in silico analysis
of laccase genes in a plant pathogen is essential for further
research on the virulence of the fungi. The determination of
laccases sensu stricto may help, among others, in planning
of knock-out studies in order to confirm or deny the role
of laccase in pathogenicity. Six potential laccase gene were
studied by a Spanish team for its role in virulence in tomato
(Cañero and Roncero, 2008). Three of them were detected by
RT-PCR as expressed during plant infection. Lcc1(EF990894.1),
lcc3(EF990899.1), and lcc5(EF990897.1) lacking mutants were
created and checked for virulence in root infection assays, leading
to the same results as for the wild type strain. However, this
negative results does not mean that laccases do not take part in the
pathogenicity of F. oxysporum. The mentioned putative laccases
were not included in our Step 2 and Step 3 analysis because of the
lack of as conservative L1–L4 signatures as proposed earlier, thus
theymay not be laccases sensu stricto. Further research is essential
for full understanding of laccase role in pathogenicity.

Laccase is nowadays a popular enzyme in many
biotechnological applications, scientists and industrial partners
still work hard to find laccases with better catalytic efficiencies,
hence discovery of novel enzymes is needed. The presented
putative laccases, to our knowledge, do not have very close
homologs already used in industrial applications. Blastp (default
settings) analysis of consensus sequences did not reveal any
studied laccases that are identical at least in 50%. This and the
fact that these enzymes may have high redox potential due to
leucine in axial coordination make the effort of their study more
meaningful in the perspective of biotechnological applications.
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