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Pseudomonas aeruginosa is a major opportunistic pathogen in hospital-acquired
infections and exhibits increasing antibiotic resistance. A rapid and sensitive molecular
method for its detection in clinical samples is needed to guide therapeutic treatment
and to control P. aeruginosa outbreaks. In this study, we established a polymerase spiral
reaction (PSR) method for rapid detection of P. aeruginosa by targeting the toxA gene,
which regulates exotoxin A synthesis. Real-time turbidity monitoring and a chromogenic
visualization using hydroxynaphthol blue were used to assess the reaction. All 17 non-
P. aeruginosa strains tested negative, indicating the high specificity of the PSR primers.
The detection limit was 2.3 pg/μl within 60 min at isothermal temperature (65◦C), 10-
fold more sensitive than conventional PCR. Then, the PSR assay was applied to a
clinical surveillance of P. aeruginosa in three top hospitals in Beijing, China. Of the 130
sputum samples collected from ICU patients with suspected multi-resistant infections,
37 P. aeruginosa isolates were identified from the positive samples. All clinical strains
belonged to 10 different P. aeruginosa multilocus sequence typing groups and exhibited
high resistance to carbapenems, cephalosporins, and aminoglycosides. Interestingly,
of the 33 imipenem-resistant isolates, 30 (90.9%) had lost the outer membrane porin
oprD gene. Moreover, isolate SY-95, containing multiple antibiotic resistance genes,
possessed the ability to hydrolyze all antibiotics used in clinic and was susceptible
only to polymyxin B. Our study showed the high level of antibiotic resistance and co-
occurrence of resistance genes in the clinical strains, indicating a rapid and continuing
evolution of P. aeruginosa. In conclusion, we developed a P. aeruginosa PSR assay,
which could be a useful tool for clinical screening, especially in case of poor resources,
or for point-of-care testing.
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Introduction

Pseudomonas aeruginosa is a common opportunistic pathogen capable of infecting both humans
and animals. It causes various nosocomial diseases such as pneumonia, respiratory infection
(Pereira and Cardoso, 2014), festering wounds (Altoparlak et al., 2005), urinary tract (Mittal et al.,
2009), bacteremia (Al-Hasan et al., 2008), and keratitis (Hazlett, 2004). Pulmonary colonization
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FIGURE 1 | Primer design for the polymerase spiral reaction (PSR) assay. (A) Nucleotide sequence of the toxA gene (part) and locations of the primers are
underlined. (B) Primer sequences targeting toxA.

FIGURE 2 | PSR assay temperature optimization. Different temperatures
(61–65◦C at 1◦C intervals) were tested and 65◦C was chosen as the optimal
temperature for PSR amplification.

with P. aeruginosa is considered a major cause of morbidity and
mortality in patients with cystic fibrosis (Davies, 2002).Moreover,
massive use of broad-spectrum antibiotics has increased the
resistance of P. aeruginosa to clinical drugs, which has led to
serious therapeutic problems (Peng et al., 2014). Thus, timely and
accurate diagnosis is necessary for appropriate treatment and to
control disease outbreaks.

Various diagnostic methods have been established for
P. aeruginosa, including phenotypic methods (Jin et al., 2011),
electrochemical techniques (Webster et al., 2014), and molecular
methods such as PCR (Aghamollaei et al., 2015), real-time
PCR (Qin et al., 2003; Deschaght et al., 2011), and enzyme-
linked immunosorbent assay (Mauch et al., 2014). However, these
methods are relatively complex, time-consuming, and require
specialized, costly instruments, and expertise. Thus, a simple,
cost-effective, and rapid detection method is needed.

Polymerase spiral reaction (PSR), a novel nucleic acid
amplification method based on the utilization of a DNA
polymerase with strand displacement activity under isothermal
conditions, meets the requirements of rapidity, high sensitivity
and specificity (Liu et al., 2015). Moreover, compared with other
established isothermal amplification methods, PSR does not need
an initial incubation at 95◦C or the inclusion of a DNA helicase in
the reaction mixture to achieve denaturation of the DNA double
helix (Walker et al., 1992; Notomi et al., 2000; Vincent et al.,
2004).

Exotoxin A is an important virulence factor of P. aeruginosa
in clinical infections. It is a cytotoxic agent that, similar to
diphtheria toxin, inhibits protein biosynthesis at the level of
polypeptide chain elongation factor 2, leading to great tissue and
organ damage (Jenkins et al., 2004). The toxA gene, an inherent
genetic sequence located on the P. aeruginosa chromosome and
regulating the synthesis of exotoxin A, has been widely used as a
target for P. aeruginosa detection in PCR and RT-PCR methods
(Khan and Cerniglia, 1994; Qin et al., 2003; Xu et al., 2004). In
this study, we designed PSR primers targeting the toxA gene and
optimized the PSR conditions. The specificity and sensitivity of
PSR for detection of P. aeruginosa were determined. Finally, on
the basis of PSR method, we molecularly characterized clinical
P. aeruginosa isolates and investigated their dissemination in
intensive care unit (ICU) patients from three top hospitals of
Beijing, China.

Materials and Methods

Bacterial Strains, Identification, Multilocus
Sequence Typing (MLST), and Antimicrobial
Susceptibility Testing
A total of 56 bacterial strains were used in this study
(Supplementary Material), including P. aeruginosa ATCC 15442
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and P. aeruginosa CMCC 10539 as positive controls. Seventeen
non- P. aeruginosa strains including species homologous to
P. aeruginosa and other clinical pathogens were included to
assess the specificity of the PSR assay. One-hundred and thirty
clinical sputum samples were collected from ICU patients
with suspected multi-resistant infections in three top hospitals
of Beijing. Genomic DNA was extracted from the sputum
samples using the Wizard Genomic DNA Purification Kit
(Promega, Madison, WI, USA) and then subjected to the
PSR assay. The bacterial strains and positive clinical samples
were cultured in brain–heart infusion broth according to a
standard protocol. Species identification was carried out using
the Phoenix Automated Microbiology System (BD Diagnostic
Systems, Franklin Lanes, NJ, USA) and sequencing of 16S
ribosomal DNA (rDNA).

Multilocus sequence typing was performed to determine the
sequence types (STs) of P. aeruginosa strains. Seven housekeeping
genes, namely, acsA, aroE, guaA, mutL, nuoD, ppsA, and trpE,

were amplified using PCR. The allele sequences for each gene
were compared to the P. aeruginosaMLST database1 to yield the
allelic profile.

Antimicrobial susceptibility testing was performed using
broth microdilution susceptibility testing according to the
Clinical and Laboratory Standards Institute guidelines (CLSI,
Performance Standards for Antimicrobial Susceptibility Testing;
Twenty-third informational supplement CLSI Document M100-
S23; Wayne, PA, USA 2013). A screening of the oprD gene
which has a function in the P. aeruginosa outer membrane was
performed (Wolter et al., 2004). Additionally, the strains were
screened for the presence of known metallo-β-lactamase (MBL)
and other β-lactamase genes (blaVIM, blaIMP, blaKPC−2, blaTEM,
blaSPM−1, blaSIM−1, blaNDM−1, and blaOXA−50) using PCR with
primers reported previously (Poirel et al., 2007; Farajzadeh et al.,
2014).

1http://pubmlst.org/paeruginosa

FIGURE 3 | PSR assay specificity. Specificity of the PSR method for detecting Pseudomonas aeruginosa by real-time turbidimeter (A) or HNB colorimetric
assay (B). Amplification was performed at 65◦C for 60 min. 1, P. aeruginosa ATCC 15442; 2, P. aeruginosa CMCC 10539; 3, P. fluorescens CGMCC 1.1802; 4,
Burkholderia pseudomallei 029; 5, P. geniculate CGMCC 1.871; 6, P. mendocina CGMCC 1.593; 7, P. putida 2309; 8, Klebsiella pneumoniae ATCC 2146; 9,
Streptococcus pneumoniae 112-07; 10, Mycobacterium tuberculosis 005; 11, Staphylococcus aureus 2740; 12, Acinetobacter baumannii 12101; 13, Escherichia
coli 44825; 14, Shigella flexneri 4536; 15, Stenotrophomonas maltophilia K279a; 16, Legionella pneumophila 9135; 17, Haemophilus influenza ATCC 49247; 18,
Salmonella typhi 9275; 19, Proteus vulgaris CMCC 49027; 20, negative control (double distilled water).
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PSR Primer Design for the toxA Gene
To design P. aeruginosa specific PSR primers, the nucleotide
sequence of toxA was downloaded from the NCBI GenBank
database2. The primer sequences and their locations are shown
in Figure 1. The uppercase 3′ sequences of the forward primer
(F) and reverse primer (B) are complementary to the target toxA
gene sequence (nucleotide positions 1365–1381 and 1538–1522,
respectively). The lowercase 5′ sequence of the reverse primer
(T) is complementary to the target sequence (position 1405–
1423), and is reverse to the lowercase 5′ sequence of the forward
primer (Tr). Additionally, two accelerated primers IF and IB
were included in this study (positions 1403–1387, 1481–1499,
respectively).

PSR Assay
The PSR assay was carried out in 25-μl reaction mixtures
containing the following components: 1.0 μl Bst DNA
polymerase, large fragment (New England Biolabs, Ipswich,
MA, USA), 2.5 μl 10× ThermoPol reaction buffer (New
England Biolabs), including 20 mM Tris-HCl, 10 mM KCl,
10 mM (NH4)2SO4, 2 mM MgSO4, and 0.1% Tween 20), 0.8 M
betaine (Sigma–Aldrich, Saint Louis, MO, USA), 6 mM MgSO4,
1.4 mM of each dNTP, and an appropriate amount of DNA
template. The amount of primers needed for one reaction was
1.6 μM for Ft and Bt and 0.8 μM for IF and IB. At last, the
reaction mixture was overlaid with a sealing agent (Patent:
ZL201210371448.5 in China) to prevent cross contamination of
samples by aerosol and the reactions were performed for 60 min
at 65◦C.

The PSR products were detected using two methods:
turbidity monitoring with a real-time turbidimeter at 650 nm
or direct visual detection with the aid of hydroxynaphthol
blue (HNB), which is a metal ion indicator (Goto et al.,
2009). For visual detection, 1 μl of HNB (Sigma–Aldrich)
solution (0.2% mass fraction) was added to the reaction tube.
A positive reaction is indicated by a color change from violet
to sky blue, while a negative reaction remains violet. Each
experiment was performed at least three times to ensure
reproducibility.

PCR Assay
To compare the sensitivity of PSR and the traditional PCR
assay, PCRs were setup using 0.5 μM forward primer ETA-F
(5′-GACAACGCCCTCAGCATCACCAGC-3′) and backward
primer ETA-B (5′-CGCTGGCCCATTCGCTCCAGCGCT-3′;
Khan and Cerniglia, 1994), and the same amount of DNA
template in a 25-μl reaction mixture. PCR was performed using
the following cycling conditions: initial PCR activation, 95◦C
for 10 min; amplification, 30 cycles of 95◦C for 30 s, 60◦C
for 30 s, and 72◦C for 30 s; final extension, 72◦C for 7 min.
The products were separated on a 1% agarose gel, stained
with GelRed (Biotium, Hayward, CA, USA), and visualized
under an ultraviolet transilluminator (Bio-Rad, Berkeley, CA,
USA).

2ncbi.nlm.nih.gov/gene/877850

FIGURE 4 | PSR assay sensitivity. Comparative sensitivities of the PSR
assay (A) and (B) and traditional PCR (C) for detection of the P. aeruginosa
toxA gene. 1–7: 10-fold serial dilution of genomic DNA extracted from
P. aeruginosa ATCC 15442 (23.0 ng/μl to 0.023 pg/μl); 8: negative control
(double-distilled water). The expected PCR product size was 396 bp.

Results

Temperature Optimization of the PSR Assay
Various reaction temperatures ranging from 61◦C to 65◦C at 1◦C
intervals were compared for optimal amplification. As shown
in Figure 2, optimal results were obtained at 65◦C. It was also
the optimum temperature for enzymatic activity of the Bst DNA
polymerase.

Specificity of the PSR Method for Detecting
P. aeruginosa
To analyze the specificity of PSR detection of P. aeruginosa,
genomic DNA was extracted from P. aeruginosa ATCC 15442,
P. aeruginosa CMCC 10539, and 17 non- P. aeruginosa bacterial
strains. Both real-time turbidity and visual detection of color
change allowed correct identification of the P. aeruginosa isolates.
All species homologous to P. aeruginosa and other clinical
infectious or opportunistic strains, as well as the blank control,
tested negative, indicating that the PSR assay is highly specific for
P. aeruginosa (Figure 3).
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Sensitivity of the PSR Assay versus PCR for
P. aeruginosa Detection
To compare the detection limit of PSR using either real-
time turbidity measurement or visual detection with that of
conventional PCR, genomic DNA extracted from P. aeruginosa
ATCC 15442 was subjected to serial 10-fold dilution (23.0 ng/μl
to 0.023 pg/μl) using double-distilled water. As shown in
Figure 4, the detection limit of both real-time turbidity and the
visual method was 2.3 pg/μl, a 10-fold increase in sensitivity
compared with conventional PCR.

Dissemination of P. aeruginosa in Clinic
A PSR-based surveillance of P. aeruginosa targeting the toxA
gene was conducted in 301th hospital, 307th hospital, and
Wujing hospital, three top hospitals of Beijing with large patient
accommodations. One-hundred and thirty sputum samples were
collected from ICU patients with suspected multi-resistant
infections. Additionally, 10 sputum samples from healthy
people were collected as controls. All clinical samples were
simultaneously analyzed by visual PSR assay and traditional PCR.
As shown in Figure 5, of the 130 clinical samples, 37 samples
tested positive in the PSR assay while 34 were PCR-positive. All
of the healthy control samples tested negative in each of the
assays. Then, 37 P. aeruginosa strains were successfully cultured
from the positive samples. Sequence analysis of the toxA gene
from the isolated P. aeruginosa strains showed 100% identity

with the nucleotide sequences reported previously (Gray et al.,
1984).

Multilocus sequence typing analysis showed that the 37
P. aeruginosa strains belonged to different STs including
ST187, ST235, ST244, ST357, ST441, ST986, ST597, ST1175,
ST1224, and ST1752. Antimicrobial susceptibility testing
revealed a high resistance rate of clinical P. aeruginosa
isolates to carbapenems, cephalosporins and aminoglycosides.
Only four (10.8%) strains were susceptible to imipenem.
However, all clinical strains were susceptible to polymyxin
B. Interestingly, mutational inactivation of oprD was found
in 30 (90.9%) imipenem-resistant P. aeruginosa strains,
which was consistent with a former study which claimed
that reduced permeability of the outer membrane due to
loss of oprD is the main cause of imipenem resistance
(Wolter et al., 2004; Wang et al., 2010). To characterize the
clinical P. aeruginosa isolates further, PCR screening for
the presence of MBL and other β-lactamase genes (blaVIM ,
blaIMP, blaKPC−2, blaTEM, blaSPM , blaSIM−1, blaNDM−1,
and blaOXA−50) was conducted, the results showed co-
occurrence of resistance genes in most P. aeruginosa
strains. Moreover, the isolate SY-95 containing multiple
antibiotic resistance genes, presented increased resistance to all
β-lactams (MIC > 128 μg/ml for meropenem and imipenem),
quinolones, and aminoglycosides, and was only susceptible to
polymyxin B.

FIGURE 5 | Visual PSR detection of P. aeruginosa isolates from clinical samples. The results were visualized by the addition of 1 μl HNB solution to the 25-μl
reaction mix before the PSR reaction. 1, Negative control (double-distilled water); 2, positive control (P. aeruginosa ATCC 15442); 3, positive control (P. aeruginosa
CMCC 10539); 4, P. aeruginosa SY-79; 5, P. aeruginosa SY-23; 6, P. aeruginosa SY-33; 7, P. aeruginosa SY-11; 8, P. aeruginosa SY-18; 9, P. aeruginosa SY-29; 10,
P. aeruginosa SY-69; 11, P. aeruginosa SY-34; 12, P. aeruginosa SY-05; 13, P. aeruginosa SY-24; 14, P. aeruginosa SY-95; 15, P. aeruginosa SY-63; 16, P. aeruginosa
SY-59; 17, P. aeruginosa SQ-25; 18, P. aeruginosa SQ-129; 19, P. aeruginosa SQ-09; 20, P. aeruginosa SQ-01; 21, P. aeruginosa SQ-23; 22, P. aeruginosa SQ-29;
23, P. aeruginosa SQ-37; 24, P. aeruginosa SQ-14; 25, P. aeruginosa SQ-73; 26, P. aeruginosa WJ-44; 27, P. aeruginosa WJ-66; 28, P. aeruginosa WJ-98; 29,
P. aeruginosa WJ-83; 30, P. aeruginosa WJ-9; 31, P. aeruginosa WJ-26; 32, P. aeruginosa WJ-27; 33, P. aeruginosa WJ-49; 34, P. aeruginosa WJ-57; 35,
P. aeruginosa WJ-41; 36, P. aeruginosa WJ-72; 37, P. aeruginosa WJ-95; 38, P. aeruginosa WJ-23; 39, P. aeruginosa WJ-01; 40, P. aeruginosa WJ-06.
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Discussion

As a non-fermentative Gram-negative bacterium, P. aeruginosa
is currently the second most prevalent nosocomial bacterium,
only after Acinetobacter species. P. aeruginosa widely exists in
hospital environments such as air, water distribution systems
(Loveday et al., 2014), and medical equipment (Cobben
et al., 1996). According to the 2012 CHINET surveillance of
antimicrobial resistance in P. aeruginosa in China, 71.1% of
clinical P. aeruginosa isolates came from respiratory specimens.
Infections caused by P. aeruginosa are notably challenging
because this organism has innate resistance to a large number of
antimicrobial agents. Moreover, with the acquisition of antibiotic
resistance genes (such as blaNDM−1 and blaIMP), it is becoming
increasingly difficult to cure infections caused byMBL-producing
P. aeruginosa (Potron et al., 2015). Thus, early diagnosis and
control of this pathogen have become increasingly important.

To meet this challenge, we established a PSRmethod targeting
the toxA gene to detect P. aeruginosa. During the PSR reaction,
a large amount of insoluble magnesium pyrophosphate as well as
DNA is synthesized, resulting in increased turbidity (Liu et al.,
2015). PSR amplification was monitored continuously in a real-
time turbidimeter instrument or visually detected with the aid
of the metal ion indicator HNB, and could be completed within
60 min with a high sensitivity of 2.3 pg/μl. The toxA gene
regulating the synthesis of exotoxin A was targeted in the PSR
assay, which did not yield false-positive amplification of species
homologous to P. aeruginosa or of other clinical pathogens. The
visual detection was as sensitive and specific as real-time turbidity
measurement and further simplifies the assay, as it is visible to
the naked eye. In addition, since the reaction is carried out at a
constant temperature, an energy-intensive thermal cycler is not
needed. A thermostatic water bath is sufficient to initiate the
PSR reaction. Furthermore, the Bst DNA polymerase used for
PSR is not influenced by the different components often present
in clinical samples. Thus, DNA purification from the sample is
not necessary. It is worth mentioning that the use of a wax seal
to cover the reaction mixture was essential to minimize cross
contamination by aerosol since the amplification efficiency of the
PSR assay is extremely high, which frequently resulted in false
positives.

The P. aeruginosa PSR assay was applied to sputum samples
taken from ICU patients. The test results indicated that
P. aeruginosa was prevalent with nearly 30% of samples tested
positive. Diverse MLSTs of P. aeruginosa and co-occurrence of
resistance genes indicated a rapid and continuing evolution of
P. aeruginosa resulting from their wide occurrence in clinical
infections, and it would be difficult to control.

Although the antibiotic resistance rate to β-lactams,
aminoglycosides, and quinolones was high, all clinical
P. aeruginosa strains were sensitive to polymyxin B. Polymyxin
B is a polypeptide antibiotic of which the injectable formulation
has not been introduced to China because of its potential renal
toxicity. Only polymyxin B unguent for scratches and mild scalds
is available. However, generalized infections need to be treated
with intravenous injection or infusion. Last year, a child and his
grandfather were severely burned in a fire accident in Hangzhou,
China. Multiple antibiotics were invalid for the treatment, and
multi-drug resistant P. aeruginosa strains were isolated from
their wounds. It was not until the local newspaper launched a
nationwide search that the required dose of polymyxin B was
collected and the two patients were cured. Therefore, we think
there’s a need for an increase in the reserves of this medicine in
Chinese hospitals, especially those specialized in burns, as the last
resort for severe injuries.

Conclusion

We established a PSR detection method for P. aeruginosa,
which meets the ASSURED criteria (affordable, sensitive,
specific, user friendly, robust and rapid, equipment free
and deliverable) proposed by the World Health Organization
for developing diagnostic techniques (Mabey et al., 2004).
We anticipate its routine use in clinical screening and on-
site diagnosis, particularly in situations where resources are
limited. Furthermore, our study provides new insights into the
mechanisms of P. aeruginosa antibiotic resistance and warns that
future therapeutic options may be seriously limited.
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