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Functional gene ecological analyses using amplicon sequencing can be challenging as
translated sequences are often burdened with shifted reading frames. The aim of this
work was to evaluate several bioinformatics tools designed to correct errors which arise
during sequencing in an effort to reduce the number of frameshifts (FS). Genes encoding
for alpha subunits of biphenyl (bphA) and benzoate (benA) dioxygenases were used as
model sequences. FrameBot, a FS correction tool, was able to reduce the number of
detected FS to zero. However, up to 44% of sequences were discarded by FrameBot
as non-specific targets. Therefore, we proposed a de novo mode of FrameBot for FS
correction, which works on a similar basis as common chimera identifying platforms
and is not dependent on reference sequences. By nature of FrameBot de novo design,
it is crucial to provide it with data as error free as possible. We tested the ability
of several publicly available correction tools to decrease the number of errors in the
data sets. The combination of maximum expected error filtering and single linkage
pre-clustering proved to be the most efficient read processing approach. Applying
FrameBot de novo on the processed data enabled analysis of BphA sequences with
minimal losses of potentially functional sequences not homologous to those previously
known. This experiment also demonstrated the extensive diversity of dioxygenases in
soil. A script which performs FrameBot de novo is presented in the supplementary
material to the study or available at https://github.com/strejcem/FBdenovo. The tool
was also implemented into FunGene Pipeline available at http://fungene.cme.msu.edu/
FunGenePipeline/.

Keywords: Frameshift, FrameBot, biphenyl dioxygenase, benzoate dioxygenase, amplicon sequencing, functional
genes

INTRODUCTION

Next generation sequencing (NGS) of amplicons has become a standard method for assessing
diversity in microbial ecology. In particular, the 16S rRNA gene as a taxonomic marker is
heavily sequenced and many software pipelines have been developed for its processing, such
as mothur (Schloss et al., 2009), Ribosomal Database Project (RDP) pipeline (Cole et al.,
2014), QIIME (Caporaso et al., 2010), and others. The general workflow for processing
of amplicon sequence data is to first reduce sequencing errors (Schloss et al., 2011), then
eliminate chimeric reads (Edgar et al., 2011; Quince et al., 2011), and finally form operational
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taxonomic units (OTUs). Resultant OTUs are classified and
analyzed, i.e., alpha and beta diversity measurements are carried
out, and statistical descriptions/analyses are performed (Schloss
et al., 2011). Such strategies are very efficient in masking PCR-
generated and sequencing errors and do not radically inflate
diversity estimates, which was historically a major problem of
NGS of amplicons (Quince et al., 2009; Huse et al., 2010).

When interested in investigating specific ecological processes,
functional diversity is often more informative than taxonomic
diversity as it asks which functional genes are present rather
than who is present. One major potential problem associated
with analysis of amplicon sequenced functional genes is the
possibility of shifted reading frames. Universal strategies which
exist for 16S rRNA gene processing do not yet exist for
functional genes, although both RDP’s FunGene Pipeline (Fish
et al., 2013) and FunFrame (Weisman et al., 2013) represent
certain standardizations of the analyses. Both pipelines correct
frameshifts (FS) through different algorithms; FunGene employs
FrameBot (Wang et al., 2013), whereas FunFrame uses HMM-
FRAME (Zhang and Sun, 2011). Wang et al. (2013) reported
that FrameBot outperformed HMM-FRAME in terms of FS
correction. Both pipelines also reported that FS in very
diverse sets of environmental sequences could not be efficiently
eliminated, which stems from incomplete databases not reflecting
actual diversity. An example of such a problematic case is
the analysis of biphenyl dioxygenase (bphA) gene. BphA is
the alpha subunit of biphenyl dioxygenase and its gene is
traditionally considered as the genetic marker for biphenyl
and polychlorinated biphenyls (PCBs) utilization. The upper
biphenyl degradation pathway (Furukawa et al., 1989) results in
the production of hydroxypentadienoate and benzoate, which
then enter the lower degradation pathway. The lower pathway
for the catabolism of (chloro)benzoates is initiated by another
dioxygenase, benzoate dioxygenase, encoded by the benA gene
(Pieper and Seeger, 2008).

In this study, we tested three different methods of processing
amplicon sequence data of functional genes using specific
example data sets of biphenyl and benzoate dioxygenases.
Dioxygenases were picked intentionally due to their extensive
diversity and low coverage of known sequences which can
be used as references (Wang et al., 2013). More specifically,
bioinformatics approaches using denoising or maximum
expected error (MEE) trimming were compared, and a novel
stand-alone method of FS corrections, FrameBot de novo, is
proposed which enables analyses independent of previously
described sequences.

MATERIALS AND METHODS

Soil and Mock Community Samples
Two different soils were used for DNA isolation in this study.
The first was a long-term contaminated soil from a dump site
in south Bohemia mainly polluted with PCBs originating from
Delor 103 and Delor 106 mixtures (Pavlíková et al., 2007), as
well as polyaromatic hydrocarbons, pesticides, heavy metals, and
other pollutants (Uhlík et al., 2012). The second soil was a pristine

soil used commonly as horticultural substrate. In addition, a
collection of bacterial genomes carrying the bphA and benA
genes was prepared as a mock community from four strains:
Burkholderia xenovorans LB400 (Bopp, 1986), Rhodococcus jostii
RHA1 (Masai et al., 1995), Pseudomonas alcaliphila JAB1 (Ryšlavá
et al., 2003; Kurzawová et al., 2012), Pandoraea pnomenusa
(formerly Comamonas testosteroni) B-356 (Hurtubise et al.,
1995).

DNA Isolation and Amplicon Preparation
Total DNA was extracted from both soils with PowerMaxTM Soil
DNA Isolation Kit (MoBio Laboratories Inc., USA) following the
standard protocol. Ethanol precipitation with glycogen (Roche,
Germany) was carried out to further concentrate the DNA as was
described by Uhlík et al. (2009). DNA of mock community strains
was isolated using PureLink Genomic DNAMini Kit (Invitrogen,
USA) after the strains were grown overnight in liquid Luria–
Bertani medium (Oxoid, UK). Prior to amplification, genomic
DNA of the strains was pooled and further processed analogously
to soil metagenomic DNA.

Amplicons were prepared by PCR with primers fused with
unique barcode sequences enabling to distinguish individual
samples. Primers for bphA were adapted from Iwai et al. (2010).
A new set of degenerated primers was designed for benA based
on known sequences available in RDP FunGene database (Fish
et al., 2013). Known sequences of benA which were >400 bp
in size and >900 in score were downloaded and aligned, and
primers were designed in the conserved regions of the gene.
The novel set of primers is as follows: benA 649f, GAR AAY
GGH GCN GAY GGY TAY CA; and benA 1100r, AAR AAR
TCY TCR TAY TGR CG (numbering based on B. xenovorans
LB400 benA). The primers were tested with genomic DNA of the
strains contained in themock community. PCRwas carried out in
20 µL volumes containing 0.2 mM dNTPs (Finnzymes, Finland),
0.2 µM primers (Generi Biotech, Czech Republic), 0.1 mg mL−1

bovine serum albumin (New England BioLabs, UK), 0.4 U of
PhusionHot Start II DNA Polymerase (Finnzymes, Finland) with
the corresponding buffer, and template DNA (10–50 ng). The
reaction conditions were as follows: 98◦C for 3 min, 35 cycles of
98◦C for 10 s, 60◦C (bphA) or 51◦C (benA) for 30 s, and 72◦C for
30 s with final extension at 72◦C for 10 min.

Resulting PCR products were purified using AMPure
XP Beads (Agencourt, Beckman Coulter, USA) according
to manufacturer’s instructions and pooled together prior to
sequencing. Amplicons were unidirectionally sequenced from the
forward primers using GS FLX+ system with Titanium reagents
(Roche, Germany). The data were processed by amplicon analysis
of signal processing.

Data Processing
A general workflow was used for FLX+Titanium data processing
as follows: (i) separate reads into samples by the exact match of
barcode and primer sequence; (ii) trim off barcode and primer
sequences; (iii) apply filtering/denoising algorithms, which are
described further; (iv) trim the reads to the length of 400 bp
while discard shorter sequences; (v) identify and eliminate
chimeric sequences by UCHIME de novo (Edgar et al., 2011)
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with default settings; and (vi) correct FS by FrameBot. Sequence
data manipulations, such as dereplication, sorting, and database
searches, were done in USEARCH v7.0 (Edgar, 2010) andmothur
v1.31.0 (Schloss et al., 2009) software programs.

The filtering/denoising tools used in the step (iii) were as
follows:

(a) AmpliconNoise: A modified pipeline of AmpliconNoise
v1.29 (Quince et al., 2011) was followed except that the
chimera check by Perseus was replaced by UCHIME de
novo. The modification was performed by implementing a
custom script CleanOpt.pl in the “filter” step (Gaspar and
Thomas, 2013) instead of CleanMinMax.pl with truncation
step disabled (option 2).

(b) MEE calculation: Implementation of MEE filtering by R.
C. Edgar was used. The extraction of reads and sequence
manipulation was carried out by a collection of USEARCH
v7.0 FASTAQ commands (Edgar, 2010) with supplementary
python scripts available at www.drive5.com. For this study,
the MEE value was set in the range 0.5–2.0 by 0.5 steps. To
keep the highest quality sequences, all discarded sequences
identical to valid sequences were re-extracted and the
abundance numbers were updated.

(c) Single linkage pre-clustering (SLP): Modified single linkage
clustering exploiting abundance information of sequences
was performed as reported by Huse et al. (2010), with
the clustering step of 1% difference (w = 0.01). Pairwise
distances were calculated by pairwise.seqs command in
mothur software project (Schloss et al., 2009).

FrameBot
Frameshift correcting tool FrameBot v1.0 (Wang et al., 2013)
was run locally with glocal alignment settings, FS penalty set
to −15 and identity threshold of 0.4. Target protein sequences
were obtained via FunGene Repository (Fish et al., 2013) using
pre-built bphA1 and benA sub-databases with filter settings
of Minimum Score 300 and Minimum Size 450 amino acids
(February 2014). Downloaded protein sequences were trimmed
with used primers to match experimental amplicon size, and
dereplicated. Alternatively, a novel de novo method of FS
detection was proposed (see Results). A script which performs
FrameBot de novo is presented in the Supplementary Material
to the study (Supplementary Script 1) or is available at https://
github.com/strejcem/FBdenovo. The tool was also implemented
into FunGene Pipeline available at http://fungene.cme.msu.edu/
FunGenePipeline/.

FS Detection in Processed Sequences
DNA sequences from all treatments were concatenated and
dereplicated in mothur. Unique sequences were searched by
locally run BLASTX (BLAST+ v2.29, Camacho et al. (2009))
against NCBI non-redundant protein (nr) database (downloaded
in February 2014). A custom R (R Development Core Team,
2009) script was written which reads a names file and a BLAST
output file, back-replicates counts to the original treatments, and
exports results to a table showing total and unique numbers of
sequences and numbers of sequences containing FS. In the case

of mock community sample, the database was made of protein
sequences known to be present. This allowed for detecting the
majority of possible FS as well as calculating amino acid accuracy
of obtained sequences; accuracy was defined as the number of
identical amino acid residues of the experimental sequences to
their respective references divided by their expected full length
(133).

Sequence Diversity Analysis
DNA sequence data sets of the same gene from both soils
were combined and translated into proteins. Multiple sequence
alignment was performed by Muscle (Edgar, 2004) with default
settings. The alignments were manually inspected and sequences
of non-specific products were eliminated along with sequences
with STOP codons. Phylogenetic trees were constructed in
MEGA6 software (Tamura et al., 2013) by Neighbor-Joining
method with a p-distance model and pairwise deletion as
gap/missing data treatment.

A conservation analysis was performed by calculating
frequencies of amino acids and gap-treated Shannon entropy (H′;
Zhang et al., 2008) for each position of the multiple sequence
alignments as described by Iwai et al. (2010).

Sequence Deposition
Pyrosequencing reads were deposited in NCBI Short Read
Archive under study accession number SRP059438.

RESULTS

Data Treatments Comparison
Before correcting FS, the effects of AmpliconNoise, MEEfiltering,
and MEE filtering with SLP were evaluated using the following
metrics: (i) total number of sequences; (ii) number of unique
sequences; (iii) number of singletons; (iv) percent ratio of FS
sequences including singletons; and (v) percent ratio of sequences
excluding singletons. Ideally, the number of sequences after read
processing should be approaching the original number of raw
sequences and at the same time should contain minimum FS.
By default, we considered singletons as very likely erroneous
as demonstrated by the correlation between the number of
singletons and FS sequences. The removal of singletons from
raw data reduced the number of FS sequences on average
by half; however, this effect became less evident with any
further treatment, especially MEE with SLP or AmpliconNoise
(Figure 1). For clarity, all numerical values reported throughout
this manuscript are presented as averages from all four amplicon
samples with standard deviations. Individual values are depicted
in respective figures or tables.

Predictably, translated raw sequences suffered from the largest
amount of FS sequences [14.2%, standard deviation (SD) = 2.8
percentage points (pp)] and singletons (31.9%, SD = 5.4pp).
A notable decrease was achieved by either including SLP
algorithm or applying AmpliconNoise. Both these treatments
maintained very high number of total sequences (on average
11250, SD = 4037 and 10940, SD = 3634, respectively)
while significantly decreasing the number of FS sequences
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FIGURE 1 | Data treatment comparison before frameshift (FS) correction. P-BenA (left, upper graph): BenA from the pristine soil; P-BphA (right, upper
graph): BphA from the pristine soil; C-BenA (left, lower graph): BenA from the contaminated soil; C-BphA (right, lower graph): BphA from the contaminated soil. The
bars represent number of sequences (left axis): singletons; no singletons; unique. The connected circles symbolize ratio of sequences with FS (right axis) to
total sequences without singletons (- -�- -) or ratio of sequences with FS to total sequences with singletons (- -�- -).

(5.3%, SD = 2.6pp and 4.6%, SD = 2.6pp, respectively) and
singletons (on average 5.9%, SD = 3.4pp and 2.6%, SD = 1.6pp,
respectively).

MEE filtering in all cases resulted in a lower number of total
sequences than the use of SLP or AmpliconNoise. Additionally,
the number of sequences decreased with the strictness of MEE
value, starting on average at 9809, SD = 3386 for MEE 2.0
and finishing at 7038, SD = 2133 for MEE 0.5. Combining
MEE filtering with SLP, similarly to treating raw data with SLP,
caused a decrease in the number of singletons (on average 4.0%,
SD = 2.8pp for MEE 2.0 + SLP and 2.4%, SD = 2.1pp for MEE
0.5 + SLP) as well as unique sequences (for MEE 2.0 + SLP
on average 323, SD = 256; for MEE 0.5 + SLP 189, SD = 158,
Figure 1).

The accuracy of all treatments was evaluated based on mock
community data for both proteins. In case of BphA (Figure 2),
the translation of raw sequences had the accuracy of 81.6% and
71.3% of FS sequences. The highest accuracy of 92.6% with
15.7% FS sequences was achieved by the application of MEE
1.0 in combination with SLP. Although comparable numbers
of accuracy and ratio of FS were obtained by MEE 0.5 with
SLP, this stricter criterion also resulted only in three unique
sequences, while eliminating RHA1 strain BphA. Application
of AmpliconNoise produced lower accuracy (0.756) than the

bare translation of raw data (Figure 2). The analysis of BenA
mock community showed again the same highest accuracy for
MEE 0.5 and 1.0 in combination with SLP (93.4%) with the
lowest FS ratio of 68.0% (Figure 2). AmpliconNoise produced
similarly high accuracy of 90.7% but with the FS ratio of
96.6%.

FS Correction
Frameshifts were detected in processed sets of sequences by
BLASTX searches against NCBI nr protein database. In the case
of mock community samples, the database was made of protein
sequences known to be present, which allowed for detecting the
majority of possible FS. Upon processing soil sample sequences
through FrameBot, the number of sequences with FS reached
zero.

FrameBot De novo
By default, frame shifts are detected by translating experimental
sequences in all reading frames, aligning them to protein
references and searching for “frame breaks”. When reference
sequences are closely related to the experimental ones, the
entire process is effective. This was the case with the BenA
sequences, where the average identity of experimental sequences
to references was 83.1% and only 0–2% of reads (Table 1)
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FIGURE 2 | Mock community analysis. Mock-BphA (top): BphA from the mock community sample; Mock-BenA (bottom): BenA from the mock community.
The bars represent number of unique sequences (left axis). The connected circles symbolize ratio of sequences with FS (right axis) to total sequences (- -�- -) or
accuracy of amino acid residues (- -�- -).

were lost due to insufficient similarity to reference sequences.
However, when the experimental reads are poorly related to
references, the frame shift correction is inferior or true sequences
are excluded from the analysis, which was apparent with
BphA sequences from both soils. The average identity of BphA
sequences to references was 42.5% and execution of FrameBot
resulted in the loss of up to 12 and 44% of reads from BphA
pristine and contaminated soil samples, respectively (Table 1).
To overcome such issues, a de novo mode of FrameBot was
proposed. The de novo mode is based on the assumption that
erroneous sequences are derived from true sequences during
the amplification or sequencing process, rendering abundant

sequences to be more likely correct. The design of FrameBot
de novo (Figure 3) can be separated into several steps: (i)
experimental sequences are sorted by their abundance; (ii)
the most abundant sequence is selected as the reference and
is translated into a protein; (iii) FrameBot checks all the
experimental sequences using the single reference, sequences
below the identity and protein length cut-offs are not processed
(default 0.4 and 100, respectively); (iv) the most abundant
sequence from the unprocessed (i.e., discarded) sequences is
selected and translated into a new reference; and (v) the
procedure is repeated until there are no unprocessed sequences.
In addition, when a new reference is selected, it is tested for
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TABLE 1 | Frame shift corrections reported by FrameBot (FB; reference-based mode and de novo mode).

Data treatment FB reference-based
corrected (%)

FB de novo
corrected (%)

FB reference-based
sequences discarded (%)

FB de novo
sequences discarded (%)

P_BenA 1.0 MEE + SLP 1.5 1.4 0.1 <0.1

P_BenA AmpliconNoise 1.0 1.0 0.3 0.3

C_BenA 1.0 MEE + SLP 9.6 8.8 1.1 0.5

C_BenA AmpliconNoise 9.5 9.7 2.1 1.3

P_BphA 1.0 MEE + SLP 2.7 1.9 10.1 3.4

P_BphA AmpliconNoise 4.7 4.5 12.3 4.7

C_BphA 1.0 MEE + SLP 0.6 2.4 41.2 0.4

C_BphA AmpliconNoise 0.8 6.0 43.6 0.6

P, pristine soil; C, contaminated soil; MEE, maximum expected error filtration; SLP, single linkage pre-clustering.

FIGURE 3 | FrameBot de novo scheme: (i) the most abundant
experimental sequence is used as a reference for all sequences;
(ii) FrameBot corrects sequences above identity cut off; (iii) sequences
with low similarity to reference sequence are skipped; and (iv) the
most abundant skipped sequence is used as a new reference
sequence; if STOP codon is detected in a new reference, the
sequence is put aside and will be checked with the next accepted
reference; the cycle is repeated until there is no uncorrected
sequence without STOP codon.

a STOP codon presence. If positive, the next most abundant
sequence is selected and tested instead.

Applying FrameBot de novo on BenA sequences was
comparable to reference-based FrameBot (Table 1). The
aforementioned loss of up to 12 and 44% of BphA reads
in pristine and contaminated soil samples, respectively, was
significantly reduced by FrameBot de novo. At the same time, the
number of reported FS correction was increased by up to five
times compared to the reference-based FrameBot (Table 1).

Based on these results, the diversity of BphA and BenA
sequences was determined as follows: after trimming off barcode
and primer sequences and trimming the reads to the length of
400 bp, MEE filtering with value of 1.0 followed by SLP was
applied and chimeric sequences with singletons were eliminated.
The final step consisted of FS correction by reference-based
FrameBot applied on BenA sequences and FrameBot de novo

applied on BphA sequences (Supplementary Material Figure 1).
The summary of original and final sequence quantity can be
found in Supplementary Material Table 1.

Diversity of BphA
Conservancy analysis indicated five highly conserved residues
(frequency >99.9%) and additional two conserved residues
(frequency >95%) shared in both contaminated and pristine
soil BphA (Figure 4). Conserved amino acids were found
in positions (LB400 numbering) Asp230, His233 and His239,
Gly271, Phe327–Pro328, and Pro344. Very low entropy was also
detected for contaminated soil BphA position 232 (mostly Tyr)
and pristine soil BphA positions Gly346–Pro347 and Glu351.
A phylogenetic tree of BphA was divided into seven phylogenetic
groups (Supplementary Material Figure 2). Group I, II, and III
formed a clade with known biphenyl dioxygenases from PCB-
degrading bacteria. The first four most abundant sequences
in the contaminated soil clustered in group I with BphA
of Gram-negative bacteria and in group II with BphA from
rhodococci. By far the most abundant BphA sequence in the
pristine soil, located in phylogenetic group V, shared only ≤59%
identity with previously described aromatic ring hydroxylating
dioxygenases. The closest published matches to the sequences
related to the most abundant pristine soil BphA sequence
were phenoxybenzoate or 3-phenylpropionate/cinnamic acid
dioxygenases with identities as low as 40%. A distinct cluster
IV was related to 3-phenylpropionate dioxygenases, although
no high identity matches to known sequences were found.
The remaining clade consisted of phylogenetic groups VI and
VII, and was most related to dioxygenases from uncultured
bacteria. Overall, the phylogenetic tree of deduced amino
acid sequences of BphA showed extensive diversity of these
molecules in environmental samples with novel structures
and possibly unknown substrate specificities (Supplementary
Material Figure 2). Interestingly, there was not a single sequence
that was common to both investigated contaminated and pristine
environments.

Diversity of BenA
The newly designed primer set benA 649f and benA 1100r
(see Materials and Methods for details) flanks the C-terminal
domain of the dioxygenase alpha subunit similarly to the
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FIGURE 4 | Conservancy analysis of BphA (top) and BenA (bottom). The numbers of amino acid residues correspond to those of Burkholderia xenovorans
LB400 BphA and BenA. A conservation analysis was performed by calculating frequencies of amino acids and gap-treated Shannon entropy (H’) according to Zhang
et al. (2008). High Shannon entropy is mostly a consequence of inserted gap in multiple sequence alignment over a majority of sequences.

primers that target bphA genes. In silico testing of the
primer set using the ProbeMatch Search tool in FunGene
(Fish et al., 2013) showed that the primers target genes
encoding alpha subunits of: benzoate 1,2-dioxygenases,
toluate 1,2-dioxygenases, 2-halobenzoate 1,2-dioxygenases,
3-phenylpropionate dioxygenases, and benzene 1,2-dioxygenases
from both Gram-negative and Gram-positive bacteria.

The number of conserved sites in BenA was much higher
than in BphA, with seven highly conserved and additional six
conserved amino acid residues across all sequences (Figure 4).
In addition, differences in sequences from contaminated and
pristine soils were much higher than in BphA; BenA sequences
were generally much less diverse in the pristine soil than the
contaminated soil with 25 highly conserved and additional four
conserved amino acid residues in the pristine soil. Six distinct
clusters were defined in the constructed BenA phylogenetic tree
(Supplementary Material Figure 3). Clusters number I, III, IV,
and VI were associated with proteobacterial benzoate/benzene
dioxygenases. BenA of known bacterial strains were located in
four of the six clusters (Supplementary Material Figure 3). The
most abundant sequences originating from the contaminated
soil were located in cluster I and were closely related to
Pseudomonas sp. GM74 (Supplementary Material Figure 3).
Cluster II was associated predominantly with Actinobacteria,
including R. jostii RHA1 BenA. More than 70% of BenA
sequences from the pristine soil formed a third cluster with
their closest relatives being BenA from Pseudomonas spp.

(Supplementary Material Figure 3). Cluster V consisted solely
of anthranilate dioxygenases and cluster VI contained sequences
very dissimilar to those previously known (identities ∼40—50%
to proteobacterial BenA).

DISCUSSION

Ecologically relevant functional genes are important markers for
assessing the microbial functional potential of environmental
communities. Analyses of protein coding genes are mostly
performed after translation of nucleotide sequences into proteins
as protein sequences more accurately reflect biological function
and functional relatedness (Penton et al., 2013). As translation
is often burdened with shifted reading frames, downstream
processing of sequences can become very challenging. We
compared different raw data processing steps that would
minimize, or possibly eliminate the occurrence of FS sequences,
and proposed a different mode of correcting FS sequences which
we term FrameBot de novo.

Application of a common FrameBot resulted in the
elimination of detected FS in all samples, but also resulted
in elimination of a significant proportion of BphA sequences
(Table 1). The requirement that the analyzed sequences need
to be similar to those previously known is the most serious
drawback of FrameBot. The herein proposed FrameBot de
novo was able to overcome this drawback and was also able
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to dramatically reduce the detected FS in the case of BphA
(Table 1). For BenA sequences, the performance of FrameBot
de novo closely approached that of the reference-based mode
(Table 1).

The performance of FrameBot de novo was compared with
another de novo FS correcting tool – MetaGeneTack (Tang
et al., 2013). Although the FS correction rates were comparable
between the two tools, reads processed by FrameBot de novo
resulted in higher positive-scoring matches in BLASTX search
against the NR database. Interestingly, the number of unique
subject sequences in the BLASTX also increased compared to
MetaGeneTack corrected reads. This is most likely explained by
the better ability of FrameBot de novo to locate the true position of
the frame shift as was observed when mock community samples
were analyzed. For example, when MetaGeneTack corrected
a frame shift, it changed the reading frame upstream of the
true frame shift position leaving several amino acid residues
between corrected FS and the true FS position incorrectly
translated.

By design, FrameBot de novo can introduce new FS to
true sequences if a highly abundant sequence is erroneous,
therefore, it is desirable to provide data of the highest quality
prior to the execution of FrameBot. Significant error reduction
can be achieved through several mechanisms as shown in
Figure 1. To evaluate the effects of different data treatments
on protein coding sequence data, FS were detected in processed
data sets of sequences by BLASTX searches against protein
database.

Read filtration based on quality scores (QS) provided by
a sequencing technology is a convenient way of processing
high-throughput sequencing data. It is fast and available on
almost all sequencing platforms. MEE filtration is based on
calculating the probable number of errors for each read from
QS provided by the sequencing technology. Reads with higher
number of expected errors than user defined value are discarded.
MEE filtering is advantageous to commonly used standard QS
averaging over reads where single poor qualities can be concealed
by neighboring high qualities. In this work, we combined MEE
filtering with SLP which joins closely related sequences that are
most likely of the same origin but were created and multiplied
via imperfect amplification or sequencing processes (Huse et al.,
2010).

AmpliconNoise represents a sophisticated method
for removing noise from 454 pyrosequenced amplicons.
AmpliconNoise consists of two algorithms – PyroNoise and
SeqNoise. PyroNoise attempts to correct pyrosequencing errors
(mainly in homopolymers), while SeqNoise acts in a similar way
as SLP – it clusters closely related sequences to reduce mainly
PCR noise. Gaspar and Thomas (2013) inspected the ways in
which AmpliconNoise reads flowgram data and wrote a revised
version of the responsible Perl script. Using their CleanOpt.pl
instead of default CleanMinMax.pl with the truncation step
disabled led to an improved base calling and a production of
longer sequences. AmpliconNoise does not filter sequences
but rather alters them in an attempt to correct them. It can,
however, inadvertently introduce errors in correct sequences
as was shown previously (Gaspar and Thomas, 2013; Wang

et al., 2013) and as we demonstrated in the analysis of BenA
mock community sample (Figure 2). In the light of these
observations, MEE filtering with SLP was chosen for the diversity
analyses of BphA and BenA followed by FrameBot de novo
for BphA and reference-based FrameBot for BenA diversity
analyses.

Sequence analysis of dioxygenases demonstrated the extensive
diversity of these proteins in soil with novel structures and
possibly unknown substrate specificities. Some residues of BphA
are directly responsible for substrate binding and other ones
influence catalytic properties of the enzyme. Among these
residues, so-called region III, corresponding to B. xenovorans
LB400 BphA positions 335–341, is of an outstanding importance
for substrate binding and specificity. More specifically, residues
335 and 336 impact on substrate binding and orienting (Barriault
et al., 2004), while residues 338 or 341 impact on catalytic
activity (Mohammadi and Sylvestre, 2005).We observed different
patterns in the amino acid residues of this region in both
pristine and contaminated soils. For instance, the most abundant
BphA sequences from the contaminated soil were similar in
the structure of the region III to the previously known BphA
from PCB-degrading bacteria (Vézina et al., 2008). Furthermore,
a sequence was detected from the contaminated soil which
shared 95% identity to BphA from B. xenovorans LB400 but
contained Ala335 and Met336 while amino acid residues 337–
340 were identical to those in LB400. Previously it was shown
that substituting Thr335 and Phe336 in LB400 for Ala335 and
Met336 results in broadening of substrate specificity of the enzyme
(Barriault and Sylvestre, 2004; Kumar et al., 2011). Region III
amino acid patterns in sequences from the pristine soil were
mostly quite different. This could indicate likely functional
speciation of the enzymes based on the compounds commonly
found in the surrounding environment – chlorobiphenyls in
contaminated soil and possibly plant-derived natural compounds
in the pristine soil. The roles of BphA in the environment have
not yet been clearly elucidated, but there have been studies
published which suggest the ecological role of BphA during the
turnover of plant-derived compounds (Furukawa et al., 2004;
Pham et al., 2012; Pham and Sylvestre, 2013).

The residue 339 in the contaminated soil proved to be the
most conserved (Figure 4) among amino acid residues of the
region III, which is in agreement with previously published data
(Vézina et al., 2008; Iwai et al., 2010). However, in the pristine
soil, the most conserved residue was that in the position 340.
Residues corresponding to those of 233 and 239 in LB400 BphA
(Figure 4) proved to be very conserved. The two histidines in
these positions are crucial for the enzymatic function as they
coordinate the mononuclear iron of the active center (Furusawa
et al., 2004). Amino acids in region I, i.e., residues 236–238
(Mondello et al., 1997), were notably more different from those of
previously known BphA sequences. For instance, PCB-degrading
taxa have commonly Thr at the position 236 and Thr/Met
at 237 (Kumamaru et al., 1998; Vézina et al., 2008). In both
environmental datasets, we detected other amino acid residues to
be more common (Supplementary Material Figure 4). Published
data also indicated that the residue 321 was conserved among all
BphA sequences, being either Gly or Ala (Vézina et al., 2008). Our
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data showed that, in addition to Gly and Ala, other residues were
also common, including Val, Arg, Pro, Thr, Ser, Asn, Gln, Ile, or
others (Supplementary Material Figure 4).

Much less information is currently available on BenA and
related toluate, 2-halobenzoate, and anthranilate dioxygenases,
which are classified as group II dioxygenases according to Nam
et al. (2001). It has been previously shown that both benzoate
and toluate dioxygenases catalyze the oxygenation of benzoates
to the corresponding cis-1,2-dihydroxycyclohexadienes,
including benzoates which are meta- and ortho-chlorinated
or alkylated (Ge et al., 2002). The substrate specificity of
the actual BenA is usually narrower than that of toluate
dioxygenase, which is capable of transforming para-substituted
benzoates unlike BenA (Ge and Eltis, 2003). Our data
indicated that anthranilate dioxygenases, which commonly
transform benzoate as well (Chang et al., 2003), formed a
distinct cluster. Interestingly, sequences in all other clusters
were homologous to benzoate and benzene dioxygenases
(Supplementary Material Figure 3). Inspection of sequences
listed in Functional Gene Repository (Fish et al., 2013) showed
that many sequences fitting the model used for BenA were
benzene dioxygenases. Even the primers designed for benA
sequences hybridized in silico with some benzene dioxygenase
sequences, suggesting a close sequential relatedness of those two
enzymes.

Overall, the results of this study bring new insights into
the ecological analysis of functional genetic markers. We

demonstrated that any tested sequence treatment prior to
translation is useful to reduce the number of errors. The proposal
of FrameBot de novo will enable researchers to analyze functional
ecological markers of disparate nature where the independence of
previously described sequences is required. This tool can further
improve gene isolation processes; especially in conjunction with
a metagenome-complexity reducing methods like stable isotope
probing (Uhlík et al., 2013) or sequence capture (Denonfoux
et al., 2013). Using the model cases of aromatic dioxygenases we
proved that FrameBot de novo can help fill the gaps in knowledge
associated with diversity of these molecules by discovering novel
clades with yet-to-be determined substrate specificities.

ACKNOWLEDGMENTS

Financial support was provided by a grant from the Czech Science
Foundation (no. 13-20414P) awarded to OU. The authors are
grateful to Dr. Mary-Cathrine Leewis, Dr. Hana Stiborová and
Lucie Musilová for their comments on the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fmicb.
2015.01267

REFERENCES
Barriault, D., Lepine, F., Mohammadi, M., Milot, S., Leberre, N., and

Sylvestre, M. (2004). Revisiting the regiospecificity of Burkholderia xenovorans
LB400 biphenyl dioxygenase toward 2,2′-dichlorobiphenyl and 2,3,2′,3′-
tetrachlorobiphenyl. J. Biol. Chem. 279, 47489–47496. doi: 10.1074/jbc.
M406808200

Barriault, D., and Sylvestre,M. (2004). Evolution of the biphenyl dioxygenase BphA
from Burkholderia xenovorans LB400 by random mutagenesis of multiple sites
in region III. J. Biol. Chem. 279, 47480–47488. doi: 10.1074/jbc.M406805200

Bopp, L. H. (1986). Degradation of highly chlorinated PCBs by Pseudomonas strain
LB400. J. Indus. Microbiol. 1, 23–29. doi: 10.1007/BF01569413

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., et al.
(2009). BLAST+: architecture and applications. BMC Bioinform. 10:421. doi:
10.1186/1471-2105-10-421

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D.,
Costello, E. K., et al. (2010). QIIME allows analysis of high-throughput
community sequencing data. Nat. Methods 7, 335–336. doi: 10.1038/
nmeth.f.303

Chang, H.-K., Mohseni, P., and Zylstra, G. J. (2003). Characterization
and regulation of the genes for a novel anthranilate 1,2-dioxygenase
from Burkholderia cepacia DBO1. J. Bacteriol. 185, 5871–5881. doi:
10.1128/jb.185.19.5871-5881.2003

Cole, J. R., Wang, Q., Fish, J. A., Chai, B., Mcgarrell, D. M., Sun, Y., et al. (2014).
Ribosomal Database Project: data and tools for high throughput rRNA analysis.
Nucleic Acids Res. 42, D633–D642. doi: 10.1093/nar/gkt1244

Denonfoux, J., Parisot, N., Dugat-Bony, E., Biderre-Petit, C., Boucher, D., Morgavi,
D. P., et al. (2013). Gene capture coupled to high-throughput sequencing as
a strategy for targeted metagenome exploration. DNA Res. 20, 185–196. doi:
10.1093/dnares/dst001

Edgar, R. C. (2004).MUSCLE:multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Res. 32, 1792–1797. doi: 10.1093/nar/gkh340

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST.
Bioinformatics 26, 2460–2461. doi: 10.1093/bioinformatics/btq461

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., and Knight, R. (2011).
UCHIME improves sensitivity and speed of chimera detection. Bioinformatics
27, 2194–2200. doi: 10.1093/bioinformatics/btr381

Fish, J. A., Chai, B., Wang, Q., Sun, Y., Brown, C. T., Tiedje, J. M., et al. (2013).
FunGene: the Functional Gene Pipeline and Repository. Front. Microbiol. 4:291.
doi: 10.3389/fmicb.2013.00291

Furukawa, K., Hayase, N., Taira, K., and Tomizuka, N. (1989). Molecular
relationship of chromosomal genes encoding biphenyl/polychlorinated
biphenyl catabolism: some soil bacteria possess a highly conserved bph operon.
J. Bacteriol. 171, 5467–5472.

Furukawa, K., Suenaga, H., and Goto, M. (2004). Biphenyl dioxygenases:
functional versatilities and directed evolution. J. Bacteriol. 186, 5189–5196. doi:
10.1128/JB.186.16.5189-5196.2004

Furusawa, Y., Nagarajan, V., Tanokura, M., Masai, E., Fukuda, M., and Senda, T.
(2004). Crystal structure of the terminal oxygenase component of biphenyl
dioxygenase derived from Rhodococcus sp. strain RHA1. J. Mol. Biol. 342,
1041–1052. doi: 10.1016/j.jmb.2004.07.062

Gaspar, J. M., and Thomas, W. K. (2013). Assessing the consequences
of denoising marker-based metagenomic data. PLoS ONE 8:e60458. doi:
10.1371/journal.pone.0060458

Ge, Y., and Eltis, L. D. (2003). Characterization of hybrid toluate and benzoate
dioxygenases. J. Bacteriol. 185, 5333–5341. doi: 10.1128/jb.185.18.5333-
5341.2003

Ge, Y., Vaillancourt, F. H., Agar, N. Y. R., and Eltis, L. D. (2002). Reactivity of
toluate dioxygenase with substituted benzoates and dioxygen. J. Bacteriol. 184,
4096–4103. doi: 10.1128/jb.184.15.4096-4103.2002

Hurtubise, Y., Barriault, D., Powlowski, J., and Sylvestre, M. (1995). Purification
and characterization of the Comamonas testosteroni B-356 biphenyl
dioxygenase components. J. Bacteriol. 177, 6610–6618.

Huse, S. M., Welch, D. M., Morrison, H. G., and Sogin, M. L. (2010). Ironing out
the wrinkles in the rare biosphere through improved OTU clustering. Environ.
Microbiol. 12, 1889–1898. doi: 10.1111/j.1462-2920.2010.02193.x

Iwai, S., Chai, B., Sul, W. J., Cole, J. R., Hashsham, S. A., and Tiedje,
J. M. (2010). Gene-targeted-metagenomics reveals extensive diversity of

Frontiers in Microbiology | www.frontiersin.org 9 November 2015 | Volume 6 | Article 1267

http://journal.frontiersin.org/article/10.3389/fmicb.2015.01267
http://journal.frontiersin.org/article/10.3389/fmicb.2015.01267
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Strejcek et al. Hunting Down Frame Shifts

aromatic dioxygenase genes in the environment. ISME J. 4, 279–285. doi:
10.1038/ismej.2009.104

Kumamaru, T., Suenaga, H.,Mitsuoka, M.,Watanabe, T., and Furukawa, K. (1998).
Enhanced degradation of polychlorinated biphenyls by directed evolution of
biphenyl dioxygenase. Nat. Biotechnol. 16, 663–666. doi: 10.1038/nbt0798-663

Kumar, P., Gomez-Gil, L., Mohammadi, M., Sylvestre, M., Eltis, L. D., and Bolin,
J. T. (2011). Anaerobic crystallization and initial X-ray diffraction data of
biphenyl 2,3-dioxygenase from Burkholderia xenovorans LB400: addition of
agarose improved the quality of the crystals. Acta Crystallograph. Sect. F 67,
59–63. doi: 10.1107/S1744309110043393

Kurzawová, V., Štursa, P., Uhlík, O., Norková, K., Strohalm, M., Lipov, J.,
et al. (2012). Plant-microorganism interactions in bioremediation of
polychlorinated biphenyl-contaminated soil. New Biotechnol. 30, 15–22.
doi: 10.1016/j.nbt.2012.06.004

Masai, E., Yamada, A., Healy, J.M., Hatta, T., Kimbara, K., Fukuda, M., et al. (1995).
Characterization of biphenyl catabolic genes of gram-positive polychlorinated
biphenyl degrader Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 61,
2079–2085.

Mohammadi, M., and Sylvestre, M. (2005). Resolving the profile of metabolites
generated during oxidation of dibenzofuran and chlorodibenzofurans by
the biphenyl catabolic pathway enzymes. Chem. Biol. 12, 835–846. doi:
10.1016/j.chembiol.2005.05.017

Mondello, F. J., Turcich, M. P., Lobos, J. H., and Erickson, B. D. (1997).
Identification and modification of biphenyl dioxygenase sequences that
determine the specificity of polychlorinated biphenyl degradation. Appl.
Environ. Microbiol. 63, 3096–3103.

Nam, J. W., Nojiri, H., Yoshida, T., Habe, H., Yamane, H., and Omori, T.
(2001). New classification system for oxygenase components involved in ring-
hydroxylating oxygenations. Biosci. Biotechnol. Biochem. 65, 254–263. doi:
10.1271/bbb.65.254

Pavlíková, D., Macek, T., Macková, M., and Pavlík, M. (2007). Monitoring native
vegetation on a dumpsite of PCB-contaminated soil. Int. J. Phytoremediation 9,
71–78. doi: 10.1080/15226510601139433

Penton, C. R., Johnson, T. A., Quensen, J. F., Iwai, S., Cole, J. R., and Tiedje, J. M.
(2013). Functional genes to assess nitrogen cycling and aromatic hydrocarbon
degradation: primers and processing matter. Front. Microbiol. 4:279. doi:
10.3389/fmicb.2013.00279

Pham, T. T. M., and Sylvestre, M. (2013). Has the bacterial biphenyl catabolic
pathway evolved primarily to degrade biphenyl? The diphenylmethane case.
J. Bacteriol. 195, 3563–3574. doi: 10.1128/jb.00161-13

Pham, T. T. M., Tu, Y., and Sylvestre, M. (2012). Remarkable ability of Pandoraea
pnomenusa B356 biphenyl dioxygenase to metabolize simple flavonoids. Appl.
Environ. Microbiol. 78, 3560–3570. doi: 10.1128/aem.00225-12

Pieper, D. H., and Seeger, M. (2008). Bacterial metabolism of polychlorinated
biphenyls. J. Mol. Microbiol. Biotechnol. 15, 121–138. doi: 10.1159/000121325

Quince, C., Lanzén, A., Curtis, T. P., Davenport, R. J., Hall, N., Head, I. M., et al.
(2009). Accurate determination of microbial diversity from 454 pyrosequencing
data. Nat. Methods 6, 639–641. doi: 10.1038/nmeth.1361

Quince, C., Lanzen, A., Davenport, R. J., and Turnbaugh, P. J. (2011).
Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12:38.
doi: 10.1186/1471-2105-12-38

R Development Core Team (2009). R: A Language and Environment for Statistical
Computing. Vienna: R Foundation for Statistical Computing.
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