
fmicb-07-00657 May 5, 2016 Time: 16:44 # 1

METHODS
published: 09 May 2016

doi: 10.3389/fmicb.2016.00657

Edited by:
Francesca Turroni,

University College of Cork, Ireland

Reviewed by:
Abelardo Margolles,

Consejo Superior de Investigaciones
Científicas, Spain

Gabriele Andrea Lugli,
University of Parma, Italy

*Correspondence:
Rodolphe Barrangou

rbarran@ncsu.edu

Specialty section:
This article was submitted to

Microbial Symbioses,
a section of the journal

Frontiers in Microbiology

Received: 29 February 2016
Accepted: 20 April 2016
Published: 09 May 2016

Citation:
Brandt K and Barrangou R (2016)

Phylogenetic Analysis of the
Bifidobacterium Genus Using

Glycolysis Enzyme Sequences.
Front. Microbiol. 7:657.

doi: 10.3389/fmicb.2016.00657

Phylogenetic Analysis of the
Bifidobacterium Genus Using
Glycolysis Enzyme Sequences
Katelyn Brandt1,2 and Rodolphe Barrangou1,2*

1 Functional Genomics Graduate Program, North Carolina State University, Raleigh, NC, USA, 2 Department of Food,
Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA

Bifidobacteria are important members of the human gastrointestinal tract that promote
the establishment of a healthy microbial consortium in the gut of infants. Recent
studies have established that the Bifidobacterium genus is a polymorphic phylogenetic
clade, which encompasses a diversity of species and subspecies that encode a broad
range of proteins implicated in complex and non-digestible carbohydrate uptake and
catabolism, ranging from human breast milk oligosaccharides, to plant fibers. Recent
genomic studies have created a need to properly place Bifidobacterium species in a
phylogenetic tree. Current approaches, based on core-genome analyses come at the
cost of intensive sequencing and demanding analytical processes. Here, we propose a
typing method based on sequences of glycolysis genes and the proteins they encode,
to provide insights into diversity, typing, and phylogeny in this complex and broad
genus. We show that glycolysis genes occur broadly in these genomes, to encode
the machinery necessary for the biochemical spine of the cell, and provide a robust
phylogenetic marker. Furthermore, glycolytic sequences-based trees are congruent with
both the classical 16S rRNA phylogeny, and core genome-based strain clustering.
Furthermore, these glycolysis markers can also be used to provide insights into the
adaptive evolution of this genus, especially with regards to trends toward a high GC
content. This streamlined method may open new avenues for phylogenetic studies on
a broad scale, given the widespread occurrence of the glycolysis pathway in bacteria,
and the diversity of the sequences they encode.
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INTRODUCTION

Bifidobacterium species are an important component of the human gastrointestinal tract (GIT)
microbiome, and exert critical functional roles, especially during the establishment of gut microbial
composition early in life. Consequently, they are the subject of extensive microbiological and
genetics studies, to investigate their probiotic phenotypes, and genotypes, respectively. Actually,
many studies are investigating the genetic basis for their health-promoting functionalities,
both in industry and academia. This genus is often found in the GIT of animals (Ventura
et al., 2014), and is the predominant phylogenetic group early in human life (Turroni et al.,
2012a). Indeed, a mounting body of evidence has established vertical transmission between the
mother and infants (Milani et al., 2015), notably through the selective nurture of bifidobacteria
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through diverse non-digestible human-milk oligosaccharides
(HMOs) that are a critical component of breast milk (Sela,
2011). These HMOs selectively drive the colonization of the
infantile GIT by species that encode prebiotic transporters and
hydrolases (Turroni et al., 2012b). Recently, a dichotomy has
been established between healthy term babies with a normal
gut microbiome, and preterm infants whom have not been
colonized by Bifidobacterium species (Arboleya et al., 2015).
Several studies have implicated the expansive carbohydrate
uptake and catabolism gene repertoire of bifidobacteria as the
key driver of adaptation of this genus to the infant diet (Milani
et al., 2014). In fact, several species of bifidobacteria have shown
unique genome composition adaptation trajectories in their
carbohydrate utilization machinery, rendering them competitive
in this environment (Pokusaeva et al., 2011; Ventura et al., 2012).

To better understand how these organisms have emerged as
potent early-life colonizers, there has been a surge in genome
sequencing in recent years. At the time of writing, 47 established
species and subspecies have been sequenced (Milani et al.,
2016), providing a wealth of genomic information, which serves
as a valuable tool for understanding the species and strain
diversity within this polymorphic genus, as well as unraveling
the key elements that drive health-promoting and colonization
phenotypes in humans. However, given the democratization of
sequencing technologies in general, and genome and microbiome
sequencing in particular, it is imperative that tools and methods
be available to analyze this high-throughput data, and specifically
allow experimentalists to parse out the complex phylogeny
of this broad genus. Indeed, basic questions being addressed
regarding the occurrence, diversity and functions of various
Bifidobacterium species in the human GIT will require the ability
to accurately and consistently assign phylogeny.

Fundamentally, as new sequences become available, it is
important to know where to place strains on the phylogenetic
tree of Bifidobacterium. Whereas the affordability, accessibility
and ability to generate high-throughput data have become
somewhat straightforward, a key challenge lies in the analysis
of these sequences, regarding assembly, comparative analyses
and phylogenetic assignments. Historically, 16S rRNA sequences
have been used across the phylogenetics field for classification
and sequence tree-based assignments, but there are growing
concerns about the adequacy and sustainability of this method
(Fox et al., 1992), notably with regards to the availability
of proper references (Clarridge, 2004), and the actual levels
of conservation of sequences targeted by “universal” primers
(Baker et al., 2003). Because of this, new approaches have
been suggested, ranging from multi-locus approaches, using
housekeeping genes (Eisen, 1995), to core-genome analyses
(Medini et al., 2005). For Bifidobacterium, efforts have been
focused on creating a phylogeny based on whole and/or
conserved genomic sequences, namely the pan-genome and
the core-genome, respectively (Lukjancenko et al., 2011; Lugli
et al., 2014). While the core-genome is arguably comprehensive,
core-genome assembly is time consuming and computationally
intense. Alternative methods need to be developed, to allow rapid
and convenient phylogenetic screening of new and potentially
unknown sequences. Preferably, such a method would provide

high resolution, low-throughput, robust, accurate, and affordable
information.

Notwithstanding phenotypic diversity between organisms
that have specialized metabolic pathway combinations, and the
corresponding genomic complement, there are core biochemical
pathways and processes that are broadly distributed across the
Tree of Life. Noteworthy, glycolysis is a fundamental process
for most cells, and may be construed as the biochemical
backbone of most, if not all, living organisms. Indeed, this
process allows for the genesis of energy through the catabolism
of simple carbohydrates. This pathway is, at least partially,
present in all genomes (Fothergill-Gilmore and Michels, 1993)
and consequently constitutes a promising biochemical, and thus
genetic, marker for phylogenetic studies. Because these genes
are important, they are typically members of the house-keeping
genomic set, and are widely dispersed across the Tree of Life.
However, they are likely subject to less selective pressure than
other phylogenetic markers (i.e., ribosomal sequences), and
thus afford a more diverse set of sequences to encompass a
broad range of assorted sequences (Fothergill-Gilmore, 1986).
Therefore, we set out to assess the potential of glycolytic
genes, and the sequences of the proteins they encode, for
bifidobacteria phylogenetic studies. In particular, we determined
the occurrence and diversity of these glycolytic enzyme genes
in the genomes of bifidobacteria, and compared and contrasted
sequence alignment-based trees with one another, and to those
derived from alternative sequences, notably the core-genome,
and the 16S rRNA-based reference tree. Our results show
how the glycolysis protein sequences can be used as suitable
markers to create a phylogeny of Bifidobacterium that is as
accurate as the core-genome based phylogeny, but much less
computationally demanding. We also explore how basic features
of the genetic sequences of glycolysis can reveal trends and
patterns of evolution among the different Bifidobacterium species
and the genus as a whole.

MATERIALS AND METHODS

Genetic Sequences Sampling and
Reference Genomes
We used sequences derived from a total of 48 Bifidobacterium
genomes from distinct species and subspecies, as listed in Table 1.
Bifidobacterium stercoris was included in this analysis, as a
separate species, but it was recently renamed as a strain of
Bifidobacterium adolescentis (Killer et al., 2013). Our results
(see below) show that B. stercoris is always a close neighbor
of B. adolescentis, consistent with the newest findings. These
genomes were mined for the presence of glycolytic enzymes
using Geneious version 9.0.5(Kearse et al., 2012). We selectively
elected to pursue a scheme based on canonical glycolysis genes,
as to generate a broadly applicable method. Nevertheless, the
classical glycolysis genes do not universally occur in bacterial
genomes. Furthermore, some organisms do carry alternative
pathways, such as the bifid shunt in bifidobacterium, which
could prove valuable, but are not widely distributed. The nine
canonical glycolysis enzymes from bifidobacteria (de Vries and
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Stouthamer, 1967) were found in each genome. Four reference
species (Bifidobacterium longum subsp. longum, B. adolescentis,
Bifidobacterium animalis sub. lactis, and Bifidobacterium breve)
were used to make a database of the nine genes. The Annotate

from Database feature was used (with 40% nucleotide sequence
similarity cut-off) to identify glycolytic orthologs in the other
genomes. As all genomes had been previously annotated, we
confirmed the original annotation to the database annotation

TABLE 1 | Species and genome list.

Genus Species Subspecies Strain Accession number Naming convention Locus tag

Bifidobacterium actinocoloniiforme DSM 22766 NZ_CP011786 B_actinocoloniiforme AB656

Bifidobacterium adolescentis ATCC 15703 NC_008618 B_adolescentis BAD

Bifidobacterium angulatum LMG 11039 NZ_JGYL00000000 B_angulatum BIANG

Bifidobacterium animalis animalis ATCC 22527 NC_017834 B_animalis_a BANAN

Bifidobacterium animalis lactis DSM 10140 NC_012815 B_animalis_l BALAT

Bifidobacterium asteroides PRL 2011 NC_018720 B_asteroides BAST

Bifidobacterium biavatii DSM 23969 NZ_JDUU00000000 B_biavatti OU23

Bifidobacterium bifidum LMG 13200 NZ_JSEB00000000 B_bifidum LMG13200

Bifidobacterium bohemicum DSM 22767 NZ_JDUS00000000 B_bohemicum OU21

Bifidobacterium bombi DSM 19703 NZ_JDTS00000000 B_bombi OT95

Bifidobacterium boum LMG 10736 NZ_JGYQ00000000 B_boum BBOU

Bifidobacterium breve UCC 2003 NC_020517 B_breve Bbr

Bifidobacterium callitrichos DSM 23973 NZ_JGYS00000000 B_callitrichos BCAL

Bifidobacterium catenulatum JCM 1194 NZ_AP012325 B_catenulatum BBCT

Bifidobacterium choerinum LMG 10510 NZ_JGYU00000000 B_choerinum BCHO

Bifidobacterium coryneforme LMG 18911 NZ_CP007287 B_coryneforme BCOR

Bifidobacterium crudilactis LMG 23609 NZ_JHAL00000000 B_crudilactis DB51

Bifidobacterium cuniculi LMG 10738 NZ_JGYV00000000 B_cuniculi BCUN

Bifidobacterium dentium Bd1 NC_013714 B_dentium BDP

Bifidobacterium gallicum DSM 20093 NZ_ABXB00000000 B_gallicum BIFGAL

Bifidobacterium gallinarum LMG 11586 NZ_JGYX00000000 B_gallinarum BIGA

Bifidobacterium indicum LMG 11587 NZ_CP006018 B_indicum BINDI

Bifidobacterium kashiwanohense JCM 15439 NZ_AP012327 B_kashiwanohense BBKW

Bifidobacterium longum longum NCC 2705 NC_004307 B_longum BL

Bifidobacterium longum infantis ATCC 15697 NC_011593 B_longum_i Blon

Bifidobacterium longum suis LMG 21814 NZ_JGZA00000000 B_longum_s BLSS

Bifidobacterium magnum LMG 11591 NZ_JGZB00000000 B_magnum BMAGN

Bifidobacterium merycicum LMG 11341 NZ_JGZC00000000 B_merycicum BMERY

Bifidobacterium minimum LMG 11592 NZ_JGZD00000000 B_minimum BMIN

Bifidobacterium mongoliense DSM 21395 NZ_JGZE00000000 B_mongoliense BMON

Bifidobacterium moukalabense DSM 27321 NZ_AZMV00000000 B_moukalabense BMOU

Bifidobacterium pseudocatenulatum JCM 1200 NZ_AP012330 B_pseudocatenulatum BBPC

Bifidobacterium pseudolongum globosum LMG 11569 NZ_JGZG00000000 B_pseudolongum_g BPSG

Bifidobacterium pseudolongum pseudolongum LMG 11571 NZ_JGZH00000000 B_pseudolongum_p BPSP

Bifidobacterium psychraerophilum LMG 21775 NZ_JGZI00000000 B_psychraerophilum BPSY

Bifidobacterium pullorum LMG 21816 NZ_JGZJ00000000 B_pullorum BPULL

Bifidobacterium reuteri DSM 23975 NZ_JGZK00000000 B_reuteri BREU

Bifidobacterium ruminantium LMG 21811 NZ_JGZL00000000 B_ruminantium BRUM

Bifidobacterium saeculare LMG 14934 NZ_JGZM00000000 B_saeculare BSAE

Bifidobacterium saguini DSM 23967 NZ_JGZN00000000 B_saguini BISA

Bifidobacterium scardovii LMG 21589 NZ_JGZO00000000 B_scardovii BSCA

Bifidobacterium stellenboschense DSM 23968 NZ_JGZP00000000 B_stellenboschense BSTEL

Bifidobacterium stercoris DSM 24849 NZ_JGZQ00000000 B_stercoris BSTER

Bifidobacterium subtile LMG 11597 NZ_JGZR00000000 B_subtile BISU

Bifidobacterium thermacidophilum porcinum LMG 21689 NZ_JGZS00000000 B_thermacidophilum_p BPORC

Bifidobacterium thermacidophilum thermacidophilum LMG 21395 NZ_JGZT00000000 B_thermacidophilum_t THER5

Bifidobacterium thermophilum JCM 7027 − B_thermophilum BTHER

Bifidobacterium tsurumiense JCM 13495 NZ_JGZU00000000 B_tsurumiense BITS

List of the 48 species and subspecies used in this study. Accession numbers and naming conventions included.
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FIGURE 1 | Glycolysis pathway. Traditional biochemical pathway of glycolysis. Enzyme names are listed to left of arrows, and gene names and EC numbers are
shown on the right. 6-phosphofructokinase is faded to represent its absence in Bifidobacterium.

manually to validate this method of mining. In cases where
multiple hits were obtained, BLAST (Altschul et al., 1990)
analyses were carried out to select the correct homolog.
Translated sequences were confirmed using ExPasy (Gasteiger
et al., 2003). For the 16S rRNA analysis, the 16S rRNA
sequences were extracted manually from each genome. In case
of multiple hits, BLAST analyses were carried out to select the
right sequences. For increased robustness, the glycolysis enzyme
sequences were concatenated in order of occurrence in the
glycolysis pathway (Lang et al., 2013).

Genesis of Sequence Alignment-based
Trees
Five different alignments were made for each tree using Geneious
version 9.0.5. ClustalW (Larkin et al., 2007) was used, with the

BLOSUM scoring matrix, and settings of gap creation at −10
cost, and gap extension at −0.1 cost per element. For the 16S
rRNA alignment, ClustalW was set so that the cost matrix was
IUB, with a gap opening penalty of 15, and gap extension cost
of 6.66. MUSCLE (Edgar, 2004) was used with the setting of eight
maximum number of iterations for the amino acid sequences and
the 16S rRNA alignments. The Geneious Pairwise Alignment was
set so that the alignment type was global alignment with free
end gaps and the cost matrix was BLOSUM62 for the amino
acid sequences. For the 16S rRNA gene analysis, the alignment
type was global alignment with free end gaps and a cost matrix
of 65% similarity (5.0/−4.0). MAFFT (Katoh et al., 2002) was
used twice, for both the amino acid sequences and the 16S rRNA
sequences. For the amino acid sequences the first alignment had
an algorithm setting of auto, a scoring matrix of BLOSUM62, a
gap open penalty of 1.53, and an offset value of 0.123. The second
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FIGURE 2 | Glycolytic proteins concatenated tree. Consensus tree based
on alignment of the concatenated amino acid sequences of the glycolysis
pathway found in Bifidobacterium. Trees were made using RaxML. Bootstrap
values are found on each node. Phylogenetic groups are colored as follows:
Bifidobacterium longum is orange, Bifidobacterium adolescentis is green,
Bifidobacterium psdeudolongum is purple, Bifidobacterium pollorum is
blue-green, Bifidobacterium boum is blue, and Bifidobacterium asteroides is
red. Species names follow the naming convention from Table 1.

alignment had an algorithm setting of auto, a scoring matrix of
BLOSUM80, a gap open penalty of 1.53, and an offset value of
0.123. For the first 16S rRNA alignment, the algorithm was set to
auto, the scoring matrix was set to 100 PAM/k = 2, the gap open
penalty was set to 1.53, and the offset value was set to 0.123. The

TABLE 2 | Sum of branch lengths for each tree.

Gene E. C.
number

Sum

Phosphoglucomutase (pgm,1) 5.4.2.2 125.03

Glucose-6-phosphate isomerase (pgi,2) 5.3.1.9 153.43

Fructose bisphosphate aldolase (fba, 4) 4.1.2.13 151.76

Triose phosphate isomerase (tpi, 5) 5.3.1.1 170.61

Glyceraldehyde 3-phosphate dehydrogenase (gap, 6) 1.2.1.12 103.07

Phsophoglycerate kinase (pgk, 7) 2.7.2.3 132.41

Phosphoglycerate mutase (gpm, 8) 5.4.2.11 174.7

Enolase (eno, 9) 4.2.1.11 145.06

Pyruvate kinase (pyk, 10) 2.7.1.40 107.56

Concatenated − 99.56

16S rRNA − 204.99

Sum of branch lengths for each tree. EC number for each enzyme is also listed.

second alignment for the 16S rRNA was set so that the algorithm
was auto, the scoring matrix was 200 PAM/k = 2, the gap open
penalty was 1.53, and the offset value was 0.123. trimAl (Capella-
Gutiérrez et al., 2009) was used to select a consistent alignment
between the five alignments. The parameters were compareset
and automated1. Using Geneious, trees were made from the
respective consistent alignments. The trees were generated using
RaxML version 7.2.8 (Stamatakis, 2006b, 2014). For the protein
based trees the parameters were set so that the model was
CAT (Lartillot and Philippe, 2004) BLOSUM62, the algorithm
was Bootstrap using rapid hill climbing with random seed 1,
and the number of bootstrap replicates was 100 (Stamatakis,
2006a). For the 16S rRNA tree, the nucleotide model was GTR
CAT, the algorithm was Bootstrap using rapid hill climbing with
random seed 1, and the number of bootstrap replicates was 100.
A consensus tree was then built using the consensus builder in
Geneious, at a 50% support threshold. The consensus tree was
used in all further analyses. The sums of branch lengths for each
tree were found by adding the branch lengths together in Mega6
(Tamura et al., 2013).

Statistical Analyses
All statistical analyses were carried out using R version 3.2.2
(R Core Team, 2015). This software was also used to generate
plots, graphs and display quantitative data throughout the
manuscript.

RESULTS

Glycolytic Enzyme Sequence-based
Phylogeny
Bifidobacteria contain nine of the 10 traditional enzymes
(Figure 1) commonly found in the glycolysis pathway (de Vries
and Stouthamer, 1967). Phylogenetic analyses were carried
out using the amino acid sequences of the proteins encoded
by the aforementioned glycolysis genes. A comprehensive
tree based on sequence alignment of the concatenated
sequences of the glycolytic enzymes found in Bifidobacterium
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is shown in Figure 2. Six separate phylogenetic groups were
identified, as previously established from the core-genome
(Milani et al., 2016). These groups are: the B. longum group
(orange), the B. adolescentis group (green), the Bifidobacterium
pseudolongum group (purple), the Bifidobacterium pollurom
group (blue-green), the Bifidobacterium boum group (blue),
and the Bifidobacterium asteroides group (red; Bottacini
et al., 2014). The number of individuals in each group varied
between 3 and 11, with the B. longum group being the most
diverse. Bifidobacterium angulatum and Bifidobacterium
merycicum were moved to the B. adolescentis group due
to a high bootstrap value in the concatenated tree. The
concatenated tree has bootstrap values that range from 52
to 100. We observe a total of 34 bootstrap values of 70 and
above (Supplementary Figure S1). Trees based on sequence
alignments of the individual enzymes of glycolysis can be
found in Supplementary Figures S2–S10. Interestingly, all of
the individual trees resolved the phylogenetic groups found in
the core-genome with only the Gap and Eno trees providing
alternative locations for a few branches, notably Bifidobacterium
magnum, Bifidobacterium gallicum, and Bifidobacterium
thermacidophilum sub. thermacidophilum. Table 2 shows the
sum of branch lengths for each tree. The 16S rRNA tree has
the largest sum at 204.99, while the concatenated tree had the
smallest sum at 99.56. The consistent clustering into these
six phylogenetic trees illustrates how robust and valuable
the glycolytic sequences are with regards to phylogenetic
information. It also shows that this method is congruent with the
core-genome.

16S rRNA-based Reference Phylogeny
A reference phylogeny was generated using the 16S rRNA
sequences of each of the 48 species and sub-species included
in this study (Figure 3). The six phylogenetic groups are
identified and colored the same as in the concatenated tree.
We elected to assign the B. angulatum and B. merycicum from
the B. longum group to the B. adolescentis group, consistent
with the concatenated tree. Noteworthy, the tree has bootstrap
values that range from 51 to 100, with 17 nodes at values of 70
and above, which is half the amount found in the concatenated
tree (Supplementary Figure S1). With regards to size, we point
out that the concatenated tree is based on overall sequences
ranging between 3,205 amino acids and 3,479 amino acids, which
quantitatively compares as approximately twice the amount to
the 16S rRNA ∼1,600 nt range, in terms of input-information
amounts.

Genome-Wide Analyses
The overall genome sizes in this study ranged from 1.73 Mb for
Bifidobacterium indicum to 3.26 Mb for Bifidobacterium biavatii,
with an average of 2.28 Mb and a median of 2.17 Mb. The
GC content ranged from 52.8% for Bifidobacterium tsurumiense
to 65.5% for Bifidobacterium choerinum, with an average of
60.4% and a median of 60.2%. This substantiates the perception
that bifidobacteria are generally categorized as high-GC content
organisms, at the genome-wide level (Ventura et al., 2007).
However, a thorough analysis of GC content across the

FIGURE 3 | 16S rRNA phylogenetic tree. Consensus tree based on
alignment of the 16S rRNA sequences. Trees were made using RaxML.
Bootstrap values are found on each node. Phylogenetic groups are colored as
follows: B. longum is orange, B. adolescentis is green, B. psdeudolongum is
purple, B. pollorum is blue-green, B. boum is blue, and B. asteroides is red.
Species names follow the naming convention from Table 1.

phylogenetic groups revealed that even among these high-GC
organisms there are three distinct subsets of high, medium, and
low-GC bifidobacteria (Figure 4A). Most of the species fall in
the upper medium-GC range, with the low-GC range being the
least populated. There are some noteworthy groupings between
the phylogenetic groups, specifically the B. pullorum and the
B. boum groups, for which the entire groups are packed tightly
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FIGURE 4 | GC content by species and glycolytic genes. (A) Shows the total GC content of each species organized by the glycolytic concatenated tree.
Spectrum is split into three groups: low GC from 0.52 to 0.567 (gray), Medium GC from 0.567 to 0.613 (pink), and High GC from 0.613 to 0.66 (yellow). Phylogenetic
groups are colored as follows: B. longum is orange, B. adolescentis is green, B. psdeudolongum is purple, B. pollorum is blue-green, B. boum is blue, and
B. asteroides red. Species names following the naming convention from Table 1. (B) contains notched boxplots of the GC values of each gene and total GC. Boxes
are ranked in order of median. Notches that do not overlap are indicative of strong evidence of difference between two medians.
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FIGURE 5 | Overall GC content patterns across species. GC percent for each glycolysis gene, 16SrRNA and overall genome, for species listed in Table 1.

in the high GC region and the medium GC region, respectively.
All of the other groups, except the B. longum group, span
two of these subsets. For the B. longum group, Bifidobacterium
saguini lies just at the border between the low and medium
GC subsets. This group has the largest spread, consistent with
being the most diverse in the concatenated and 16S rRNA
trees.

Next we looked at how the GC content varied across the trees.
Figure 4B shows boxplots of the GC content of each tree and the
total GC content. Except for the 16S rRNA and tpi trees, all other
trees had median GC values with strong evidence of being higher
than the median total GC content (Chambers, 1983). Looking
on an individual basis, over half of the genomes have 16S rRNA
and tpi GC values below their total GC, while the other genes
are either above or close to their total GC (Figure 5). Again, the
B. pullorum and B. boum groups are tightly packed in regards to
their GC spread amongst their glycolysis genes, 16S rRNA, and
total GC. In contrast, the B. longum group has the largest spread,
a parallel to its higher diversity in the phylogenetic trees.

DISCUSSION

Bifidobacterium is a diverse genus of human intestinal beneficial
microbes that provide health-promoting functionalities, as
illustrated by their broad use as probiotics in foods and
dietary supplements (Turroni et al., 2014). Recently, extensive
genomic analyses of diverse species, subspecies and phylogenetic
groups have provided insights into their adaptation to the
human gut, notably with regards to their ability to colonize

the intestinal cavity in general, and utilize non-digestible
carbohydrates in particular (Milani et al., 2016). Studies
investigating the use of human breast milk oligosaccharides
illustrate the important contribution of these probiotics in
establishing the human gut microbiome at the early stages
of life (Sela, 2011). Yet, these studies also reveal that there
are many distinct and diverse Bifidobacterium species and
phylogenetic groups that colonize the human GIT, perhaps
with idiosyncratic genomic attributes, and their corresponding
functionalities (Chaplin et al., 2015). These organisms have
specifically adapted to their environment to competitively
utilize available nutrients (Sánchez et al., 2013). In the human
gut, these consist of non-digestible complex oligosaccharides
that are not adsorbed, nor broken down in the upper
GIT. Whereas, plant-based fibers are important in the adult
diet, HMOs are important components of the infant diet.
Furthermore, Bifidobacterium have even been successful in
helping each other through cross-feeding (Turroni et al., 2015).
Thus, we addressed the need to establish practical means to
allocate phylogeny with minimalistic information based on
sequences that encode glycolysis, the biochemical spine of most
cells.

Here, we have shown that a multigene approach using
glycolysis sequences can be used to uncover genomic trends
and to make an accurate phylogenetic tree, based on a relatively
small amount of information. The concatenated glycolysis tree
in Figure 2 is congruent with both the 16S rRNA tree and
the established core-genome-based tree (Milani et al., 2016).
The only notable exception is the placement of B. merycicum
and B. angulatum. However, the relocation was between two
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neighboring phylogenetic groups in the concatenated and core-
genome based trees. The glycolysis pathway is perhaps as, if not
more, robust and accurate than the 16S rRNA tree. Compared
to the 16S rRNA, the bootstrap values of the concatenated
tree were higher on average. This leads to more confidence in
the placement of species and the identification of phylogenetic
groups, which in comparison, can appear arbitrarily located
on the 16S rRNA. The concatenated tree is able to identify
groups as well as the core-genome based tree. In fact, all of
the phylogenetic groups from the core-genome were consistently
found across the glycolytic pathway based trees. However, the
glycolysis-based trees have the advantage of being much less
labor intensive than the core-genome approach. This allows
for accurate phylogenetic mapping of new strains or species,
possibly encompassing unknown species, in less time and
with less data than a core-genome. This approach is high
resolution, low throughput, affordable, and accurate. Part of
the success of this approach is the universality of glycolysis.
Glycolysis is the biochemical backbone of the cell, and as
such all organisms have at least some part of the glycolysis
pathway represented (Fothergill-Gilmore and Michels, 1993).
Even though these are slower-evolving genes, the changes
that are made are enough to make an accurate phylogeny
(Fothergill-Gilmore, 1986), evidenced from the congruence
between our trees and the core-genome based tree. Even
though the glycolysis enzymes are considered “slow evolvers,”
our data shows they are evolving at different rates amongst
themselves. This can be explained by the fact that the glycolysis
pathway is adapted by organisms to best fit their own unique
environment and requirements (Bar-Even et al., 2012), as
seen here in the Bifidobacterium and their bifid shunt (Sela
et al., 2010). Some of the genes have specialized secondary
functions, such as enolase acting as a cell surface receptor in
Bifidobacterium (Candela et al., 2009). All of this makes the
glycolysis pathway an excellent phylogenetic marker candidate.
The various rates in evolution and moonlighting abilities
also allow for further applications in recognizing adaptive
trends.

The functional diversity of bifidobacteria is underpinned
by multi-dimensional variety in their genomes, including
overall content, organization, sequence diversity, and others.
In extreme cases, even a two-fold difference in genome size
can be observed. Despite being generally perceived as high
GC organisms, they vary enough to have distinct relative
classes of high, middle, and low-GC, amongst themselves
(Figure 4A). Yet, there are non-random patterns and phenomena
that drive these differences. The phylogenetic groups are
clustered in specific regions of the GC continuum. Some
groups are more tightly packed than others. A general
trend that is observed across the genus is an evolutionary
movement toward a high(er) GC content. The higher end
of the spectrum is more densely populated then the lower
end of the spectrum, indicative of an upward trend. This
is reflected by the increased GC content in the individual
glycolysis genes, when compared to the total GC content.
Of the glycolysis genes, only one, tpi, does not show strong
evidence for being different from the genome-wide (total) GC

content. Critically, all of the other genes are above the total
GC content. When we combine the overall genomic data
with the GC-content groupings and trends discovered using
glycolysis as phylogenetic markers, we posit the hypothesis
that, over time, the GC content within the genomes of
bifidobacteria increases, as to deviate further away from the
50% value, as the organisms adapt, and their genomes evolve
accordingly.

Because of the broad occurrence of the glycolysis pathway
in the Tree of Life, it is a suitable candidate marker to
use in phylogenetic studies, likely beyond its application in
bifidobacteria. In addition to being conserved genes that capture
genetic diversity, glycolysis genes are consistently amongst the
most highly expressed in not only Bifidobacterium (Turroni
et al., 2015), but other organisms as well (Barrangou et al.,
2006). This reflects both the importance of these sequences
genetically (as illustrated by GC content drift), and functionally
(as illustrated by their propensity for high levels of constitutive
transcription). Because of this, it may be possible to correlate
transcriptional data to phylogenetic studies on a broader scale.
From here, it could be feasible to assign species and map data to
known references using transcriptomic, genomic, or meta-data.
Indeed, as the democratization of metagenomic technologies
continues, and the need to assign phylogenetic information to
partial genomic information increases, we propose that this
method be used to provide insights into the phylogeny of
un-assigned contigs. Overall, this approach allows for accurate
phylogenetic mapping, congruent with a core-genome and more
robust than the 16S rRNA phylogenetic approach, as well
as inference on genomic adaptation, using either genomic,
transcriptomic, or meta-data in a timely fashion and with
minimal computation.
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