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Large fraction of mineral nutrients in natural soil environments is recycled from complex
and heterogeneously distributed organic sources. These sources are explored by
both roots and associated mycorrhizal fungi. However, the mechanisms behind the
responses of arbuscular mycorrhizal (AM) hyphal networks to soil organic patches
of different qualities remain little understood. Therefore, we conducted a multiple-
choice experiment examining hyphal responses to different soil patches within the
root-free zone by two AM fungal species (Rhizophagus irregularis and Claroideoglomus
claroideum) associated with Medicago truncatula, a legume forming nitrogen-fixing root
nodules. Hyphal colonization of the patches was assessed microscopically and by
quantitative real-time PCR (qPCR) using AM taxon-specific markers, and the prokaryotic
and fungal communities in the patches (pooled per organic amendment treatment)
were profiled by 454-amplicon sequencing. Specific qPCR markers were then designed
and used to quantify the abundance of prokaryotic taxa showing the strongest
correlation with the pattern of AM hyphal proliferation in the organic patches as per
the 454-sequencing. The hyphal density of both AM fungi increased due to nitrogen (N)-
containing organic amendments (i.e., chitin, DNA, albumin, and clover biomass), while
no responses as compared to the non-amended soil patch were recorded for cellulose,
phytate, or inorganic phosphate amendments. Abundances of several prokaryotes,
including Nitrosospira sp. (an ammonium oxidizer) and an unknown prokaryote with
affiliation to Acanthamoeba endosymbiont, which were frequently recorded in the 454-
sequencing profiles, correlated positively with the hyphal responses of R. irregularis to
the soil amendments. Strong correlation between abundance of these two prokaryotes
and the hyphal responses to organic soil amendments by both AM fungi was then
confirmed by qPCR analyses using all individual replicate patch samples. Further
research is warranted to ascertain the causality of these correlations and particularly
which direct roles (if any) do these prokaryotes play in the observed AM hyphal
responses to organic N amendment, organic N utilization by the AM fungus and its
(N-unlimited) host plant. Further, possible trophic dependencies between the different
players in the AM hyphosphere needs to be elucidated upon decomposing the organic
N sources.

Keywords: soil heterogeneity, organic amendments, arbuscular mycorrhizal (AM) fungi, soil hyphae, microbial
communities, 454-amplicon sequencing, quantitative real-time PCR (qPCR), ammonia oxidizers
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INTRODUCTION

The physical arrangement of soil particles, aggregates, and
pores; root and microbial growth; and burrowing activities of
animals, together with external inputs of such particulate organic
residues as plant litter, animal excreta, and dead bodies, all
create a soil environment highly heterogeneous in both space
and time and at a range of scales (Facelli and Facelli, 2002;
Watt et al., 2006). Adaptations of roots to heterogeneously
distributed organic and inorganic nutrients in soil have been
studied for decades (Robson et al., 1992; Robinson, 1996; Hodge,
2004). For most plants, however, the root is not the only – and
possibly not even the main – organ for primary acquisition of
such poorly mobile nutrients as phosphorus (P) from the soil
solution. This function is often fulfilled by the plants’ mycorrhizal
symbionts. Arbuscular mycorrhizal (AM) fungi, belonging to
the Glomeromycota, establish intimate relationships with more
than half of currently described plant species (van der Heijden
et al., 2015). The nutrients taken up by AM fungal hyphae from
the soil solution are then passed on to the host plants at the
root–mycorrhizal interface in the root cortex (Fitter, 1991; Smith
et al., 2004). The importance of AM symbiosis for P acquisition
by many plant species is firmly established (Cox and Tinker,
1976; Jakobsen et al., 1992), whereas its role in plant nitrogen
(N) acquisition, although repeatedly demonstrated (Mäder et al.,
2000; Hodge et al., 2001; Fellbaum et al., 2012), is broadly
accepted as being lower than that in plant P acquisition (Johnson
et al., 2015).

How AM hyphal networks respond to heterogeneously
distributed soil resources and what consequences this has for
their own as well as for host plant nutrition is much less
understood than are root responses. Previously, we and others
have shown that at least some AM fungal species establish denser
hyphal networks in root-free patches as compared to the rooting
zones (Jansa et al., 2003; Thonar et al., 2011; Zheng et al.,
2015) and that root responses to heterogeneously distributed
soil nutrients could be negated through the establishment of
AM symbiosis (Felderer et al., 2013). This could be caused by
positive hyphal developmental response to patches with greater
availability of mineral nutrients (Li et al., 1991; Zheng et al.,
2015), to specific N forms within the patches (Bago et al., 2004),
or to variation in such other soil physicochemical properties
as clay or organic matter contents (Jansa et al., 2003). Indeed,
significant research efforts have been dedicated in the past
to deciphering the response of AM fungal networks to soil
organic matter. It has previously been shown that extracted soil
organic matter, dried plant biomass, dried baker’s yeast, and
bovine serum albumin specifically stimulated the development
of AM fungal networks in root-free patches and that starch
and pure cellulose have depressed it (St. John et al., 1983;
Joner and Jakobsen, 1995; Ravnskov et al., 1999; Gavito and
Olsson, 2003; Leigh et al., 2009). Other experiments, while not
specifically distinguishing between root and root-free zones,
have recorded significant stimulation of the development of AM
extraradical hyphae, root colonization, and sporulation by the
addition of crab-shell chitin to the rhizosphere (Gryndler et al.,
2003). However, the large biological variation in mycorrhizal

experiments and the use of different soils, model plants, and
fungal species in the diverse studies testing the various organic
amendments one by one preclude direct comparisons as to
the effects exerted by different compounds. Surprisingly, to
the best of our knowledge, a multidimensional model used
previously to examine preferences of AM hyphal networks
to colonize spatially discrete patches having different mineral
fertilizer amendments in a monoxenic cultivation system (Bago
et al., 2004) as well as in planted or unplanted soil patches
(Gavito and Olsson, 2008) has not yet been employed to study
the effect of different qualities of soil organic patches within
the reach of a single AM fungal colony. Since the host plant
in most previous experiments has been N-limited (e.g., Leigh
et al., 2009), AM-induced mineralization of organic N in those
experiments might have been driven by the high N demand
of both the host plant and the AM fungi. What would be the
choice of AM fungi for certain organic patches if the host plant
was not N-, but P-limited, has not been sufficiently addressed
as yet.

It had previously been postulated that at least part of the
response of AM fungal hyphae to soil organic amendments is
caused and/or modulated by other soil microbes because the
saprotrophic potential of AM fungi is thought to be low (Joner
et al., 2000; Gryndler et al., 2003; Leigh et al., 2009). It could be
that those microbes live solely upon (derive their energy from) the
organic materials, release mineral nutrients (N and/or P) from
them, and produce other (secondary) metabolites. In such case,
the nutrients or the other metabolites could then be involved in
the AM hyphal response. On the other hand, the microbes might
also associate directly with the AM hyphal surfaces (Toljander
et al., 2006; Jansa and Gryndler, 2010), partially or fully derive
their carbon/energy from the mycorrhizal hyphae (Toljander
et al., 2007; Drigo et al., 2010), and carry on degradation of the
soil organic materials in order to release the mineral nutrients
either for themselves or possibly for their fungal hosts (Jansa et al.,
2013).

Because knowledge is so fragmented as to the responses
of AM fungal hyphae to different soil organic amendments
containing or not containing such mineral nutrients as P
and/or N, we carried out a multiple-choice experiment whereby
the development of hyphal networks was quantified within
a number of spatially discrete patches buried in the root-
free zone of each pot. The goal was to directly compare the
responses of a single AM hyphal network to different soil
organic amendments, containing either N or P or both or
none of these nutrients. Using the available high-throughput
sequencing technology and quantitative real-time PCR (qPCR)
we aimed at identification of a possible common denominator
of the AM fungal response to the amendments within the soil
microbe (prokaryotic and fungal) communities. Because the
host plant (Medicago truncatula) requirements for N were likely
saturated via atmospheric N fixation and because it was grown
under P-limiting conditions, we hypothesized (based on the
resource limitation theory, Johnson et al., 2015) that the AM
hyphae would preferentially colonize the P-containing organic
materials due to higher demand for P than N by the host
plant. This hypothesis is in line with some earlier observations
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that AM hyphae could contribute a large share of plant P
uptake from organic P sources accessible only to the hyphae
(Tarafdar and Marschner, 1994; Feng et al., 2003; Zhang et al.,
2014).

MATERIALS AND METHODS

Pot Setup and Patch Enrichment
The experiment was conducted in 10 l plastic pots lined with a
polyamide mesh fabric (mesh size 1 mm) at the bottom, filled
with a substrate consisting of autoclaved quartz sand (grain
size < 3 mm), autoclaved zeolite MPZ 1-2.5 (Zeopol1, grain size
1–2.5 mm) and γ-irradiated (>25 kGy) soil from Litoměřice,
Czech Republic (N 50◦31′54.53′′, E 14◦06′7.10′′; pHH2O 7.88;
42% clay, 40% sand; total P [i.e., P extractable with hot 14
M HNO3 after incineration at 550◦C] 797 mg kg−1; water-
extractable P 3.3 mg kg−1; total organic C 2.26%; total N 0.13%)
mixed in a 9:9:2 ratio (v:v:v). The properties of the potting
substrate (hereinafter referred to as “soil”) were as follow: pHH2O
8.9, total P 46.5 mg kg−1, water extractable P 2.6 mg kg−1, total
organic C 0.22%, total N 0.013%. The entire volume of the soil
was inoculated with non-mycorrhizal (mock) inoculum (1%, v:v),
consisting of the substrate and root fragments from a previous
pot culture planted with leek and grown in a greenhouse for
10 months without inoculation by any AM fungus. This was
done so as to introduce a standardized microbial community
into the previously sterile soil. The plant (central) compartments
(500 ml volume, manufactured from a 40 µm polyamide mesh;
Silk & Progress, Brněnec, Czech Republic, Supplementary Figure
S1) were inoculated with either Rhizophagus irregularis BEG
158 or Claroideoglomus claroideum BEG 155 (2%, v:v), supplied
as substrate and root fragments from a previous pot culture
containing the respective fungal isolate, planted with leek, and
grown in a greenhouse for 10 months prior to the experiment
described here. Eight replicate pots per fungal treatment were
established and their positions in the glasshouse completely
randomized.

Using pot-based inoculum of AM fungi (and the relevant
mock-inoculum containing similar microbial community as
the AM fungal inoculum) was necessary because the AM
fungi are obligate biotrophs that absolutely require presence
of host plant roots for their growth, and the production of
AM fungal inoculum in root-organ cultures is currently limited
to a single AM fungal genus (Rhizophagus). Using open pot
cultures is the standard way to produce AM inoculum for
experimental and biotechnology purposes (Calvet et al., 2013)
and using the appropriate mock inoculum is necessary to control
for other potentially confounding biotic effects (Wagg et al.,
2014).

Plant compartments were surrounded by a set of eight patches,
filled with the same soil as above and amended or not amended
with different organic materials or orthophosphate (in form
of Na2HPO4.12H2O). The patches (Supplementary Figure S1)
were made of PVC tubing (diameter 3.6 cm, length 3 cm), with

1http://www.zeopol.com

the open sides covered by 100 µm mesh (Silk & Progress).
The patches were arranged 3 cm from the plant compartment,
4 cm above its bottom, and clockwise in the sequence given in
Table 1. The organic compounds were purchased from Sigma-
Aldrich (St. Louis, MO, USA); chitin (from crab shells) was
milled to pass through a 0.5 mm sieve. Crystalline sodium
dihydrogen phosphate was provided by a local chemical supplier
(P-lab, Prague, Czech Republic) and clover (Trifolium repens)
aboveground biomass was collected at a nearby grassland, dried
at 65◦C, then milled to pass through a 0.5 mm sieve. Calculated
values of C, N, and P concentrations in the pure chemicals
and analyses of C, N, and P concentrations in the clover
biomass were used to calculate the levels of soil amendments as
follows:

The levels of cellulose and chitin amendments in the patches
were arbitrarily set to 2 g per liter of soil based on previous
experiments showing stimulatory effects at these levels of soil
amendment with chitin on mycorrhizal colonization of roots and
hyphal densities in the soil (Gryndler et al., 2003). The levels
of albumin and DNA amendments were adjusted so that the
N inputs from these compounds would be the same as the N
inputs in the chitin treatment (Table 1). The levels of phytate and
phosphate amendments were then adjusted so that they would
match the P input of the DNA amendment (Table 1). The level
of soil amendment with clover biomass was adjusted so that
it would supply the same amount of C as the chitin, whereas
the N inputs would be about half that of the chitin treatment
(Table 1).

The plant compartments were planted with five pre-
germinatedM. truncatula (cultivar J5) seeds each at the beginning
of the experiment (hereinafter referred to as “sowing”) and
added with 1010 cells of Sinorhizobium meliloti strain 1021,
cultivated in the tryptone yeast liquid medium (Somasegaran
and Hoben, 1994) on a shaker at 24◦C for 3 days. The pots
were kept in the greenhouse of the Institute of Microbiology,
Prague during the summer months (from 24 July until 27
September 2012), with temperature ranging between 18 and
36◦C and the day length extended to 16 h with supplemental
lighting (halogen lamps providing a minimum photosynthetic
flux density of 200 µmol m−2 s−1). Plants were thinned to
three individuals per pot during the third week of growth and
fertilized from the fourth week on with a modified P2N3 white
mineral nutrient solution (Gryndler et al., 1992) containing 20%
of the previously described P concentration. Each pot received
25 ml of the nutrient solution each week between the fourth
and sixth week of growth and 50 ml each week thereafter, with
the nutrient solution applied only to the plant compartments.
Each pot thus received 7.9 mg N and 0.06 mg P as soluble
mineral fertilizer during the first 6 weeks of growth (until the
first harvest), or 18.2 mg N and 0.14 mg P until the second
harvest. Pots were watered daily with deionized water to maintain
moisture at approximately 75% of the soil’s water holding
capacity.

Harvest and Plant Analyses
Four replicate pots of each AM fungal treatment were harvested
6 weeks after sowing and the other four replicates per fungal
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TABLE 1 | List of compounds and their amounts used to create amended soil patches showing the assumed and measured levels of carbon (C), nitrogen
(N), and phosphorus (P) inputs per unit volume of soil.

Amendment Origin/supplier/
cat. number

Amount of amendment
added to soil (g l−1)

Assumed input (g l−1) Measured input (g l−1)

C N P C N P

Cellulose Sigma S3504 2 0.887 0 0 0.802 nd nd

Chitin Sigma C4666 2 0.940 0.138 0 0.828 0.131 0.002

Albumin Sigma A7906 1 0.449 0.138 0 0.491 0.160 nd

DNA Sigma 31149 0.85 0.308 0.138 0.085 0.275 0.124 0.069

Phytate Sigma P8810 0.31 0.033 0 0.085 0.026 nd 0.062

Orthophosphate P-lab H08102 0.98 0 0 0.085 <0.001 nd 0.084

Clover biomass Collected from
a grassland

2.18 0.917 0.065 0.003 0.897 0.085 0.007

Control na none na na na na na na

Assumed inputs were based on published elemental composition of pure compounds and preliminary analyses of clover biomass and used to prepare soil patches. na,
not applicable; nd, not detected.

treatment were harvested 9 weeks after sowing. At harvest, the
shoots were cut at soil level, then dried at 65◦C for 7 days and
weighed. Soil (between 20 and 30 g) was sampled from all patches,
from the root-free volume between the patches, and from the
plant compartments, then frozen at −20◦C. Roots were washed
from the plant compartments, weighed fresh, and then cut into
1 cm fragments, homogenized, and divided into three aliquots.
One aliquot was kept in 50% ethanol for staining, one was frozen
at −20◦C, and one was weighed fresh, dried at 65◦C for 7 days,
and weighed dry. Knowing the fresh-to-dry biomass ratio of the
root aliquot processed by drying, the entire root dry biomass per
pot was calculated using the fresh biomass values of the entire
root system.

Phosphorus concentration in the dried plant biomass samples
was determined using 100 mg dry biomass aliquots, incinerated
at 550◦C for 12 h, the ashes dissolved in concentrated (14 M)
HNO3, heated briefly to 200◦C, brought up to 50 ml with
ultrapure water, and the P concentration in the extracts measured
spectrophotometrically using Malachite Green according to
Ohno and Zibilske (1991). N concentration and isotopic
composition in the plant samples were determined using an
elemental analyzer (Flash EA 2000, ThermoFisher Scientific,
Waltham, MA, USA) coupled with a Delta V mass spectrometer
(ThermoFisher Scientific) while processing 2 mg milled biomass
samples wrapped in tin capsules.

The extent of root length colonized by AM fungal structures
was determined after Trypan blue staining following the standard
protocol (Koske and Gemma, 1989) and using the magnified
intersection method (McGonigle et al., 1990) while scoring 100
root intersections per sample.

Molecular quantification of the AM fungal development of
the roots was carried out by qPCR using the clar (Thonar
et al., 2012) and mt5 (Couillerot et al., 2013) markers (primers
and fluorescent probes) for Claroideoglomus and Rhizophagus,
respectively, on DNA samples extracted from frozen roots using
a Plant DNeasy Mini Kit (Qiagen, Venlo, Netherlands) and
adding 2 × 1010 copies of internal DNA standard (as described
in Thonar et al., 2012) to each sample before DNA extraction.

The concentration of internal DNA standard in the extracts
was measured with a specific qPCR marker described previously
(Thonar et al., 2012) and used to correct the quantification of AM
fungal DNA concentration in the samples for unspecific losses
during extraction. qPCR analyses were carried out in 20 µl format
using a StepOnePlus Real-Time PCR System (Life Technologies,
Carlsbad, CA, USA) and 5× HOT FIREPol Probe qPCR Mix
Plus-ROX (Solis BioDyne, Tartu, Estonia). Two microliters of
template were added per reaction. The working concentration of
each of the primers was 500 nM and that of the hydrolysis probe
was 125 nM. The results of the analyses were expressed as number
of rRNA gene copies or amount of AM fungal DNA per unit dry
weight of roots, using PCR amplicon or pure fungal DNA for
calibration, respectively, as described previously (Thonar et al.,
2012).

Analyses of AM Fungal Networks and
Microbial Communities
The development of AM fungal networks in the soil was
quantified following two independent approaches:

(a) Microscopy. Frozen soil samples were thawed, 10 g of
the moist sample was washed through stacked 315 µm
and 40 µm sieves, and the material collected in the finer
(lower) sieve was homogenized in a blender for 10 s at
high speed. The sample was then swirled with 500 ml
water on a magnetic stirrer and five subsamples, 5 ml
each, were taken at 10 s intervals after switching off
the stirrer. These subsamples were combined and washed
through a nitrocellulose membrane filter with imprinted
grid (Millipore RAWG 1.2 µm, 25 mm diameter, EMD
Millipore, Billerica, MA, USA), stained with Trypan blue
(0.1% in 1% lactic acid) for 5 min, and AM hyphal
intersections with the grid scored under a compound
microscope at 200× magnification. Conversion to hyphal
length density (i.e., hyphal length per unit dry weight of
the soil) was carried out as described previously (Sylvia and
Norris, 1992) using soil humidity estimates determined by
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weighing aliquots of the soil samples before and after drying
at 65◦C for 5 days.

(b) Quantitative Real-Time PCR: DNA was extracted from the
frozen soil samples (500–800 mg fresh weight) using a
NucleoSpin Soil kit (Macherey-Nagel, Düren, Germany)
according to the manufacturer’s instructions and while
spiking each sample with 2 × 1010 copies of the internal
DNA standard before extraction. DNA concentration for
the respective AM fungal taxon per unit dry weight of soil
was determined by the specific qPCR markers and while
correcting for internal standard losses and soil humidity as
described above.

Based on the responses of AM hyphal networks to soil
amendments, we selected all the different kinds of soil patches
(as in Table 1) from the Rhizophagus-inoculated pots and the
patches enriched with chitin, albumin, and clover biomass,
as well as the control (non-amended) patches from the
Claroideoglomus-inoculated pots, all from the second harvest,
for analyses of eubacterial and fungal communities by 454-
sequencing. To this end, equal amounts of DNA extracts
from the four replicate patches of the same kind in each
fungal treatment were pooled and separately amplified with
ITS1F/ITS4 (White et al., 1990) and eub530F/1100aR (Baldrian
et al., 2012) primer pairs using the PPP master mix (Top-
Bio, Prague, Czech Republic), containing 1.5 Unit of Taq
polymerase and supplemented with 0.05 Unit Pfu proof-reading
polymerase (ThermoFisher Scientific) per 25 µl reaction. Each
amplification was performed in analytical triplicates, which
were then pooled and the amplicons purified with QIAquick
PCR purification kit (Qiagen). Equimolar mixtures of bacterial
and eukaryotic amplicons obtained from each of the 12
samples (eight from Rhizophagus-inoculated pots and four from
Claroideoglomus-inoculated pots) were then fused with the
multiplex identifier adaptors using a Lib-L kit (Roche, Basel,
Switzerland) following the manufacturer’s recommendations,
with the short fragments subsequently removed by Agencourt
AMPure XP PCR purification kit (Beckman Coulter, Brea, CA,
USA). Equimolar mixtures of fused amplicons from all samples
were subjected to emulsion PCR using the GS Junior Titanium
emPCR Kit and sequencing on the GS Junior platform (Roche).

Sequencing data were treated by SEED software (Větrovský
and Baldrian, 2013): after removing low-quality sequences
(reads), removing reads shorter than 400 bp, denoising,
and excluding chimeras, the remaining reads were twice
clustered at the similarity level of 95% (eubacteria) or
97% (fungi). For each primer pair, sequencing of multiplex
identifier-marked library resulted in a data set containing
sequence reads with forward or reverse orientation. Thus, each
operational taxonomic unit (OTU) was physically detected as
two different clusters of sequences with opposite orientation.
For subsequent statistical analyses, all clusters were treated as
separate entities. The sequences have been deposited in the open
access Sequence Read Archive2 under study accession number
SRP051101.

2http://trace.ncbi.nlm.nih.gov/Traces/sra/

Based on the results of 454-sequencing, we designed two
novel qPCR markers (specific primers + matching hydrolysis
probes, see Supplementary Table S1 for details) for Nitrosospira
sp. and for a bacterium showing similarity to Acanthamoeba
endosymbiont (Candidatus Caedibacter acanthamoebae), both
of which showed significant and positive correlation with the
R. irregularis developmental response to soil amendments. These
markers were then used to quantify the abundance of these
bacterial taxa in all individual soil samples using the same qPCR
chemistry and instrumentation as described above. Calibration
curves were generated with serially diluted amplicons of a PCR
reaction using the respective primers. In addition, abundance
of ammonia oxidizers and the AmoA gene were measured in
all soil samples using previously described primers (Kowalchuk
et al., 1997; Rotthauwe et al., 1997) employing EvaGreen
chemistry (5× HOT FIREPol EvaGreen qPCR Mix Plus-ROX),
amplicon calibration, and the StepOnePlus Real-Time PCR
System as described above with the reaction settings detailed in
Supplementary Table S1.

Calculation and Statistics
Plant P and N contents were calculated from biomass and
nutrient concentrations data. Plant biomass, nutrient (N and P)
concentrations, and nutrient content data as well as the root
colonization by the AM fungi assessed microscopically or with
qPCR were subjected to two-way analysis of variance (ANOVA)
testing the influence of the AM fungal identity and harvest time.
All data on the development of AM fungal hyphal networks in
the different system compartments for each of the experimental
units (pots) were standardized through division with the value
of the hyphal development in the respective plant compartment
(be it the hyphal length density or the concentration of DNA
of a particular fungus in each of the pots). These values were
further log (x+1) transformed to reduce heteroscedasticity in
the data, thereby resulting in a variable termed “developmental
response of AM hyphae to soil amendment,” and this was
further subjected to ANOVA and correlation analysis using
Statgraphics Plus 3.1 (Statpoint Technologies, Warrenton, VA,
USA). The 454-sequencing data were analyzed separately for the
eubacterial and fungal communities. The frequencies of reads
belonging to particular clusters (OTUs) were normalized (i.e.,
expressed as a fraction of the total read number per sample),
log-transformed, and subjected to principal coordinate analysis
using Canoco for Windows v. 4.5 (Ter Braak and Šmilauer,
2002), based on the previously generated Bray-Curtis distance
matrix. Microbial taxa showing significant positive or negative
correlation of their relative abundance (as per 454-sequencing
data) with the R. irregularis developmental response to soil
amendments (one mean value per soil amendment used to
achieve consistency with 454-sequencing data) were identified
by a weighted multiple regression, using the t-value biplot
approach in Canoco 5.04 (Šmilauer and Lepš, 2014) while
adjusting the critical value of the test to | t| = 0.8458 due
to the low number of samples (n = 8). The qPCR results
from quantification of the bacterial taxa (and the AmoA gene)
were expressed as per mg soil weight, log (x+1) transformed,
then correlated (using a linear regression model) with the
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developmental response of the AM fungi as calculated above
using Statgraphics Plus 3.1.

RESULTS

Plant Growth and Nutrition, Root
Colonization by AM Fungi
The plants grew slowly until the sixth week after sowing and
then the growth rate increased markedly, producing several fold
more biomass 9 weeks after sowing as compared to the harvest
3 weeks earlier (Supplementary Figure S2, Supplementary Table
S2). Some of the early contrasts between the two AM fungal
treatments, such as those observed in root P concentration and
shoot N concentration 6 weeks after sowing (Supplementary
Figure S3), vanished at the later harvest, resulting in a significant
interaction term in the two-way ANOVA (Supplementary Table
S2). However, other contrasts between the two AM fungi, such
as that observed in root N concentration (Supplementary Figure
S3, Supplementary Table S2), remained stable throughout the
experiment.

The extent of root colonization by the two AM fungi was
affected only by the identity of the fungus but not by the time
of harvest (Supplementary Table S3). Means (for both harvests)
of the fraction of root length colonized by hyphae, arbuscules,
and vesicles for the Rhizophagus-inoculated plants were 74, 63,
and 16%, respectively, and for Claroideoglomus-inoculated plants
the means reached 57, 44, and 4%, respectively. Higher fungal
colonization intensity of roots in the Rhizophagus as compared
to the Claroideoglomus treatment was also confirmed by an
independent qPCR approach (Supplementary Table S3).

Development of AM Fungal Networks in
the Soil
The pattern of AM fungal hyphae development in the soil, as
assessed by microscopy, was affected by all three main factors,
which is to say AM fungal identity, time of harvest, and identity of
the soil patch. The pattern was affected (though less importantly)
also by the interaction of AM fungal identity and soil patch as
well as by the interaction of harvest time and soil patch (Table 2).

TABLE 2 | Results of three-way analysis of variance testing the effects of
arbuscular mycorrhizal (AM) fungal identity, harvest time, and soil patch
amendment on the development of AM fungal hyphae as assessed
microscopically.

F-value p-value

AM fungal identity (A) 87.3 <0.001

Harvest time (B) 38.2 <0.001

Patch amendment (C) 6.29 <0.001

Interaction A × B 2.08 0.15

Interaction A × C 2.70 0.007

Interaction B × C 2.13 0.03

Interaction A × B × C 0.68 0.73

Relative values with respect to plant compartment were analyzed, and these were
further log (x+1) transformed for statistical comparisons. Four replicates were
included in the analysis for each combination of factors.

Hyphal length densities in the plant compartment recorded
microscopically were 0.57 ± 0.32 (standard deviation) m g−1,
with individual pots showing values between 0.28 and 1.48 m g−1.
No significant differences were detected in the absolute hyphal
length densities in the plant compartment due to either AM
fungal identity or harvest time or the interaction of these two
factors.

Greater root-free compartment colonization by AM fungal
hyphae relative to the development of the hyphae in the plant
compartment was observed in the Rhizophagus-inoculated pots
as compared to the Claroideoglomus pots (Figure 1), driving the
effect of AM fungal identity (Table 2). Generally greater hyphal
abundance was also observed in the second harvest as compared
to the first, thereby indicating gradual colonization of the root-
free compartment as compared to the plant compartment, with
the latter being used as a denominator in the hyphal response
variable (Table 2). Using three-way ANOVA, the effect of soil
patch identity was consistent across both AM fungal inoculation
treatments and the times of harvest, with chitin, albumin, DNA,
and clover biomass significantly stimulating the development of
AM fungal networks as compared to the control (non-amended)
soil patch (Table 2 and Figure 1). Because there were two
significant two-way interactions involving the soil patch effect
(Table 2), these required a more detailed analysis.

First, whereas there were certain soil patches (i.e., those
amended with chitin, albumin, DNA, and clover biomass) where
the recorded AM hyphal density significantly exceeded the
values in the plant compartment for the Rhizophagus pots, the
hyphal densities in the soil patches of the Claroideoglomus pots
never significantly exceeded the values recorded in the plant
compartment. These differences in colonization of the root and
root-free compartments drove the significance of the interaction
term between AM fungal identity and the identity of soil patches
in the three-way ANOVA comparison (Table 2). Second, whereas
there was a significant effect of the soil patch quality on the AM
hyphal development recorded across both harvests (Table 2 and
Figure 1), mainly driven by the values recorded in the second
harvest (F9,79 = 4.17, p < 0.001), no significant differences in
AM hyphal response to the different soil patches were recorded
at the first harvest. This dynamic explains the significance of the
interaction term between the soil patch identity and the time of
harvest (Table 2).

Importantly, the effects recorded by microscopy were largely
confirmed using qPCR with AM-taxa specific markers on the
soil DNA extracts from the pots harvested 9 weeks after sowing
(compare Figure 1A and Figure 1B and see also Supplementary
Figure S4). In addition, there were significant correlations
between the AM hyphal responses as recorded microscopically
and by molecular quantification (Figure 2) for each of the AM
fungal taxa separately and even when pooled.

Microbial Communities in the Soil
Patches
The 454-sequencing returned 80,013 prokaryotic and 88,722
fungal sequence reads (after quality filtering), which clustered
to 3,323 bacterial OTUs and 704 fungal OTUs. The numbers of
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FIGURE 1 | Development of arbuscular mycorrhizal (AM) fungal hyphae in different system compartments as assessed microscopically (A) and using
quantitative real-time PCR (qPCR; B). Shown are relative values with respect to plant compartment which were further log (x+1) transformed for statistical
comparisons. Means +1 standard error are shown. Combined microscopic data across both harvests (6 and 9 weeks) are shown in (A), whereas the molecular data
(B) were collected at the second harvest. Black bars represent pots inoculated with Rhizophagus irregularis and white bars pots with Claroideoglomus claroideum.
Treatments marked with an asterisk indicate a consistent positive effect of the soil amendment on mycorrhizal hyphal development (p < 0.05) as compared to the
control (non-amended) soil patch, according to three- or two-way analysis of variance [for (A,B), respectively] and mean separation with Fisher’s F-test.
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FIGURE 2 | Correlation analysis showing consistency of the
developmental response of mycorrhizal fungal hyphae in the different
pot compartments (including the rooted and root-free compartments
and the differentially enriched soil patches) as assessed
microscopically (x-axis) and by qPCR (y-axis). Data were standardized
with the values obtained from respective plant compartments and further log
(x+1) transformed for the statistical analysis. Data and regression line for
R. irregularis-inoculated pots are shown as closed circles and a dashed line;
data and regression for pots with C. claroideum are shown as open circles
and a dotted line (R2

= 0.47 for R. irregularis and R2
= 0.39 for

C. claroideum). Regression line from the analysis pooling all data together is
shown as a solid line (R2

= 0.37). All linear regressions are highly significant,
with p < 0.001.

OTUs entering the statistical analyses (without molecular
singletons) were 1,591 for bacteria and 361 for fungi
(Supplementary Table S4). Principal coordinate analysis
revealed a strong effect of the quality of soil patch amendments
on the bacterial communities and a nearly negligible effect of
AM fungal identity (Figure 3A), whereas both the quality of soil
amendment and the identity of the AM fungus obviously played
roles in the structuring of the fungal communities (Figure 3B). It
is important to note here that the sequenced fungal communities
contained only a very small fraction of sequences assigned to
AM fungi (<4.5%) and of this fraction the vast majority (>98%)
were identified as R. irregularis (or Glomus intraradices) and only
a few dozen sequences were identified as Claroideoglomus (or
earlier synonyms). Abundances of dominant bacterial and fungal
taxa in the 454-sequencing profiles of the different samples are
shown in the Supplementary Material (Supplementary Figures
S5 and S6).

T-value biplot analysis identified 13 bacterial OTUs that
significantly (p < 0.05) and positively correlated with
Rhizophagus hyphal response in the soil patches as assessed
by qPCR, 28 bacterial OTUs that correlated negatively, as well
as 1 fungal OTU correlating positively (Melampsora epitea) and
1 fungal OTU (Penicillium raistrickii) correlating negatively
(Supplementary Table S5). Among the positively correlating
bacterial taxa, four of the strongly correlating OTUs were
identified as Nitrosospira sp., and two (of the less strongly
yet significantly correlating) OTUs as a bacterium similar

to Acanthamoeba endosymbiont (Supplementary Table S5).
Further analyses of the supposed Acanthamoeba endosymbiont
sequences showed that the two OTUs represented forward
and reverse reads of one amplicon (624 bp long) with a very
high sequence similarity (98–99% across the full length except
the forward priming site) to an obligate protist endosymbiont
Candidatus Caedibacter acanthamoebae.

Subsequent qPCR analyses of all individual soil samples with
specific markers for the above two prokaryotic taxa (Nitrosospira
sp. and Acanthamoeba endosymbiont) revealed their much
increased abundance in organic-N enriched soil patches as well
as significant correlations of their abundance with the AM hyphal
response to the soil amendments (Figure 4). Very similar patterns
of abundance (with somewhat higher values in Claroideoglomus-
inoculated pots as compared with Rhizophagus-inoculated pots)
were also observed for the ammonia oxidizer populations
analyzed by qPCR using previously published primers as well as
for the abundance of the AmoA gene in the soil (Supplementary
Figure S7).

DISCUSSION

Here we show, using a multiple-choice experiment, specific and
consistent stimulation of AM hyphal development in soil patches
amended with N-containing organic compounds, whereas other
amendments (particularly the phytate and orthophosphate,
but also cellulose) caused no localized hyphal response in
the same fungal colony. These results lead to rejection of
the original hypothesis predicting preferential colonization of
P-containing patches due to high P demand of the N-unlimited
host. Although the observed absence of AM hyphal growth
stimulation by cellulose just confirms previous observations
(Ravnskov et al., 1999; Gryndler et al., 2002), no obvious
effect of P amendments on the AM hyphae is surprising. It
is namely inconsistent with previous studies demonstrating
stimulation of AM hyphal growth by phytate and by low levels
of inorganic orthophosphate (Feng et al., 2004; Cavagnaro et al.,
2005; Zheng et al., 2015). Thus, our results deserve detailed
analysis and possibly further experimentation to find definitive
answers about the nature of AM hyphal growth stimulation and
mineral nutrient acquisition from root-free patches of different
qualities.

One possible explanation for the lack of AM hyphal growth
stimulation by the P-containing amendments could be that the
AM fungal P uptake efficiency from the soil solution is partly
or totally uncoupled from the hyphal development. However,
based on previous research (e.g., Jansa et al., 2005), this is
highly unlikely, although we admit that a direct radiophosphorus
labeling of the P amendments and including non-mycorrhizal
controls would be required to provide a definitive answer to this
issue.

The most intriguing question is thus why both the AM
fungi so clearly and consistently proliferated in the organic N
patches in our experiment. Although, half of the stimulatory
soil amendments (i.e., DNA and clover biomass) also contained
P (Table 1), P alone is unlikely to have caused the observed
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FIGURE 3 | Results of principal coordinate analysis depicting similarities between prokaryotic (A) and fungal (B) communities in soil patches
amended or not amended with various organic compounds and colonized by R. irregularis (RI) or C. claroideum (CC). DNA extracts from replicated
patches of the same kind were pooled, amplified with group-specific primers, labeled with multiplex identifier adaptors, and subjected to 454-amplicon sequencing.
Sequences were trimmed to 400 bp length, denoised, cleared of chimeras, and clustered at 95% (prokaryotes) or 97% (fungi) similarity levels. Singletons were
removed and the relative abundances of operational taxonomical units (OTUs) calculated, fungal OTUs with mean abundance across the different samples below
0.25% and prokaryotic OTUs with abundance below 0.1% removed from the dataset, the abundances log-transformed, and Bray-Curtis distance matrices
calculated. Through the filtering procedure (due to their low abundance), all Glomeromycota sequences present in the fungal dataset were removed prior to analysis.

AM hyphal stimulation. This is because the amounts of DNA
or clover biomass used in creating the stimulatory patches
contained the same or smaller amounts of added P than did
the phytate or inorganic orthophosphate patches, which in turn

caused no significant stimulation of AM hyphal development
in soil (see above). Given our experimental setup and the (N-
fixing) model plant, the requirements of the host plant for
soil-derived N should be rather low (Sulieman et al., 2013)
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FIGURE 4 | Abundance of selected prokaryotic taxa (Nitrosospira sp. – A, and a prokaryote similar to Acanthamoeba endosymbiont – C) in the soil of
different system compartments as detected by novel qPCR markers (see Supplementary Table S1 for details) and correlation between abundance of
the two prokaryotic taxa and the developmental response of AM fungal hyphae to the different soil amendments in the root-free patches (B,D,
respectively) assessed by qPCR with AM taxa-specific markers. Black bars, closed circles, and dashed regression lines refer to pots inoculated with
R. irregularis, whereas white bars, open symbols, and dotted regression lines refer to pots inoculated with C. claroideum. Bars represent means (n = 4) with
associated standard errors. Solid regression lines show the correlations of all data pooled across the two inoculation treatments. All plotted correlations were
significant at the level of p < 0.05 or stronger.

compared to previous studies with non-leguminous hosts such
as Plantago (e.g., Hodge et al., 2001; Gryndler et al., 2003). On
the other hand, some earlier studies (e.g., Ravnskov et al., 1999)
using clover (another leguminous and N-fixing plant) as a host
also demonstrated stimulation of the AM hyphal networks by
localized organic N amendments. Together, these results strongly
suggest that it is primarily the AM fungal requirement for N
rather than plant N demand, which drives the observed AM

hyphal proliferation in organic N patches. This notion is not
inconsistent with the previous research clearly demonstrating
transfer of the N (but never the C) from the organic matter via
AM hyphae to the associated mycorrhizal (and N-limited) host
plant (Hodge et al., 2000, 2001; Hodge and Fitter, 2010; Herman
et al., 2012). However, our results call for a more myco-centric
view (e.g., Alberton et al., 2005) on the AM symbiosis, where the
requirements of both partners and possible competition between
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the partners for limited resources such as mineral N is considered
(Hodge and Storer, 2015). One particularly interesting issue in
this regard is whether N-unlimited host would transfer any N
to its associated (and N-limited) AM fungus – to the best of our
knowledge there is no experimental evidence for this as yet.

Although, we did use neither direct 15N labeling of the
organic amendments nor we included non-mycorrhizal controls
into our experiment, our 15N abundance results indicate that
the N taken up from soil by Rhizophagus resides mainly in
the fungal biomass and is not transferred to the plant host.
This is because the 15N signature of the Rhizophagus-colonized
roots was (across both harvests) higher than that of the roots
colonized by Claroideoglomus (p = 0.043, see Supplementary
Figure S8 for data). On the other hand, the 15N signature of
the shoots of Rhizophagus-colonized plants was much lower
than that of the Claroideoglomus-inoculated plants (p < 0.001,
Supplementary Figure S8). The latter was most likely due to
markedly improved P nutrition of the Rhizophagus-colonized
plants having positive feedback on the highly P-dependent
symbiotic N fixation (Scheublin et al., 2004). Because positive
values usually indicate N taken from the soil and/or fertilizer
pool, lower values indicate N derived from biological N fixation
(George et al., 1993). Rhizophagus colonized the roots more
heavily than did Claroideoglomus in our experiment, and it also
provided greater growth and nutritional benefits to its hosts.
Thus, our results indirectly indicate greater biological N fixation
of the Rhizophagus-inoculated plants, whereas most of the N
taken up by the fungus is likely not transferred to the plant
tissues.

Because the saprotrophic potential of the AM fungi is thought
to be low and cannot alone explain the degradation of soil organic
amendments (Joner et al., 2000; Koide and Kabir, 2000; Leigh
et al., 2011), the AM hyphae most likely benefit from/depend on
the degradatory activities of such other soil microbes as bacteria
(Beier and Bertilsson, 2013) to access nutrients such as N in
organic forms. Once in the soil solution, the mineral N ions can
be directly taken up by AM fungal hyphae (Bago et al., 1996;
Govindarajulu et al., 2005; Cruz et al., 2007). There are always
plenty of microbes both in the soil and on the surfaces of AM
hyphae, and their communities can also actively be shaped by AM
fungal hyphae (Gryndler et al., 2003; Toljander et al., 2006, 2007;
Drigo et al., 2010; Jansa et al., 2013; Nuccio et al., 2013). Thus,
the possible feedbacks between proliferation of AM hyphae, soil
mineral N forms, and the soil microflora in the enriched soil
patches need particular attention here.

Previously, it has been shown that addition of buffered
ammonia could have triggered hyphal branching of R. irregularis
in absence of any bacteria in a monoxenic cultivation system
(Bago et al., 2004). Open pot experiments (e.g., Gavito and
Olsson, 2008), could not replicate the same phenomenon,
however, and so it remains unclear whether the previous results
could be generalized for Claroideoglomus due to substantial
functional differences in the hyphal growth traits between the
two AM fungal genera (Thonar et al., 2011). Inasmuch as the
stimulatory patches in our experiment were all enriched with
organic N sources (with the exception of clover biomass, where a
small portion of N could have been present as nitrate or ammonia

already from the very beginning), release of mineral N forms
would have required exoenzyme activity, thus implicating soil
saprotrophs as being involved in the AM hyphal response to
soil patches. This would be consistent with previous findings
showing substantial stimulation of AM hyphal proliferation by
some soil bacteria (Gryndler et al., 2000), although other studies
have also reported antagonistic interactions between AM fungi
and soil bacteria (e.g., Leigh et al., 2011). In our study, the
dominant OTUs of the 454-sequencing profiles of both bacterial
and fungal communities in the different soil patches did not
consistently explain the AM hyphal responses to the patches but
rather mirrored the different patch qualities in an idiosyncratic
manner (see Supplementary Figures S5 and S6). On the other
hand, several bacterial taxa with lower abundance in the 454-
sequencing profiles showed significant positive correlation with
the Rhizophagus hyphal responses to the soil amendments, and
this was also confirmed by the qPCR analyses including all
individual soil samples (Figure 4). First, strong correlation of the
hyphal response with some specific Nitrosospira sp. abundance
across the different soil amendment types indicates the possibility
of a causal (nutritional or signaling) relationship. This is because
this bacterial genus has the capacity to oxidize ions of ammonium
to nitrite in the first step of nitrification and often dominates this
ecosystem function (Webster et al., 2005). It may be important
to note that OTUs representing other microbes involved in
nitrification (e.g., Nitrobacter, Nitrospira, Nitrosovibrio, as well
as other Nitrosospira spp.-like OTUs; Supplementary Table
S4) did not correlate with AM hyphal response. Second, the
correlation with the Acanthamoeba endosymbiont may indicate
an involvement of protozoa in the stimulation of AM hyphal
growth within the soil patches. Protozoa mobilize N from
bacterial biomass and have recently been shown to increase
the rates of N translocation from organic fertilizers to plants
via the mycorrhizal pathway (Koller et al., 2013). However, the
correlation, no matter how strong, does not constitute causal
proof, which would need to be obtained by means of specifically
focused experiments yet to come. These future experiments
should also enable testing as to whether the interactions of
AM fungi with protozoa and/or Nitrosospira and possibly other
prokaryotes involved in nitrification indeed center upon the N
nutrition of the AM fungus or the plant, or whether it could
also involve secondary metabolites or one or more of the other
degradation products resulting from the enzymatic hydrolysis of
the organic amendments.

Relatively low AM hyphal densities in the soil samples
collected from the different compartments in this study as
compared to other, similar studies (e.g., Thonar et al., 2011)
could possibly be explained by the fact that we used granular
zeolite (expanded clay) as a substantial part (45% volume) of our
potting substrate. This material is porous and there is evidence
that the AM fungi would spread their hyphae inside the pores and
cavities of the granules (Baltruschat, 1987; Feldmann and Idczak,
1992). Any hyphae inside the granules would not be accessible
to mechanical hyphae extraction and microscopy. However,
inasmuch as our DNA-based quantification correlates well with
the patterns of AM hyphal spread in the different compartments
observed microscopically (Figure 2) and the DNA should extract
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all fungal tissues, both inside and outside the zeolite granules,
we are confident as to the validity of the hyphal developmental
responses reported in this study.

CONCLUSION

We found a very strong evidence of AM hyphal proliferation
in organic N but not in organic or inorganic P patches, in
spite of the fact that our host plant (M. truncatula) was not N
limited (as inferred from similar experiments using the same
soil, AM fungi and plant genotype as here, e.g., Konvalinková
et al., 2015). Thus, AM hyphal proliferation seems to be caused
primarily by the N requirements of the AM fungus rather
than the host plant. We consider our results to be particularly
robust because we used two independent approaches to quantify
the development of AM fungi in soil, namely the traditional
microscopy and the qPCR. To our knowledge, this is the first
study showing a fair correlation between these two independent
methods quantifying the development of AM fungal hyphae in
soil. This correlation is particularly important inasmuch as there
was a significant stimulation of other soil fungi’s development
in certain soil patches and microscopic quantification of the
hyphal development could potentially be biased by our inability
to discriminate between AM fungal and other hyphae. Using two
independent approaches (454-sequencing of pooled soil samples
per soil amendment treatment and qPCR using all individual soil
samples), we also demonstrated that the hyphal developmental
responses of both AM fungi to soil amendments strongly
correlated with the abundance of Nitrosospira sp., an ammonium
oxidizer, and few other bacterial taxa in the soil including an
obligateAcanthamoeba endosymbiont. This last evidence, though
only correlative, strongly suggests a possible involvement of soil
protists such as Acanthamoeba sp. in mediating the stimulation
of AM hyphal development by and possibly hyphal uptake of N
from the soil organic-N amendments, possibly through so called
microbial loop (Bonkowski, 2004). Both the amoebas and the
ammonia oxidizers could be part of such a pathway – with the
ammonia oxidizers processing either the NH4

+ ions released
directly from the organic matter (scenario 1) or the ammonia
accumulating in the soil solution as a by-product of amoebas
grazing on soil bacteria (scenario 2). The latter appears much
more plausible scenario than the previously suggested primary
involvement of ammonia oxidizers in oxidation of ammonia
directly released from the organic matter (Cheng et al., 2012).
This earlier work established the scenario 1 based on the observed
repression of AM-induced organic matter mineralization by
nitrification inhibitor dicyandiamine – silently assuming that the
AM fungi would be generally very inefficient in taking up the free
NH4

+ ions from the soil solution. Such an assertion is, however,

not supported by most previous research (e.g., Govindarajulu
et al., 2005). Either way, complex microbial interactions involved
in organic matter mineralization and AM fungal uptake of N
released by this process certainly warrant further investigations,
addressing possible metabolic/trophic dependencies between the
different members of soil microbial communities, as well as
consequences of these interactions for the N nutrition of the AM
fungus and its host plant. More dedicated efforts with 15N-labeled
sources (be they atmospheric N2, soil organic soil amendments,
or mineral N fertilizers), specific non-mycorrhizal and non-
microbial controls and intensive sampling schemes covering
temporal dynamics of microbial communities will be required
to quantify precisely the contributions of the various microbial
pathways to and involvement of the different players in the plant
and AM fungal nutrition.
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