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Heat Shock Protein 90 (Hsp90) is essential for tumor progression in humans and drug

resistance in fungi. However, the roles of its many co-chaperones in antifungal resistance

are unknown. In this study, by susceptibility test of Neurospora crassa mutants lacking

each of 18 Hsp90/Calcineurin system member genes (including 8 Hsp90 co-chaperone

genes) to antifungal drugs and other stresses, we demonstrate that the Hsp90

co-chaperones Sti1 (Hop1 in yeast), Aha1, and P23 (Sba1 in yeast) were required for the

basal resistance to antifungal azoles and heat stress. Deletion of any of them resulted in

hypersensitivity to azoles and heat. Liquid chromatography–mass spectrometry (LC-MS)

analysis showed that the toxic sterols eburicol and 14α-methyl-3,6-diol were significantly

accumulated in the sti1 and p23 deletion mutants after ketoconazole treatment, which

has been shown before to led to cell membrane stress. At the transcriptional level,

Aha1, Sti1, and P23 positively regulate responses to ketoconazole stress by erg11 and

erg6, key genes in the ergosterol biosynthetic pathway. Aha1, Sti1, and P23 are highly

conserved in fungi, and sti1 and p23 deletion also increased the susceptibility to azoles

in Fusarium verticillioides. These results indicate that Hsp90-cochaperones Aha1, Sti1,

and P23 are critical for the basal azole resistance and could be potential targets for

developing new antifungal agents.
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INTRODUCTION

Invasive fungal diseases (IFDs), primarily caused by yeast-like fungi (e.g., Candida albicans and
Cryptococcus neoformans) and filamentous fungi (e.g., Aspergillus fumigatus), are life-threatening
infections with high morbidity and mortality in human, especially for immunocompromised
patients, such as cancer patients undergoing chemotherapy and transplant recipients. Azoles, the
most widely used antifungal agents, are still applied as the first-line therapy to treat patients
suffering from IFDs because their side effects are lower than the “gold standard” polyenes such
as Amphotericin B (AMB; Laniado-Laborín and Cabrales-Vargas, 2009). However, azole-resistant
pathogenic fungi have frequently been isolated (Sheehan et al., 1999; Snelders et al., 2008; Howard
et al., 2009). Surveillance studies indicate that azole-resistant A. fumigatus has spread throughout
Europe, Asia, and Africa and can be detected in environmental and clinical settings (Howard et al.,
2009; Bueid et al., 2010; Denning and Perlin, 2011). The evolution of antifungal resistance could
render first-line azole treatment obsolete.
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The direct target of azoles is the lanosterol 14α-demethylase
ERG11/Cyp51, a key enzyme of ergosterol synthesis (Yoshida and
Aoyama, 1987). Azoles bind to ERG11 and inhibit its activity,
compromising cell membrane integrity by depleting ergosterol
levels and/or causing an accumulation of the toxic intermediate
14α-methyl-3,6-diol (Kelly et al., 1995). Fungi make adaptive
responses to azole stress by adjusting the transcriptional levels of
a number of genes (Agarwal et al., 2003; da Silva Ferreira et al.,
2006; Yu et al., 2007; Liu et al., 2010; Sun et al., 2014). Under
antifungal stress, heat shock proteinHsp90, and its client proteins
play important roles in establishing the resistant responses
to azoles (Cowen and Lindquist, 2005; Cowen, 2013; Lamoth
et al., 2013). Hsp90 governs many signal transduction pathways
through chaperoning so-called “client proteins,” such as hormone
receptors and protein kinases in eukaryotic cells (Young et al.,
2001). Hsp90 stabilizes mutated oncogenic proteins, which are
prone to misfolding, enabling malignant transformation in
humans. Hsp90 assists protein folding and repairs misfolded
proteins to maintain cellular proteostasis. In fungi, Hsp90 buffers
the key regulators of cell signaling to cope with the stress of drug
exposure (Cowen, 2009).

Intensive studies have been done to understand how
Hsp90 mediates azole resistance in Saccharomyces cerevisiae,
the yeast-like fungus C. albicans, and the filamentous fungus
A. fumigatus (Cowen and Lindquist, 2005; Cowen et al.,
2006; Cowen, 2009). Inhibition of Hsp90’s ATPase activity by
the natural products geldanamycin or radicicol reduces azole
resistance in S. cerevisiae and C. albicans (Cowen and Lindquist,
2005; Zhang et al., 2013). Calcineurin is a key downstream
client protein of Hsp90, which regulates numerous responses to
environmental stimuli, including antifungal azoles. Calcineurin
requires direct interaction with Hsp90 to maintain its stability
and activation. Inhibiting the catalytic subunit (Cna1 or Cna2)
by cyclosporine A or the regulatory subunit (Cnb1) by FKBP51
reduce azole resistance in C. albicans and A. fumigatus (Cruz
et al., 2002; Uppuluri et al., 2008; Lamoth et al., 2013). Thus,
the combination of antifungal drugs and Hsp90/Calcineurin
inhibitors provides promising potential therapy for IFDs, which
could also reduce the incidence of azole resistance (Cowen, 2009).
Under fluconazole stress, S. cerevisiaeHsp90 promoted the rapid
mutations in erg3 that confers fluconazole resistance, suggesting
Hsp90 is involved in the rapid evolution of drug resistance
(Cowen, 2009).

The chaperone activity of Hsp90 requires successive binding
to a series of co-chaperones in an ATP/ADP-dependent manner.
The core co-chaperones include Cdc37, Sti1/Hop, peptidyl-
prolyl cis-trans isomerases (PPIases; e.g., Cpr6/7, Cyp40, and
FKBP51/52), Aha1, and P23/Sba1. These co-chaperones together
with Hsp90 and Hsp70 comprise the regulation complex
that governs stress responses induced by antifungal drugs,
chemicals, and other environmental stresses. Deficiency in any
co-chaperone protein compromises Hsp90 activity (Sullivan
et al., 2002; Walton-Diaz et al., 2013). However, the roles of
many co-chaperones in antifungal resistance are unknown. In
this study, we investigated whether genetic deletion of these
co-chaperones would affect Hsp90-mediated azole resistance
in filamentous fungi. Neurospora crassa has transcriptional

responses to ketoconazole (KTC) similar to that of pathogenic
fungi (Zhang et al., 2012; Sun et al., 2013, 2014;Müller et al., 2015;
Wang et al., 2015), and about 70% of the genes in N. crassa have
knockout mutants, meaning N. crassa is an excellent model for
identifying regulatory genes in drug resistance. By susceptibility
test of N. crassa mutants lacking each of Hsp90 orchestrates
member genes [hsp80, hsp70-1, hsp70-2, hsp70-3, p23, aha1,
sti1, cdc37, nup-17 (PPIase), nup-5 (PPIase B), nup-13 (PPIase
H), and fkr-5 (PPIase FKBP-type)], calcineurin encoding genes
(cna1 and cnb1), Hsp90/calcineurin-dependent stress responses
genes (crz1 and hsf1) and other heat shock protein family genes
(hsp88 and hsp98) to antifungal drug ketoconazole, we found
that the Hsp90 co-chaperones Sti1, Aha1, and P23 participated
in adaptive responses to azoles.

MATERIALS AND METHODS

Strains and Cultural Conditions
All N. crassa strains used in this study are listed in Table 1. N.
crassa single-gene deletion mutants were purchased from Fungal
Genetic Stock Center (FGSC, University of Kansas Medical
Center, Lawrence, KS, USA). Double mutants ∆p23∆sti1
and ∆p23∆aha1 were generated by crossing FGSC#01792
(∆p23) and FGSC#00714 (∆sti1), and FGSC#01792 (∆p23)
and FGSC#04087 (∆aha1), respectively, with the method
described before (Zhang et al., 2012). Vogel’s minimummedium,
supplemented with 2% (w/v) sucrose for slants or 2% (w/v)
glucose for plates, was used for culturing N. crassa strains. The
slants were incubated at 28◦C in the dark for 2 days and then
in light for 5 days for conidiation. Antifungal compounds were
added when needed. Fusarium verticillioides wild type M-3125
(mating type: MAT-1) and knockout mutants were cultured on
potato dextrose agar at 28◦C in the dark.

Susceptibility Tests
Ketoconazole (KTC), fluconazole (FLU), itraconazole (ITC),
amphotericin B (AMB), caspofungin (CSP), and geldanamycin
(GA) were dissolved in DMSO. The final DMSO concentrations
inmedia were below 0.25% (v/v; Sun et al., 2013). Menadione and
H2O2 were diluted in distilled water. The agents were aseptically
added tomedia before plates weremade. The final concentrations
of KTC, FLU, ITC, AMB, CSP, GA, menadione, and H2O2 in the
media were 2, 25, 10, 0.05, 1, 1, 2mg/L, and 2mM, respectively.
Two microliters of conidial suspension (2× 106 spores/ml) were
inoculated on plates (8 90mm, 12mL medium each) with or
without drugs and the plates were incubated at 28◦C in the
dark. Heat sensitivity tests were carried out at 28 and 42◦C,
respectively. Each test was duplicated and was repeated at least
three times.

Determination of Minimum Inhibitory
Concentration (MIC) of Azoles
The MICs of KTC and FLU for each strain were determined in
96-well microtiter plates according to previous methods (Zhang
et al., 2012). Briefly, 100µl of 2×KTC or FLU solution and 100µl
of conidial suspension media were added to each well. The final
KTC concentrations were 0, 0.25, 0.5, 1, 2, 3, 4, 5, and 6 µg/ml;
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TABLE 1 | N. crassa strains used in this study and their susceptibility to ketoconazole (KTC).

Gene name Annotation Gene Strain no. Mating type Susceptibility to KTC***

WT FGSC#4200 a

hsp80 Heat shock protein 90 NCU04042 FGSC#11468 a, het* ++

FGSC#11625 het ++

p23/sba1 Co-chaperone of HSP90 NCU01792 FGSC#11871 a +++

FGSC#11872 A +++

aha1 Activator of HSP90 ATPase NCU04087 FGSC#11561 A +++

sti1 Stress inducible protein NCU00714 FGSC#18705 A +++

hsf1 Heat shock transcription factor NCU08512 FGSC#14521 a, het ++

cna1 Calcineurin subunit A NCU03804 FGSC#17929 a, het +

FGSC#11549 NA** ++

FGSC#11550 NA ++

cnb1 Calcineurin subunit B NCU03833 FGSC#12512 Het +

FGSC#12496 a, NA +

FGSC#15793 a, NA +

cdc37 Cell division cycle 37 NCU00472 FGSC#16472 a, het +

hsp70-1 Heat shock protein 70 NCU09602 FGSC#16015 a, het −

hsp70-2 Heat shock protein 70 NCU02705 FGSC#13509 a, het +

hsp70-3 Heat shock protein 70 cofactor NCU01499 FGSC#14664 a +

hsp88 HSP70 family, HSPA4-like NCU05269 FGSC#11627 Het −

hsp98 HSP110 family, HSP104-like NCU00104 FGSC#11558 a −

nup-17 (PPIase) Cyclophilin 40 family NCU03853 FGSC#11560 a −

nup-5 (PPIase B) Cyclophilin 40 family NCU01200 FGSC#12036 a +

nup-13 (PPIase H) Cyclophilin 40 family NCU02614 FGSC#11922 a +

fkr-5 (PPIase FKBP-type) FKBP52 family NCU02455 FGSC#12999 a −

crz1 Calcineurin-responsive zinc finger NCU07952 FGSC#11494 a, het −

∆p23∆sti1 double mutation NCU01792, NCU00714 This study

∆p23∆aha1 double mutation NCU01792, NCU04087 This study

*het, heterokaryon; **NA, Not Available (in FGSC); ***Susceptibility to 2 mg/L ketoconazole was measured by colony diameters, the diameters of wild type and tested strains were

marked as R and r, “−” represents r ≈ R, “+” represents 50%R < r < R, “++” represents 0< r <50%R, and “+++” represents r ≈ 0.

the final FLU concentrations were 0, 5, 10, 20, 30, 40, 50, and
60 µg/ml. The final conidial concentration was approximately
1 × 105 conidia/ml. The plates were incubated at 28◦C for
24 h. The minimum inhibitory concentration (MIC) values were
determined as the lowest KTC concentration that inhibited
growth observed by naked eye and dissecting microscope.

Complementation of sti1, aha1,and p23

Mutants in N. crassa
All primers used in this study are listed in Table S1. To create a
complementary p23 plasmid, the full-length p23 coding sequence
(947 bp) with 1733 bp upstream and 935 bp downstream was
amplified using the primers Nc-p23-com-1(ClaI) and Nc-p23-
com-2(EcoRV), yielding a 3734 bp complementary fragment.
The PCR product was inserted into the plasmid pCB1532
(Sweigard et al., 1997), which harbors a sulfonylurea resistant
allele of Magnaporthe grisea ILV1 as a selective marker, at
ClaI and EcoRV sites to create pCB1532-p23. For sti1, a 4174
bp fragment, consisting of 1567 bp upstream, 1868 bp coding
sequence, and 723 bp downstream of sti1, was created by
PCR using the primers Nc-sti1-com-1(XbaI) and Nc-sti1-com-
2(BamHI). The fragment was then inserted into pCB1532 at

BamHI and XbaI sites to create pCB1532-sti1. Similarly, a
3707 bp PCR fragment, including 1771 bp upstream, 1189 bp
coding sequence, and 747 bp downstream of aha1, was amplified
with the primers Nc-aha1-com-1 and Nc-aha1-com-2, and then
ligated with linearized pCB1532, by EcoRV digestion, to generate
pCB1532-aha1. The constructs pCB1532-p23, pCB1532-sti1 and
pCB1532-aha1 were transformed into ∆p23, ∆sti1, and ∆aha1
mutants, respectively, using the method described previously
(Sun et al., 2012) Transformants were screened on Vogel’s
medium with 20 µg/ml chlorimuron ethyl and verified by PCR.

RNA Extraction and Quantitative RT-PCR
Analysis
The culture conditions for RNA extraction were the same as
previously described by Sun et al. (2012). Briefly, wild type and
mutant conidia were separately inoculated into 20mL liquid
medium in a plate (8 90mm) and incubated for 24 h at 28◦C
in the dark to form mycelia mats on the surface of the liquid
medium. The mycelia mats were then cut into small pieces (8
10mm), which were then torn into fragments (<5mm2) and
transferred to 100 mL liquid media in 150mL Erlenmeyer flasks.
Cultures were incubated at 28◦Cwith shaking at 180 rpm for 12 h.
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KTC was then added into the medium at a final concentration
of 2.5 mg/L, as required. After 24 h incubation, mycelia were
harvested and total RNA was extracted and reverse transcribed
using FastQuant RT Kit (with gDNase) (Tiangen Biotech Co.
Ltd., Beijing, China). The synthesized cDNA (2 µg in 20 µl) was
diluted to 200 µl, and quantitative PCR was carried out on a
CFX-96 Multicolor Real-Time PCR Detection System (Bio-Rad,
Hercules, CA, USA) with SYBR-Green detection (SYBR Master
Mix, TOYOBA Biotechnology Co., Ltd., Osaka, Japan); 0.8 µl
each forward and reverse primers, 6 µl diluted cDNA, and 10
µl SYBR master mix were mixed in a 20 µl reaction, obtaining
a 3 ng/µl final cDNA concentration. Each cDNA sample was
analyzed in duplicate and repeated at least three times, and the
average threshold cycle was calculated. Relative expression levels
were calculated using the 2−11Ct method (Livak and Schmittgen,
2001). The results were normalized to the level of β-tubulin.

Sterol Extraction and Analysis
Sterol extraction and liquid chromatography–mass spectrometry
(LC-MS) analysis were performed as described by Sun et al.
(2013). Briefly, 0.1 g dried mycelia powder with 25 µg
fluconazole was extracted in 1.7ml chloroform for 12 h with
10min ultrasonic treatments before and after extraction. The
extracts were dried and dissolved in 300 µl methanol under
ultrasonication for 30 min. The extracts were subjected to LC-MS
analysis as previously described (Sun et al., 2013) after filtered
with 0.22µmMillipore filters. The derived sterols were identified
with reference molecular weight and fragmentation spectra for
known standards. The amounts of sterols were normalized by
relative peak area with fluconazole as reference.

Analysis of Co-chaperone Homologs in
Fungi and Human
The homologs of Hsp90 co-chaperones were identified in the
National Center for Biotechnology Information (NCBI) by
protein-protein BLAST (http://www.ncbi.nlm.nih.gov/BLAST)
from the following species: N. crassa (taxid: 5141), F. oxysporum
(taxid: 5507), A. fumigatus (taxid: 746128), C. albicans (taxid:
5476), S. cerevisiae (taxid: 4932), C. neoformans (taxid: 5207), and
Homo sapiens (taxid: 9606). To reveal the sequence conservation
and phylogenic relationship of homologs of Hsp90 and its three
co-chaperones in fungi and human, the peptide sequences were
aligned with DNAman software, and the results of multiple
alignment were shown by phylogenetic trees generated with the
Neighbor-Joining method (bootstrap = 1000) under support of
MEGA 7.0 (Kumar et al., 2016).

Knockout of sti1 and p23 Homologs in
F. Verticillioides
To knockout the sti1 and p23 homologs (sti1: FVEG_00423,
the E-value, query coverage and identity with N. crassa sti1
are 8e−72, 62 and 72%, respectively; p23: FVEG_11505, the
E-value, query coverage and identity with N. crassa p23
are 0, 100 and 76%, respectively) in F. verticillioides, the
upstream and downstream flanking sequences were amplified
and ligated to the hygromycin phosphotransferase gene by
fusion PCR. Then, the deletion cassettes were transformed into

F. verticillioides wild type M-3125, producing deletion mutants.
Fungal transformation followed the protocol described by Sun
et al. (2013). Transformants were checked using the primers
Fv-sti1-check-1/2 and Fv-p23-check-1/2, respectively.

RESULTS

Deletion of sti1, aha1, or p23 Causes Azole
Hypersensitivity in N. crassa
To investigate the roles of the Hsp90 co-chaperones in
azole-induced stress responses, we tested the susceptibility
of 24 single-gene deletion mutants or heterokaryons to 2
mg/L ketoconazole (KTC; Figure 1, Table 1). These genes were
presumed to be involved in the Hsp90 cycle and calcineurin
pathway. Without KTC, growth rates of all tested mutants
were similar to that of wild type. On plates with 2 mg/L
KTC, three mutants displayed much severer growth inhibition
than the rest of mutants and wild type. The corresponding
genes of these three mutants encode Hsp90 co-chaperones
P23, Aha1, and Sti1, respectively (Figures 1, 2A, Table 2).
Heterokaryons deficient for hsp90 (the gene name is hsp80),
or cna1 (calcineurin catalytic subunit) or cnb1 (calcineurin
regulatory subunit), showed increased susceptibility to KTC.
Deletion of hsf1, the gene coding a heat shock transcriptional
factor, also increased susceptibility to KTC (Figure 1, Table 2).
However, the mutants lacking either PPIases and heterokaryons
deficient for Hsp70 showed wild-type KTC susceptibility
(Figure 1, Table 1).

Based on the above results, Hsp90 co-chaperones P23, Aha1,
and Sti1 were chosen for further study. Complementation of
∆sti1, ∆aha1, and ∆p23 recovered wild-type susceptibility
to KTC (Figure 2B). The susceptibilities of mutants
(∆p23, ∆aha1, and ∆sti1) to fluconazole and itraconazole
were also tested. The results obtained from fluconazole
treatment corresponded to the results in KTC. On plates
with 25mg/L fluconazole, the growth of wild type was
slower than that on the plates without drug; the growth of
∆p23 was completed arrested; ∆aha1 and ∆sti1 formed
only tiny colonies after 50 h incubation (Figure 2A). On
plates with 10 mg/L itraconazole, the growth rates of these
mutants and wild type were not dramatically different
(Figure 2A).

Each Hsp90 Co-chaperone Has
Independent Contribution under Azole
Stress
To further understand the relationship among these three
co-chaperones under azole stress, double mutants ∆p23∆sti1
and ∆p23∆aha1 were generated. Interestingly, these double
mutants displayed greater growth inhibition than the respective
single gene deletion mutants on plates with itraconazole.
On the plates with 10mg/L itraconazole, the growth of
∆p23∆sti1 was completely arrested and ∆p23∆aha1 could
only form tiny colonies, which were significantly smaller than
those of ∆p23 or ∆aha1 (Figure 2A, Table 2). Since the
susceptibility difference to KTC and fluconazole between each
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FIGURE 1 | Susceptibility tests of wild-type N. crassa and the knockout mutants of Hsp90 orchestrates member genes [hsp80, hsp70-1, hsp70-2,

hsp70-3, p23, aha1, sti1, cdc37, nup-17 (PPIase), nup-5 (PPIase B), nup-13 (PPIase H), and fkr-5 (PPIase FKBP-type)], calcineurin encoding genes

(cna1 and cnb1), Hsp90/calcineurin-dependent stress responses genes (crz1 and hsf1) and other heat shock protein family genes (hsp88 and hsp98)

to antifungal drug ketoconazole (KTC). Two microliters of conidial suspension (2 × 106 conidia/ml) were inoculated in the center of plates (8 90mm) with or

without antifungal drug, then incubated at 28◦C for the indicated times. Each test was duplicated and the experiment was independently repeated at least three times.

TABLE 2 | Relative inhibition rates of HSP90- related mutants by azoles, heat and H2O2.

Strain Relative inhibition rate

KTC 2 µg/ml (%) FLU 25 µg/ml (%) ITA 10 µg/ml (%) HEAT 42◦C (%) H2O2 2.5mm (%)

WT 66.5 ± 0.3 65.2 ± 0.8 50.0 ± 0.3 44.5 ± 0.2 51.3 ± 0.4

∆hsp80 76.3 ± 0.6 74.2 ± 0.7** 51.9 ± 0.4** 50.0 ± 0.4 100 ± 0.0**

∆p23 100 ± 0.0** 100 ± 0.0** 78.3 ± 0.3** 70.9 ± 0.5** 28.7 ± 0.4*

∆aha1 100 ± 0.0** 98.5 ± 0.3** 57.4 ± 0.3 55.5 ± 0.3* 57.4 ± 0.5

∆sti1 100 ± 0.0** 100 ± 0.0** 62.3 ± 0.1** 75.0 ± 0.8** 26.3 ± 0.7*

∆hsf1 85.0 ± 1.6* 80.9 ± 0.8** 53.7 ± 0.2 56.7 ± 0.4* 54.4 ± 0.2

∆cna1 92.7 ± 0.3* 81.9 ± 0.6** 49.7 ± 0.3 49.2 ± 0.1 58.2 ± 1.6

∆cnb1 71.7 ± 0.7 65.0 ± 0.5 45.0 ± 0.3 45.7 ± 0.1 100 ± 0.0**

∆p23∆sti1 100 ± 0.0** 100 ± 0.0** 100 ± 0.0** 88.1 ± 0.1** 28.1 ± 0.8*

∆p23∆aha1 100 ± 0.0** 100 ± 0.0** 80.0 ± 0.1** 81.7 ± 0.2** 55.5 ± 0.4

Tested strains are the wild type (WT), the p23, aha1 and sti1 knockout strains (∆p23, ∆aha1, and ∆sti1), the hsp80, hsf1, cna1, and cnb1 heterokaryons (∆hsp80, ∆hsf1, ∆cna1, and

∆cnb1) as well as double mutants ∆p23∆sti1 and ∆p23∆aha1. The means of the relative inhibition rates for each fungicide were calculated by the equation: (the growth rate on plates

without fungicide – the growth rate on plates with the fungicide)/growth rate on plates without fungicide. Differences between mutants and the WT were statistically analyzed by the LSD

and Dunnett T-tests (homoscedastic) or Tamhane’s T2 and Dunnett C-tests (heteroscedastic). Values that are extremely significantly different (P < 0.01) are marked with ** and values

that are significantly different (0.01 < P <0.05) are marked with *.

of double mutants and its respective single gene deletion
mutants was difficult to show based on colony growth,
MIC analysis was further conducted. Results showed that
the double mutants ∆p23∆sti1 and ∆p23∆aha1 had MIC
values to fluconazole significantly lower than their respective
single-mutation lines (Table 3). For KTC, MIC values of
these double mutants and their respective single gene mutant
lines were not significantly different (Table 3). Since the

complete suppression of single gene mutants’ growth requires
very low concentration of KTC (0.7–1.7 µg/ml), accurate
measurement of differences in KTC susceptibility between
each double mutant and the single gene mutant lines is
difficult. Nevertheless, based on the results in itraconazole and
fluconazole, it could be concluded that each of these Hsp90
co-chaperones has its independent role in the basal azole
resistance.
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FIGURE 2 | Susceptibility tests of N. crassa to antifungal drugs, oxidants and heat stress. (A) Susceptibility tests of wild-type N. crassa, the knockout

mutants of p23, aha1, sti1 (∆p23, ∆aha1, and ∆sti1) and double deletion mutants (∆p23∆aha1 and ∆p23∆sti1) to antifungal drugs, oxidants and heat stress; (B)

Susceptibility tests of the N. crassa knockout mutants ∆p23, ∆aha1, and ∆sti1 and their complemented strains ∆p23;p23, ∆aha1;aha1, and ∆sti1;sti1 to

Ketoconazole. Two microliters of conidial suspension (2 × 106 conidia/ml) were inoculated in the center of plates (8 90mm) with or without antifungal drugs or

oxidants, then incubated at 28 or 42◦C (heat tests) for the indicated times. Each test was duplicated and the experiment was independently repeated at least three

times. KTC, ketoconazole; FLU, fluconazole; ITC, itraconazole; CSP, caspofungin; AMB, amphotericin B; Me, menadione.

The Roles of P23, Aha1, and Sti1 in the
Basal Azole Resistance Link to Hsp90
To further reveal the relationship between Hsp90 and its
co-chaperones, the sensitivity of N. crassa strains to the Hsp90
inhibitor geldanamycin (GA) was tested. As shown in Figure 3,
2 mg/L GA affected N. crassa growth, but its growth effects in
∆p23 and ∆aha1 were similar to that of wild type. For ∆sti1,
although its growth was only partially repressed, its growth
was significantly slower than wild type. Thus, the simultaneous
disruption of Hsp90 and its co-chaperones did not dramatically
affect the hyphal growth on plates without antifungal azoles.

Addition of 1 mg/L KTC slightly affected the growth of wild
type but completely suppressed the growth of ∆p23. Although
growing slower than wild type, ∆aha1 and ∆sti1 could form
colonies on plates with 1 mg/L KTC after 42 h. On plates with
both 2mg/L GA and 1mg/L KTC, the growth of all mutants
was arrested. None of them formed visible colony even after
120 h incubation. Wild type could form colonies, but its growth

was significantly slower than that on plates with 2mg/L GA or

1mg/L KTC alone. The above results suggest that Hsp90 and its

co-chaperones P23, Aha1, and Sti1 play more important roles

under azole stress than under normal conditions.
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TABLE 3 | Minimum inhibitory concentration (MIC) of ketoconazole and

fluconazole for wild type and mutants (µg/ml).

WT ∆p23 ∆aha1 ∆sti1 ∆p23∆sti1 ∆p23∆aha1

KTC 3.0 ± 0.3 0.7 ± 0.3** 1.7 ± 0.3* 1.0 ± 0.0** 0.2 ± 0.1** 0.7 ± 0.3**

FLU 27 ± 5 10 ± 0* 20 ± 0* 17 ± 3* 5 ± 0** 7 ± 3**

Differences between the mutants and the wild type (WT) were statistically analyzed by the

LSD and Dunnett T-tests (homoscedastic). Values that are significantly different (P< 0.01)

are marked with ** and values that are different (0.01 < P <0.05) are marked with *.

Deletion of sti1, aha1, or p23 Did Not
Increase Susceptibility to Amphotericin B
and Caspofungin
In addition to azoles, polyenes, and echinocandins are also
widely used for treating fungal infections. To test whether Sti1,
Aha1, and P23 are also required for the basal resistance to
polyenes and echinocandins, susceptibilities of their mutants
to amphotericin B and caspofungin were tested. As shown
in Figure 2A, compared with wild type, neither single gene
deletion mutants, including ∆sti1, ∆aha1, and ∆p23, nor double
mutants, including ∆p23∆sti1 and ∆p23∆aha1, displayed
increased susceptibility to amphotericin B or caspofungin. These
results indicate that Sti1, Aha1, and P23 are not generally
required for the basal resistance to a wide range of antifungal
drugs.

Deletion of sti1, aha1, or p23 Causes
Hypersensitivity to Heat in N. crassa
Hsp90 prevents ROS generation and stimulates anti-oxidative
defenses under thermal stress conditions in the fungal species
Paracoccidioides brasiliensis (Matos et al., 2013). We tested the
roles of Hsp90 and its related genes under heat and oxidative
stress. As shown in Figure 1, the growth rates of ∆hsp80
and all tested mutants related to Hsp90 grew as normal as
wild type at 28◦C. At 42◦C, ∆p23, ∆aha1, and ∆sti1, grew
significantly slower than wild type (Figure 2A, Table 2). At 42◦C,
the growth of wild type was inhibited by 44.5% relative to its
growth at 28◦C, while the growth of ∆sti1, ∆aha1, and ∆p23
was inhibited by 75, 55.5, and 70.9%, respectively, compared
to their growth at 28◦C. These results indicate that these
Hsp90 co-chaperones also participate in stress responses induced
by heat.

Sti1 and P23 Negatively Regulate H2O2

Resistance
H2O2 and menadione were used to test the roles of Hsp90
co-chaperones under oxidative stress. On plates with 2.5 mM
H2O2, the growth of wild type was inhibited by 51.3%, relative
to its growth on control plates (Table 2), while the growth of
∆hsp80 and ∆cnb1 were completely arrested (Table 2), which
further demonstrated that Hsp90/calcineurin system had critical
function under oxidative stress.In contrast, ∆sti1 and ∆p23
were more resistant than wild type. On plates with 2.5 mM
H2O2, the growth of ∆sti1 and ∆p23 were inhibited by only
26.3 and 28.7%, respectively, which were significantly lower than

that of wild type (by 51.3%; Table 2). ∆aha1 displayed wild-
type sensitivity to H2O2. On plates with 2 mg/L menadione,
the growth of ∆p23, ∆aha1, and ∆sti1 were comparable to
wild type. Thus, these Hsp90 co-chaperones do not positively
contribute to the basal resistance to oxidative stress as they do
to azole stress. In contrast, Sti1 and P23 negatively regulate H2O2

resistance.

Sti1, Aha1, and P23 Modulate the Hsp90
Cycle and Ergosterol Biosynthesis at the
Transcriptional Level
Hsp90 governs the stress response network in fungi, and its co-
chaperones are essential for the Hsp90 cycle (Walton-Diaz et al.,
2013). To clarify how the co-chaperones affect the Hsp90 cycle
at transcriptional level in N. crassa, we analyzed the expression
of NCU04142 (hsp80, the Hsp90 coding gene), NCU00714
(sti1), NCU04087 (aha1), NCU01792 (p23), and NCU08512
(hsf1) using quantitative RT-PCR. In wild type N. crassa, KTC
treatment did not affect the transcription of these genes (Data
not shown), which is consistent with previous RNA-seq data
(Sun et al., 2014). However, hsp80 mRNA levels were more
than 2-fold higher (2.7- and 2.3-fold, respectively) in both non-
KTC and KTC treatments in ∆sti1 than those of wild type;
deletion of p23 also caused elevated transcription of hsp80 in
non-KTC treatment (Figure 4). The increase of hsp80 expression
may be a compensatory effect of the loss of the co-chaperones,
due to the Hsp90 auto-regulatory loop control (Leach et al.,
2012).

Azoles target ERG11, directly blocking 14α-demethylation of
lanosterol, resulting in sterol biosynthesis through the eburicol
bypass and an accumulation of the toxic intermediate 14α-
methyl-3,6-diol, which can damage membrane integrity (Kelly
et al., 1995). The efflux pump CDR4 has been shown to be
the major contributor to azole resistance among four Pdr5p-
like ABC transporters in N. crassa (Zhang et al., 2012). We
analyzed the expression of the key genes in ergosterol synthesis,
including NCU02624 (erg11) and NCU03006 (erg6), as well
as the efflux pump gene NCU05591 (cdr4), in their mutants
and wild type. Quantitative RT-PCR revealed that in wild type,
erg11, erg6, and cdr4 were up-regulated by 6.0-, 7.6-, and 9.0-
fold after 24 h of KTC (2.5 mg/L) treatment, respectively.
These results are consistent with previous RNA-seq data (Sun
et al., 2013). In contrast, the level of erg11 in ∆sti1, ∆aha1,
and ∆p23 mutants was increased only 1.5-, 4.5-, and 1.7-
fold compared with non-KTC treated wild type, respectively,
and the levels of erg6 in ∆sti1 and ∆p23 mutants were
increased only 2.7- and 1.6-fold compared with non-KTC treated
wild type, respectively. In ∆aha1, erg6 levels were reduced
by 0.33-fold without KTC treatment and increased 4.4-fold
with KTC treatment compared with non-KTC treated wild
type. The mRNA levels of cdr4 in three mutant strains were
similar to that of wild type in the medium without KTC.
After KTC treatment, cdr4 transcripts in mutants and wild
type were elevated to a similar level (Figure 3). These data
suggest that Sti1, Aha1, and P23 are required for the adaptive
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FIGURE 3 | Susceptibility tests of N. crassa to ketoconazole, the Hsp90 inhibitor geldanamycin and the two drugs combined. (A) Susceptibility tests with

geldanamycin (GA, 2 mg/L), ketoconazole (KTC, 1 mg/L) or the two drugs combined. Two microliters of conidial suspension (2 × 106 conidia/ml) were inoculated in

the center of plates (8 90mm) with or without antifungal drugs or oxidants, and then incubated at 28 or 42◦C (heat tests) for the indicated time. (B) Relative growth

inhibition rates were calculated based on colony diameters at 24 h after drug treatment. Values from three replicates were used for a statistical analysis. Means of the

inhibition rates are shown, and standard deviations are marked with error bars. Differences between the mutants and the WT were statistically analyzed by the analysis

of variance. Values with P < 0.0001, 0.0001 < P < 0.001, 0.001 < P < 0.01, and 0.01 < P < 0.05 are marked with ****, ***, ** and *, respectively.

FIGURE 4 | Differential expressions of genes in the ∆sti1, ∆aha1, and ∆p23 strains relative to the wild type (WT) strain was determined by quantitative

RT-PCR. Strains were grown in liquid Vogel’s medium at 28◦C with shaking at 180 rpm for 12 h. Then ketoconazole (KTC) was added to the medium to reach

2.5mg/L. After 24 h incubation, the following genes were analyzed by quantitative RT-PCR: hsp80, erg11, erg6, and cdr4. Values shown are the means of three

independent replicates. Standard deviations are indicated by error bars, and differences between the mutants and WT were statistically analyzed by analysis of

variance. Values with P < 0.0001, 0.0001 < P < 0.001, 0.001 < P < 0.01, and 0.01 < P < 0.05 are marked with ****, ***, ** and *, respectively.

responses by genes involved in ergosterol synthesis under azole
stress.

Deletion of sti1, aha1, and p23 Causes
Excessive Accumulation of Toxic Sterol
14α-methyl-3,6-diol
Previous studies have shown that the mechanism of action of
antifungal azoles includes decreasing ergosterol levels and/or
the accumulation of 14α-methyl-3,6-diol (Kelly et al., 1995;

Sun et al., 2014). Therefore, we tested the sterol composition
in the mutants and wild type after 24 h culture with or
without KTC (2.5mg/L) using LC-MS with fluconazole as a
reference to normalize the total amount of sterols. In wild
type, ergosterol was the primary sterol (2.9, relative amount)
and small amount of eburicol (0.2) was detected in untreated
samples; when KTC was added, ergosterol levels were slightly
reduced (2.0) but eburicol significantly increased (1.6) and

14α-methyl-3,6-diol was detected (0.4). The untreated mutants

accumulated ergosterol as the primary sterol, similar to wild
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type. Following KTC treatment, ergosterol was reduced in ∆p23,
∆aha1, and ∆sti1 (2.6/3.5, 2.9/4.0, and 2.8/4.1, respectively,
KTC treatment/untreated); ergosterol was reduced more in the
double mutants ∆p23∆sti1 and∆p23∆aha1 (2.3/4.1 and 2.6/4.4,
respectively). Meanwhile, eburicol and 14α-methyl-3,6-diol were
sharply increased in these mutants following KTC treatment:
∆p23: 2.3/1.2; ∆aha1: 1.4/0.6; ∆sti1: 2.0/0.9; ∆p23∆sti1: 3.0/1.4;
∆p23∆aha1: 2.5/0.9 (eburicol/14α-methyl-3,6-diol; Figure 5).
Thus, the excessive accumulation of toxic 14α-methyl-3,6-diol
might be an important cause to the reduced azole resistance in
these mutants.

Hsp90 Co-chaperones are Highly
Conserved in Filamentous Fungi
Multiple sequence alignment revealed that the homologs
of Hsp90 from seven fungal species, including N. crassa,
S. cerevisiae, C. albicans, F. verticillioides, F. oxysporum,
A. fumigatus, and C. neoformans, and H. sapiens, are highly
conserved in amino acid sequences (Figure S1). However,
the phylogenetic analysis shows that Hsp90s from fungi are
distantly related to Hsp90s from H. sapiens: fungal Hsp90s were
clustered to one big clade while human Hsp90s were clustered
to another big clade (Figure S1). The similar results were

obtained when homologs of Sti1, Aha1, and P23 were analyzed
(Figures S2–S4).

Knocking Out the p23 and sti1 Homologs
in F. verticillioides Increases Sensitivity to
KTC
To test the functional conservation of Sti1 and P23 among
different fungi under azole stress, the gene deletion mutants for
the sti1 (FVEG_00423) homolog and the p23 (FVEG_11505)
homolog in plant pathogen F. verticillioides, were respectively
created. As shown in Figure 6, on the medium without KTC,
the growth rates of sti1 and p23 deletion mutants were similar
to that of wild type. When grown on the medium with 2 mg/L
KTC, both sti1 and p23 deletion mutants displayed increased
sensitivity compared with wild type, indicating that Sti1 and
P23 homologs also contributes to the basal azole resistance in
F. verticillioides and their roles in azole adaptation should be
conserved among fungi.

DISCUSSION

Upon fluconazole stress, Hsp90 promoted rapid accumulation of
mutations that elevated resistance to fluconazole in S. cerevisiae

FIGURE 5 | Schematic representations of the ergosterol biosynthetic pathway (A) and quantification of sterol accumulations (B) in wild-type N. crassa

and the knockout mutants. Strains were grown in liquid Vogel’s medium at 28◦C with shaking at 180 rpm for 12 h. Then ketoconazole (KTC) was added to the

medium to reach 2.5 mg/L. After 24 h incubation, ergosterol, eburicol, and 14α-methyl-3,6-diol were analyzed by LC-MS with fluconazole as a standard reference.

Values shown are the means of three independent replicates. Standard deviations are indicated by error bars. Differences between the mutants and the WT were

statistically analyzed by analysis of variance. Values with P < 0.0001, 0.0001 < P < 0.001, 0.001 < P < 0.01, and 0.01 < P < 0.05 are marked with ****, ***, **,

and *, respectively.
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FIGURE 6 | The Fusarium verticillioides sti1 homolog FVEG_00423 and

p23 homolog FVEG_11505 knockout mutants were hypersensitive to

ketoconazole (KTC). Two microliters of conidial suspensions of different

concentrations (1 × 107, 1 × 106, 1 × 105, 1 × 104, and 1 × 103 conidia/ml)

were inoculated onto the plates (8 150mm) of potato dextrose agar medium

with or without 2mg/L KTC, and incubated at 28◦C for 72 h. Each test had

three replicates and the experiment was independently repeated twice.

and C. albicans (Cowen, 2009). Based on these lines of
evidence, Hsp90 was believed to enable the rapid evolution
of azole resistance (Cowen, 2009). Hsp90 might also mediate
azole resistance by its regulatory role in protein phosphatase
calcineurin. Hsp90 binds the catalytic subunit of calcineurin
(Imai and Yahara, 2000). Calcineurin plays a pivotal role in the
basal resistance to antifungal azoles in C. albicans, C. neoformans,
and A. fumigatus (Juvvadi et al., 2016). In S. cerevisiae and
C. albicans, calcineurin could dephosphorylate transcription
factor Crz1 to activate transcriptional responses to stresses
(Cyert, 2003). Crz1 is required for the basal resistance to
fluconazole in C. albicans (Onyewu et al., 2004). Functioning
as a chaperone, Hsp90 requires successive binding to a series
of co-chaperones in an ATP/ADP-dependent manner. Recent
studies showed that the Hsp90 co-chaperone Sgt1 is required for
the basal resistance to azoles and echinocandins in C. albicans,
and StiA (Hop) contributes caspofungin tolerance and resistance
in A. fumigatus (Shapiro et al., 2012; Lamoth et al., 2015).
However, the roles of many other co-chaperones in responses
and resistance to antifungals are unknown. By analyzing effects
of gene disruption of 18 components of Hsp90 system on
ketoconazole susceptibility, we showed that disruption of Hsp90,
calcineurin subunit A (Cna1), calcineurin subunit B (Cnb1),
and the transcription factor Hsf1 which regulates the expression
of Hsp90, compromised the basal resistance to ketoconazole
in N. crassa. These results indicate that the Hsp90-dependent

resistance to azole stress in the model fungal species N. crassa is
similar to that in pathogenic fungi C. albicans and A. fumigatus.
Among eight analyzed Hsp90 co-chaperones, the mutants
defective in Sti1, Aha1, and P23 displayed severer defects than the
rest co-chaperone mutants under ketoconazole stress, suggesting
these three Hsp90 co-chaperones play important roles under
azole stress.

The core co-chaperones Sti1, Aha1, and P23 are essential
for the Hsp90 cycle. In the early stage of the Hsp90 cycle, Sti1
functions as a transporter of client proteins fromHsp70 toHsp90,
as well as an Hsp90 ATPase inhibitor to stabilize the Hsp90-
Hsp70-Sti1-client complex (Richter et al., 2003). In the late stage
of the Hsp90 cycle, Aha1 promotes the hydrolysis of ATP to
supply energy and activate the conformational changes of the
Hsp90-client protein complex (Retzlaff et al., 2010). P23 is the
rate limiting component of the Hsp90 cycle, which stabilizes
the Hsp90-P23-client complex and inhibits the intrinsic Hsp90
ATPase activity to prolong the interaction until the protein
folding process is completed (Morishima et al., 2003; Ali et al.,
2006). We demonstrate that the roles of Sti1, Aha1, and P23
under azole stress link toHsp90 by showing that inhibitingHsp90
by geldanamycin further increased the susceptibility of their
deletion mutants to ketoconazole. Simultaneous deletion of p23
and sti1 or aha1 caused severer growth defects under itraconazole
or fluconazole stress than the single gene deletion mutants.
Thus, each of these co-chaperones has its own independent
contribution to Hsp90-dependent azole resistance.

In response to azole stress, fungi up-regulate transcriptional
levels of a number of genes (Agarwal et al., 2003; da Silva Ferreira
et al., 2006; Liu et al., 2010; Sun et al., 2014), among which
transcriptional up-regulation of genes involved in ergosterol
biosynthesis and azole efflux pumps has been demonstrated
to be able to elevate resistance to azoles (White, 1997; Bueid
et al., 2010; Denning and Perlin, 2011; Cools et al., 2013). Our
results indicate that Sti1, Aha1, and P23 are not important for
the transcriptional response to ketoconazole by the key azole
efflux CDR4, the ortholog of yeast Pdr5p (Zhang et al., 2012).
However, Sti1, Aha1, and P23 are required for the normal
responses to ketoconazole by erg11 (the target gene of azoles)
and erg6 (another gene essential for ergosterol biosynthesis).
Deletion of p23 and sti1 had greater effects on the transcriptional
responses by erg11 than deletion of aha1. This might provide
an explanation to why the sti1 mutant and the p23 mutant
are more susceptible to fluconazole and itraconazole than the
aha1 mutant. In consistence with results at RNA level, sterol
analysis showed that the sti1 mutant and the p23 mutant
accumulate more toxic intermediates than wild type and the aha1
mutant, suggesting a positive correlation between susceptibility
and toxic product accumulation. Therefore, modulation of
the responses by ergosterol biosynthesis genes to azoles is
a mechanism by which these co-chaperones contribute to
the basal azole resistance. These results suggest that rather
than stabilizing ergosterol production, elimination of toxic
14α-methyl-3,6-diol might be the predominant function of the
Hsp90 co-chaperones Sti1, Aha1, and P23 in N. crassa. It
is interesting to test whether the growth defects caused by
azoles would be mitigated by depleting 14α-methyl-3,6-diol from
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treated cells, for example, by deleting erg8, which encodes the
phosphomevalonate kinase required for lanosterol biosynthesis
(Tsay and Robinson, 1991).

Since neither Hsp90 nor its co-chaperones directly activate
gene transcription, they regulate azole responsive genes likely via
some transcription factors that are regulated by Hsp90’s client
proteins such as calcineurin. In N. crassa and F. verticillioides,
transcription factors CCG-8, ADS-4, and CSP-1 regulate
transcriptional responses by genes involved in ergosterol
biosynthesis (Sun et al., 2014; Wang et al., 2015; Chen et al.,
2016). It remains unclear whether Hsp90 dependent regulation
of azole responses links to these transcription factors.

Reducing or eliminating Hsp90 functions can abolish
resistance to diverse antifungals, and Hsp90 inhibition was
proposed as a new way to treat fungal infections (Cowen, 2013).
Although fungal Hsp90s share a high degree of conservation
with human Hsp90s, fungal Hsp90 could be antifungal targets
due to differential functions among Hsp90 isoforms in human
and fungi cells (Chen et al., 2006; Wang et al., 2009; Cowen,
2013). Our results suggested that inhibition of Hsp90 co-
chaperone Sti1, Aha1, and P23 could increase the efficacy of
antifungal azoles. Thus, these proteins could be used as potential
targets to develop new drugs to promote the efficacy of azoles.
Combination of P23 inhibitors with other antifungal agents,
such as azoles and echinocandins, could assist treatment of
IFDs, especially in life-threating cases. Since homologs of each
of these Hsp90 co-chaperones are highly conserved in fungi
and the divergence of homologs of each co-chaperone exist
between fungi and humans, it is possible to develop new drugs

specifically targeting fungal Hsp90s co-chaperones. Fungal P23
might be especially suitable to be an antifungal target because
human P23 lacks a disordered C-terminal domain compared
with fungal homologs. Chemicals that disrupt P23 functions
were previously reported. One is a nature product celastrol,
which inhibits the chaperoning of steroid receptors by Hsp90 by
inducing the fibrillation of P23 (Chadli et al., 2010). Another is
gedunin which inactivate P23 and could cause apoptosis of cancer
cells (Patwardhan et al., 2013). Therefore, it is possible to obtain
fungal specific P23 inhibitors either from nature or by chemical
synthesis.
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