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In this study, we investigated the transcriptomic response of Streptococcus pneumoniae
D39 to cysteine. Transcriptome comparison of the D39 wild-type grown at a restricted
concentration of cysteine (0.03 mM) to one grown at a high concentration of cysteine
(50 mM) in chemically-defined medium (CDM) revealed elevated expression of various
genes/operons, i.e., spd-0150, metQ, spd-0431, metEF, gshT, spd-0618, fhs, tcyB,
metB-csd, metA, spd-1898, yvdE, and cysK, likely to be involved in the transport and
utilization of cysteine and/or methionine. Microarray-based data were further confirmed
by quantitative RT-PCR. Promoter lacZ-fusion studies and quantitative RT-PCR data
showed that the transcriptional regulator CmbR acts as a transcriptional repressor of
spd-0150, metEF, gshT, spd-0618, tcyB, metA, and yvdE, putatively involved in cysteine
uptake and utilization. The operator site of CmbR in the promoter regions of CmbR-
regulated genes is predicted and confirmed by mutating or deleting CmbR operator
sites from the promoter regions of these genes.
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INTRODUCTION

The major human pathogen Streptococcus pneumoniae colonizes the human nasopharynx and
is the causal agent of many diseases, including pneumonia, sepsis, meningitis, and others.
Pneumococcal nitrogen metabolism and regulation have been studied extensively as the
appropriate acquisition and metabolism of nutrients are important for its lifestyle (Hendriksen
et al., 2008). Sulfur is an integral part of many essential components of the cell, such as cysteine,
methionine, thiamine, biotin, lipoic acid, coenzyme A, etc. Among these compounds, cysteine
plays a key role, as it is the most important sulfur-containing compound-forming metabolite and
its de novo synthesis signifies the central pathway of sulfur acquisition in microorganisms and
plants (Sperandio et al., 2005). Many important proteins (such as cytochromes and aconitase) also
have cysteine as an essential amino acid in their catalytic domains. Moreover, cysteine (and the
dimer cysteine) helps in protein folding, assembly and stability, being involved in the formation
of disulfide bounds. Cysteine-derived proteins (such as thioredoxin and glutathione) help in
countering oxidative stress (Sperandio et al., 2005). Methionine is another sulfur-containing amino
acid, regulating the initiation of translation and is vital to several methyl-transferase reactions
(Sperandio et al., 2005). Microorganisms can synthesize methionine by converting homoserine to
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homocysteine through addition of a sulfur group from either
cysteine (requiring MetABC), sulfide (requiring MetA and
CysD) or by using the SAM (S-adenosylmethionine) recycling
pathway (MetK, Pfs, and LuxS) (Kovaleva and Gelfand, 2007).
Homocysteine is then methylated by methionine synthase
(MetE) in conjunction with a methylenetetrahydrofolate
reductase (MetF), with the methyl group supplied by 5-
methyltetrahydrofolate, to form methionine (Kovaleva and
Gelfand, 2007).

Cysteine and methionine concentrations might be regulating
bacterial growth in different conditions, such as pathogenic
events or fermentation processes, as these amino acids have
essential roles in metabolism (Schell, 1993). In Brucella
melitensis (Lestrate et al., 2000), Haemophilus parasuis (Hill
et al., 2003) and, Salmonella enterica (Ejim et al., 2004),
sulfur-containing amino acid biosynthesis genes have been
characterized as virulence factors. The cysDNC operon involved
in the sulfate activation pathway forms a stress-induced operon in
Mycobacterium tuberculosis (Pinto et al., 2004), whereas several
thiol- and cysteine metabolism genes comprise the sigH regulon
necessary for optimal existence of the bacterium in macrophages
(Manganelli et al., 2002). Furthermore, cysteine metabolism also
controls the regulation of toxin formation in Bordetella pertussis
(Bogdan et al., 2001). Similarly, cysteine regulates a signaling
molecule derivative of sulfur metabolism, autoinducer 2, which
is conserved in both Gram-positive and -negative bacteria and
is involved in interspecies communication and regulation of
virulence factors (Sperandio et al., 1999; Marouni and Sela,
2003).

Our current study elucidates the effect of cysteine on the global
gene expression of S. pneumoniae and characterizes the role of
the transcriptional regulator CmbR in regulation of spd-0150,
metEF, gshT, spd-0618, tcyB, metA, and yvdE. The transcriptional
regulator CmbR acts as a transcriptional repressor for a number
of genes/operons involved in cysteine uptake and utilization. The
putative operator site (5′-GYGATAAAAAWWAYTTATMAC-3′
where Y = T/C, W = A/T and M = A/C) of CmbR in the
promoter regions of spd-0150, metEF, gshT, spd-0618, tcyB,
metA, and yvdE is predicted and confirmed by promoter
mutational/deletion experiments. Moreover, this site is
found highly conserved in other pneumococcal strains and
streptococci.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
Bacterial strains and plasmids used in this study are listed in
Table 1. S. pneumoniae D39 was grown as described previously
(Kloosterman et al., 2006a; Afzal et al., 2014). For β-galactosidase
assays, derivatives of S. pneumoniae D39 were grown in a
chemically defined medium (CDM) (Kloosterman and Kuipers,
2011) supplemented either with 0.03 or 50 mM cysteine. CDM
was prepared without cysteine. For selection on antibiotics, the
medium was supplemented with the following concentrations
of antibiotics: tetracycline: 2.5 µg/ml for S. pneumoniae;
ampicillin: 100 µg/ml for Escherichia coli and erythromycin:

0.25 µg/ml for S. pneumoniae and 120 µg/ml for E. coli.
All bacterial strains used in this study were stored in 10%
(v/v) glycerol at −80◦C. For PCR amplification, chromosomal
DNA of S. pneumoniae D39 (Lanie et al., 2007) was used
as a template. Primers used in this study are based on the
sequence of the S. pneumoniae D39 genome and are listed in
Table 2.

Construction of a cmbR Mutant
A markerless cmbR mutant (MA1000) was constructed in
S. pneumoniae D39 using pORI280, as described before
(Kloosterman et al., 2006a). Primer pairs cmbR-1/cmbR-2 and
cmbR-3/cmbR-4 were used to generate PCR fragments of the
left and right flanking regions of cmbR. The integrity of the
cmbRmutant (MA1000) was further confirmed by PCR and DNA
sequencing.

Construction of Promoter lacZ-Fusions
and β-Galactosidase Assays
Chromosomal transcriptional lacZ-fusions to the spd-0150, metE,
gshT, spd-0618, tcyB, metA, and yvdE promoters were constructed
in our previous study (Afzal et al., 2016). These constructs
were further introduced into the D39 1cmbR (MA1000) strain
resulting in strains MA1002-06, respectively. Transcriptional
lacZ-fusion to the yvdE promoter was constructed in pPP2
(Halfmann et al., 2007) with primer pairs mentioned in Table 2
resulting in pMA1001. This construct was further introduced
into the D39 wild-type and the D39 1cmbR (MA1000) strains
resulting in strains MA1001 and MA1007, respectively. The
following sub-clones of Pspd-0150, PmetE, Pspd-0618, and PmetA
were made in pPP2 (Halfmann et al., 2007) using the primer
pairs mentioned in Table 2: Pspd-0150-M (mutation in the cmbR
site), PmetE-M (mutation in the cmbR site), Pspd-0618R1-M
(mutation in the cmbR site 1), Pspd-0618R2-M (mutation in
the cmbR site 2), and PmetA-TER (termination of the cmbR
site), resulting in plasmids pMA1002-06, respectively. These
constructs were introduced into the S. pneumoniae D39 wild-
type, resulting in strains MA1008-12, respectively. All plasmid
constructs were checked for the presence of the insert by PCR
and DNA sequencing.

β-galactosidase assays were performed as described before
(Israelsen et al., 1995; Halfmann et al., 2007) using cells that
were harvested in the mid-exponential growth phase, and
grown in CDM supplemented either with 0.03 or 50 mM
cysteine.

Microarray Analysis
Microarray analysis was performed as described before (Afzal
et al., 2015a; Shafeeq et al., 2015). For DNA microarray
analysis of S. pneumoniae in the presence of cysteine, the
transcriptomes of S. pneumoniae D39 wild-type, grown in
replicates in CDM with 0.03 mM cysteine, was compared to
that grown in CDM with 50 mM cysteine and harvested at
respective mid-exponential growth phases. For the identification
of differentially expressed genes, a Bayesian p-value of <0.001
and a fold-change cut-off >1.5 was applied. RNA isolation
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TABLE 1 | List of strains and plasmids used in this study.

Strain/
plasmid

Description Source

S. pneumoniae

D39 Serotype 2 strain. 2 Laboratory of P. Hermans.

MA1000 D39 1cmbR This study

MA1101 D39 1bgaA:: Pspd-0150-lacZ; TetR Afzal et al., 2016

MA1104 D39 1bgaA:: PmetE-lacZ; TetR Afzal et al., 2016

MA1105 D39 1bgaA:: PgshT-lacZ; TetR Afzal et al., 2016

MA1106 D39 1bgaA:: Pspd-0618-lacZ; TetR Afzal et al., 2016

MA1109 D39 1bgaA:: PtcyB-lacZ; TetR Afzal et al., 2016

MA1110 D39 1bgaA:: PmetA-lacZ; TetR Afzal et al., 2016

MA1001 D39 1bgaA:: PyvdE-lacZ; TetR This study

MA1002 MA1000 1bgaA:: Pspd-0150-lacZ; TetR This study

MA1114 MA1000 1bgaA:: PmetE-lacZ; TetR This study

MA1003 MA1000 1bgaA:: PgshT-lacZ; TetR This study

MA1004 MA1000 1bgaA:: Pspd-0618-lacZ; TetR This study

MA1005 MA1000 1bgaA:: PtcyB-lacZ; TetR This study

MA1006 MA1000 1bgaA:: PmetA-lacZ; TetR This study

MA1007 MA1000 1bgaA:: PyvdE-lacZ; TetR This study

MA1008 D39 1bgaA:: Pspd-0150-M-lacZ; TetR This study

MA1009 D39 1bgaA:: Pspd-metE-M-lacZ; TetR This study

MA1010 D39 1bgaA:: Pspd-0618R1-M-lacZ; TetR This study

MA1011 D39 1bgaA:: Pspd-0618R2-M-lacZ; TetR This study

MA1012 D39 1bgaA:: PmetA-TER-lacZ; TetR This study

E. coli

EC1000 KmR; MC1000 derivative carrying a single copy of the pWV1 repA gene in glgB Laboratory collection

Plasmids

pPP2 AmpR TetR; promoter-less lacZ. For replacement of bgaA with promoter lacZ fusion. Derivative of pPP1 Halfmann et al., 2007

pORI280 ErmR; ori+ repA−; deletion derivative of pWV01; constitutive lacZ expression from P32 promoter Leenhouts et al., 1998

pMA1000 pORI280 carrying cmbR deletion This study

pMA1101 pPP2 Pspd-0150-lacZ Afzal et al., 2016

pMA1104 pPP2 PmetE-lacZ Afzal et al., 2016

pMA1105 pPP2 PgshT-lacZ Afzal et al., 2016

pMA1106 pPP2 Pspd-0618-lacZ Afzal et al., 2016

pMA1109 pPP2 PtcyB-lacZ Afzal et al., 2016

pMA1110 pPP2 PmetA-lacZ Afzal et al., 2016

pMA1001 pPP2 PyvdE-lacZ This study

pMA1002 pPP2 Pspd-0150-M-lacZ This study

pMA1003 pPP2 PmetE-M-lacZ This study

pMA1004 pPP2 Pspd-0618R1-M-lacZ This study

pMA1005 pPP2 Pspd-0618R2-M-lacZ This study

pMA1006 pPP2 PmetA-TER-lacZ This study

was performed as described before (Afzal et al., 2015a). All
other procedures regarding the DNA microarray experiments
and data analysis were performed as previously described
(Shafeeq et al., 2011a,b; Afzal et al., 2015b). Microarray data
have been submitted to GEO under the accession number
GSE89458.

Reverse Transcription (RT)-PCR and
Purification for Quantitative RT-PCR
For quantitative RT-PCR, S. pneumoniae D39 wild-type and D39
1cmbR were grown in replicates in CDM supplemented with

either 0.03 mM or 50 mM cysteine. RNA isolation was done
as described before (Afzal et al., 2015a). First, strand cDNA
synthesis was performed on RNA (Shafeeq et al., 2011b). cDNA
(2 µl) was amplified in a 20 µl reaction volume that contained
3 pmol of each primer (Table 2) and the reactions were performed
in three technical replicates on two biological replicates of RNA
(Shafeeq et al., 2011b). The transcription level of specific genes
was normalized to gyrA transcription, amplified in parallel with
gyrA-F and gyrA-R primers. The results were interpreted using
the comparative CT method (Schmittgen and Livak, 2008).
Differences in expression of twofold or greater relative to control
were considered as significant.
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RESULTS

Cysteine-Dependent Gene Regulation in
S. pneumoniae D39
Cysteine is one of the most important amino acids for bacteria.
It is also present in human blood plasma at concentration
of 0.03 mM (Lopez, 2013). To study the impact of cysteine
on the transcriptome of S. pneumoniae D39 wild-type, we
performed microarray comparison of S. pneumoniae D39 grown
in CDM with 0.03–50 mM cysteine. 0.03 mM concentration
was chosen, as this is the concentration of cysteine in
human blood plasma (Lopez, 2013). 50 mM concentration
of cysteine is normally used to prepare CDM. A number
of genes/gene clusters were differentially regulated under our
tested conditions (Table 3). The expression of spd-0447-49 and
spd-1098-99 was altered under our tested conditions. These
genes belong to the glutamine regulon and their expression
has been reported to be downregulated in the presence of a
nitrogen source (Kloosterman et al., 2006b). The expression of
important metal-related genes (prtA, psaBC and spd-1402) was
downregulated under our tested conditions. These genes belong
to the PsaR regulon and repressed by transcriptional regulator
PsaR in the presence of manganese (Johnston et al., 2006). These
genes have been shown to have role in virulence of pneumococcus
(Kloosterman et al., 2008). Therefore, it might be interesting to
further explore the role of cysteine in the regulation of these
genes.

The expression of putative methionine/cysteine transport and
biosynthesis pathway genes (spd-0150, metQ, spd-0431, metEF,
gshT, spd-0618, fhs, tcyB, metB-csd, metA, spd-1898, yvdE, and
cysK) was significantly upregulated in the presence of 0.03 mM
cysteine. The role of methionine in regulation of these genes
has been demonstrated in our recent study (Afzal et al., 2016).
Furthermore, we showed that a transcriptional regulator CmhR
acts as a transcriptional activator of fhs, folD, metB, metEF, metQ,
and spd-0431. However, regulatory mechanism of spd-0150, gshT,
spd-0618, tcyB, metA, spd-1898, yvdE, and cysK is not explored.
Therefore, we decided to further explore the role of cysteine in
the regulation of these genes.

Confirmation of Cysteine-Dependent
Expression of spd-0150, metQ, spd-0431,
metEF, gshT, spd-0618, fhs, tcyB,
metB-csd, metA, spd-1898, yvdE, and
cysK
To confirm our microarray results and to study the expression
of spd-0150, metQ, spd-0431, metEF, gshT, spd-0618, fhs, tcyB,
metB-csd, metA, spd-1898, yvdE, and cysK under limiting cysteine
concentration in CDM, we performed quantitative RT-PCR on
these genes. Our quantitative RT-PCR results demonstrated that
the expression of these genes was increased significantly in CDM
with 0.03 mM cysteine, when compared to 50 mM (Figure 1).
These data not only confirms our microarray results mentioned
above, but also suggests a direct role of these genes in cysteine
transport and biosynthesis.

There are three LysR-type transcriptional regulators in
different bacteria, which have been shown to be involved in
the regulation of sulfur amino acids (Sperandio et al., 2005,
2010). S. pneumoniae also has two LysR-type transcriptional
regulators (CmhR and CmbR), which are proposed to be involved
in the regulation of the sulfur amino acids (Novichkov et al.,
2010). Our recent study has revealed the regulatory mechanism
of CmhR in S. pneumoniae and demonstrates that CmhR
acts as a transcriptional activator of the fhs, folD, metB-csd,
metEF, metQ, and spd-0431 in the presence of methionine
(Afzal et al., 2016). The presence of CmbR (putative Cysteine
Methionine Biosynthesis Regulator) in S. pneumoniae suggests
its involvement in the regulation of cysteine-responsive genes.
Therefore, we decided to further study the role of transcriptional
regulator CmbR in the regulation of cysteine transport and
biosynthesis genes.

Prediction of the CmbR Regulatory Site
and the Role of CmbR as a
Transcriptional Repressor of spd-0150,
metEF, gshT, spd-0618, tcyB, metA, and
yvdE
The presence of cmbR in the S. pneumoniae genome suggests its
involvement in the regulation of cysteine-responsive genes. cmbR
codes for the putative transcriptional regulator CmbR, which
belongs to the LysR family of proteins. CmbR is a homolog of
a LysR-type regulator (also called FhuR) of Lactococcus lactis
and Streptococcus mutans (Fernández et al., 2002; Sperandio
et al., 2005, 2010). To study the role of CmbR in S. pneumoniae
D39, we analysed the promoter regions of cysteine-regulated
genes and predicted a 21-bp palindromic-like sequence (that
has high homology with the FhuR binding site of L. lactis
and S. mutans) in the promoter regions of spd-0150, metEF,
gshT, spd-0618, tcyB, metA, and yvdE indicating that CmbR
regulon in S. pneumoniae D39 is comprised of these genes.
This DNA sequence might serve as the CmbR operator site
in S. pneumoniae. The CmbR site present in the promoter
regions of spd-0150, metEF, gshT, spd-0618, tcyB, metA, and
yvdE is shown in Figure 2A. A weight matrix of these CmbR
sites (5′-GYGATAAAAAWWAYTTATMAC-3′) was constructed
(Figure 2B). Promoter regions of these genes were also
examined in other streptococcal species (Streptococcus mitis,
Streptococcus agalactiae, Streptococcus gallolyticus, Streptococcus
gordonii, S. mutans, Streptococcus sanguinis, Streptococcus suis,
and Streptococcus thermophilus) to check whether the CmbR site
is also conserved in those streptococci. The CmbR site is highly
conserved in these streptococci as well. Moreover, we constructed
a phylogenetic tree of CmbR present in different streptococci,
which shows that it is highly conserved in these streptococci
(Figure 3).

To investigate the role of CmbR in the regulation of
spd-0150, metEF, gshT, spd-0618, tcyB, metA, and yvdE, we
performed β-galactosidase assays with the promoter lacZ-fusions
that were constructed in the S. pneumoniae D39 wild-type
and D39 1cmhR in CDM with 50 mM cysteine. We used
CDM with 50 mM cysteine, because we assumed the role
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TABLE 2 | List of primers used in this study.

Name Nucleotide Sequence (5′-3′) Restriction site

spd-0150-M-F CATGGAATTCGGTCTTTTAAATTACCCGCGAAAAAAACTTATCA EcoRI

spd-0150-R CATGGGATCCGGCAGCAAGAGATGAGTAT BamHI

metE-M-F CATGGAATTCATCAGTTATAGTCTTTTCTAATAACAAGCCATAGTCACTTGCAAGAATTACTAGCAACGC EcoRI

metE-R CATGGGATCCGTTGACATGATGTGTCCTCC BamHI

spd-0618-M-R1-F CATGGAATTCATGTCTATGGCCAAAAATCCTGCGAAC EcoRI

spd-0618-M-R2-F CATGGAATTCATGTCTATGGTAAAAAATCCTTATAACGGCAGCGAAAAATAGAGCGTAT EcoRI

spd-0618-R CATGGGATCCGTTCAACAATGGACCAATCC BamHI

metA-CmbR-TER CATGGAATTCGTTAGAGAAAAACTATAATTGAA EcoRI

metA-CmbR-TER CATGGAATTCGTTAGAGAAAAACTATAATTGAAAATTGTGTCT EcoRI

metA-R CATGGGATCCGCACGTTGATCATCCATGAC BamHI

yvdE-F CATGGAATTCGTCATTGAACGTGGTAACC EcoRI

yvdE-R CATGGGATCCCATAGATTTGCAGCAACTCC BamHI

CmbR-1 TGCTCTAGACATTTATGCTAGTGGAGG XbaI

CmbR-2 CCACTATTGGCAATAGCC –

CmbR-3 CTATTGCCAATAGTGGCTCTTCGTAGAAGTCATGC –

CmbR-4 GAAGATCTCCGTCAGATAGCTATCTGCC BglII

RT-PCR primers

gyrA-F CGAGGCACGTATGAGCAAGA –

gyrA-R GACCAAGGGTTCCCGTTCAT –

spd-0150-1 GCGGCTTGCTCAGGGGG –

spd-0150-2 CCAGCAAAGACACCTGACC –

metQ-1 GCTACAGTCGCAGGTTTGGC –

metQ-2 CTTCGCCATCAGCAGTTGC –

spd-0431-1 GGTCTGGTTGATGGTGCGG –

spd-0431-2 CCAGTAATCCACCGTCTG –

metE-1 GGCATCACTGAAATCCC –

metE-2 GGTAACCACGTCCCAAAGCG –

metF-1 CCGTCACTCTCATTTGAAG –

metF-2 GGCAAGTGGGCAATGGTCG –

gshT-1 CGTGCCACCATTTGACTACG –

gshT-2 GCAGCCTGATAGTGACC –

spd-0618-1 CGTTAGTATCATCCGAC –

spd-0618-2 GATTCTGCCATATAGGAG –

fhs-1 CAGATATTGAAATCGCACAG –

fhs-2 GCCTTGTACTTTCCGTAC –

Csd-1 CGTTTAGGGCACCATACC –

Csd-2 GTCTTCACTGGCATAGG –

metB-1 GTCAGATGAAGCGACAGG –

metB-2 GCCAAGACTTCCTCAGCC –

metA-1 GGCTAATACACCCCTACA –

metA-2 CCTCAAATGGTAAATGCTC –

spd-1898-1 GGAACATCTGGTCGTTC –

spd-1898-2 CTATCATAACGCTTACC –

yvdE-1 GGCTAGAACGGTTGTAGG –

yvdE-2 CTGACTCATCACCAACAGG –

cysK-1 CATCGTGCCAGAAGGTGC –

cysK-2 CCTTTAGCAGCACCTACC –

of CmbR as a transcriptional repressor of these genes in
the presence of cysteine. The results of the β-galactosidase
assays showed that the activity of Pspd-0150-lacZ, PmetE-
lacZ, PgshT-lacZ, Pspd-0618-lacZ, PtcyB-lacZ, PmetA-lacZ,
and PyvdE-lacZ increased significantly in D39 1cmbR

compared to D39 wild-type in CDM with 50 mM cysteine
(Figure 4). Increased expression of these promoters in D39
1cmbR indicates the role of CmbR as a transcriptional
repressor of spd-0150, metEF, gshT, spd-0618, tcyB, metA, and
yvdE.
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TABLE 3 | Summary of transcriptome comparison of S. pneumoniae D39 wild-type grown in CDM with 0.03 mM cysteine to grown in CDM with 50 mM
cysteine.

D39 taga Functionb Ratioc

Upregulated genes

spd_0145 Hypothetical protein 2.8

spd_0146 CAAX amino terminal protease family protein 2.2

spd_0147 CAAX amino terminal protease family protein 2.6

spd_0148 Transporter, major facilitator family protein 1.8

spd_0150 ABC transporter, substrate-binding protein 7.2

spd_0151 Lipoprotein, MetQ 4.5

spd_0152 Peptidase, M20/M25/M40 family protein 2.0

spd_0153 ABC transporter, ATP-binding protein 2.0

spd_0154 ABC transporter, permease protein, putative 1.6

spd_0373 Hypothetical protein 3.2

spd_0431 Hypothetical protein 1.5

spd_0510 5-methyltetrahydropteroyltriglutamate–homocysteine S-methyltransferase, MetE 8.3

spd_0511 5,10-methylenetetrahydrofolate reductase, MetF 7.9

spd_0540 Amino acid ABC transporter, amino acid-binding protein, putative, GshT 4.8

spd_0615 ABC transporter substrate-binding protein, authentic truncation 3.2

spd_0616 Amino acid ABC transporter, ATP-binding protein 1.9

spd_0617 Amino acid ABC transporter, permease protein 2.0

spd_0618 Amino acid ABC transporter, permease protein 1.6

spd_1073 O-acetylhomoserine aminocarboxypropyltransferase/cysteine synthase 1.6

spd_1074 Hypothetical protein 1.5

spd_1290 Cystine ABC transporter, permease protein, TcyB 1.5

spd_1352 Aminotransferase, class II, Csd 2.3

spd_1353 Cys/Met metabolism PLP-dependent enzyme, putative, MetB 1.6

spd_1406 Homoserine O-succinyltransferase, MetA 1.7

spd_1898 Hypothetical protein 4.5

spd_1899 Glutamine amidotransferase, class 1, YvdE 6.9

spd_2037 Cysteine synthase A, CysK 3.7

Downregulated genes

spd_0447 Transcriptional regulator, GlnR −2.1

spd_0448 Glutamine synthetase, GlnA −2.7

spd_0449 Hypothetical protein −1.5

spd_0558 Cell wall-associated serine protease, PrtA −4.4

spd_1098 Amino acid ABC transporter, GlnP −1.9

spd_1099 Amino acid ABC transporter, GlnQ −2.0

spd_1402 Non-heme iron-containing ferritin −2.6

spd_1461 Manganese ABC transporter, ATP-binding protein, PsaB −4.0

spd_1462 Manganese ABC transporter, permease protein, putative, PsaC −4.0

spd_1463 ABC transporter, substrate binding lipoprotein −4.0

aGene numbers refer to D39 locus tags. bD39 annotation/TIGR4 annotation (Lanie et al., 2007), cRatio represents the fold increase/decrease in the expression of genes
in CDM with 0.03 mM cysteine to CDM with 50 mM cysteine. Errors in the ratios never exceeded 10% of the given values.

Confirmation of CmbR-Dependent
Expression of spd-0150, metEF, gshT,
spd-0618, tcyB, metA, and yvdE
To further confirm the role of CmbR as a transcriptional
repressor of spd-0150, metEF, gshT, spd-0618, tcyB, metA,
and yvdE, we performed quantitative RT-PCR on these
genes in the presence of 50mM cysteine. Our quantitative
RT-PCR results demonstrated that the expression of spd-
0150, metEF, gshT, spd-0618, tcyB, metA, and yvdE increased
significantly in D39 1cmbR compared to the D39 wild-type
(Figure 5). These data provide further confirmation of

our results that CmbR acts as a transcriptional repressor
of spd-0150, metEF, gshT, spd-0618, tcyBC, metA, and
yvdE.

Confirmation of a CmbR Operator Site in
CmbR-Regulated Genes
To verify the functionality of the predicted CmbR operator
site present in the promoter regions of the CmbR regulated
genes (spd-0150, metEF, gshT, spd-0618, tcyBC, metA,
and yvdE), we made transcriptional lacZ-fusions of Pspd-
0150, PmetE, Pspd-0618, and PmetA, where conserved
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FIGURE 1 | The relative increase in the expression of spd-0150, metQ,
spd-0431, metEF, gshT, spd-0618, fhs, tcyB, metB-csd, metA,
spd-1898, yvdE, and cysK in S. pneumoniae D39 wild-type grown in
CDM with 0.03 mM cysteine compared to that grown in CDM with
50 mM cysteine. The expression of these genes was normalized with
housekeeping gene gyrA.

bases in the cmbR sites were mutated in Pspd-0150 (5′-
CCCATAAAAAAAACTTATCAC-3′ to 5′-CCCGCGAAAAA
AACTTATCAC-3′), PmetE (5′-CTTATAAGAATTACTA
ATAAC-3′ to 5′-CTTGCAAGAATTACTAGCAAC-3′), Pspd-
0618 (R1: 5′-ATGGTAAAAAATCCTTATAAC-3′ to 5′-ATGG

CCAAAAATCCTGCGAAC-3′ and R2: 5′-GCAATAAAAAA
TAGATATTAT-3′ to 5′-GCAGCGAAAAATAGAGCGTAT-
3′), and terminated in PmetA (CmbR site is deleted), and
β-galactosidase assays were performed on cells grown in CDM
with 50 mM cysteine. β-galactosidase assays data revealed that
mutating the CmbR operator site in Pspd-0150 and PmetE, and
deletion of the CmbR operator site in PmetA led to significantly
increased expression of these promoter lacZ-fusions in the
presence of 50 mM cysteine (Figure 6). These data confirm that
the predicted CmbR sites present in the promoter regions of
these genes are functional and intact in S. pneumoniae D39. Two
putative operator sites of CmbR are present in Pspd-0618 (R1
and R2). We mutated both sites individually. We could only
observe derepression (caused by CmbR) of Pspd-0618 when
operator site 1 (R1) was mutated and did not witness any change
in the activity of Pspd-0618 due to mutations in operator site 2
(R2). This suggests that only operator site 1 (R1) is a functional
operator site for CmbR in Pspd-0618.

DISCUSSION

The sulfur-containing amino acids cysteine and methionine play
essential role in various metabolic processes in the cell, especially
because of their sulfur group, which plays a vital role in the
catalytic sites of many enzymes and participates in ion- and
redox metabolism (Ayala-Castro et al., 2008). Involvement of

FIGURE 2 | Identification of the CmbR operator site. (A) Weight matrix of the identified CmbR operator site in the promoter region of spd-0150, metEF, gshT,
spd-0618, tcyB, metA, and yvdE. (B) Position of the CmbR operator site in the promoter region of spd-0150, metEF, gshT, spd-0618, tcyB, metA, and yvdE.
Translational start sites are italic and putative CmbR operator sites are bold and underlined.
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FIGURE 3 | A phylogenetic tree of CmbR in different streptococci showing conservation of CmbR in these streptococci.

FIGURE 4 | Expression levels (in Miller units) of Pspd-0150-lacZ,
PmetE-lacZ, PgshT-lacZ, Pspd-0618-lacZ, PtcyB-lacZ, PmetA-lacZ,
and PyvdE-lacZ in CDM with 50 mM cysteine in S. pneumoniae D39
wild-type and D39 1cmbR.

multiple mechanisms in the regulation of these pathways in
various groups of bacteria makes the regulatory phenomenon
even more interesting, as it seems to evolve faster than that
of many other regulatory pathways (Fernández et al., 2002;
Sperandio et al., 2005, 2010). CmbR regulates most of the cysteine
and methionine genes in L. lactis, where it binds to a 13-bp box
centered 46–53 bp upstream of transcriptional start sites, with a
second box with a same consensus sequence is located upstream
of the first binding box (separated by 8–10 bp) (Fernández et al.,
2002; Golic et al., 2005; Sperandio et al., 2005). In other members
of the closely related Streptococcaceae family, the existence of

FIGURE 5 | The relative increase in the expression of spd-0150, metEF,
gshT, spd-0618, tcyB, metA, and yvdE in S. pneumoniae D39 1cmbR
compared to D39 wild-type grown in CDM with 50 mM cysteine. The
expression of these genes was normalized with that of housekeeping gene
gyrA.

a different motif upstream of several potential cysteine genes
(Kovaleva and Gelfand, 2007) suggests that the regulation of
sulfur amino acid metabolism may be diverse. In this study, we
studied the cysteine-dependent gene expression and the role of
CmbR in S. pneumoniae D39, and demonstrated that CmbR acts
as a transcriptional repressor of spd-0150, metEF, gshT, spd-0618,
tcyB, metA, and yvdE.

The number of transcriptional factors regulating
cysteine/methionine genes varies among different bacteria.
This number is three in S. mutans (MetR, CysR and HomR),
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FIGURE 6 | Expression levels (in Miller units) of mutated/terminated
and non-mutated CmbR sites in Pspd-0150-lacZ, PmetEF-lacZ,
Pspd-0618-lacZ, and PmetA-TER-lacZ in S. pneumoniae D39 wild-type
grown in CDM with 50 mM cysteine.

where these transcriptional regulators are phylogenetically
related (Sperandio et al., 2010). CysR activates the transcription
of cysK (codes for the cysteine biosynthesis enzyme), tcyABC,
gshT (code for the cysteine and glutathione transporter systems),
and homR. HomR is needed for the activation of metBC (code
for the methionine biosynthesis enzymes), tcyDEFGH (involved
in cysteine transport) and thiosulfate metabolism genes. Control
of HomR by CysR emulates a cascade regulation for sulfur
amino acid metabolism in S. mutans. Similarly, MtaR has been
found to have a role in the regulation of the cysteine/methionine
metabolism in S. agalactiae (Shelver et al., 2003). MetJ and
MetR, regulate the expression of methionine biosynthetic genes
in E. coli and S. enterica serovar Typhimurium (Weissbach
and Brot, 1991). The E. coli met genes (except for metH)
are negatively regulated by MetJ, a transcriptional repressor,
with SAM (S-adenosylmethionine) serving as a co-repressor
(Saint-Girons et al., 1988). These genes are also under the
positive influence of a LysR-type transcriptional regulator
MetR, with homocysteine as a co-effector (Cai et al., 1989;
Mares et al., 1992; Cowan et al., 1993). CmbR in L. lactis also
activates most genes involved in the methionine and cysteine
biosynthesis pathway in the absence of cysteine (Sperandio
et al., 2005). The regulatory proteins mentioned above belong
to LysR family of transcription factors, which is the most
abundant family of regulators in bacteria (Maddocks and
Oyston, 2008). These regulators control diverse biological
pathways such as central metabolism, cell division, quorum
sensing, virulence, motility, nitrogen fixation, oxidative stress
responses, toxin production, attachment, and secretion. These
transcriptional regulators act as either activators or repressors,
and often are transcribed divergently with one of the regulated
genes (Schell, 1993). LysR-family transcriptional regulators
consist of two characteristic domains, an N-terminal HTH
DNA binding domain (PF00126) and a C-terminal substrate
binding domain (PF03466). There are two transcriptional
regulators in S. pneumoniae that control the expression

of the cysteine and methionine genes (CmhR and CmbR)
(Novichkov et al., 2010). CmhR in S. pneumoniae belongs to
the LysR family of transcriptional factors and has an HTH
(helix-turn-helix) domain and a substrate binding domain
of LysR-type transcriptional regulators (LTTRs). CmhR acts
as a transcriptional activator of the fhs, folD, metB, metEF,
metQ, and spd-0431 genes and a 17-bp palindromic sequence
(5′-TATAGTTTSAAACTATA-3′) is present in the promoter
regions of CmhR-regulated genes in S. pneumoniae D39 (Afzal
et al., 2016). There are two methionine transport systems
[the methionine ABC uptake transporter (MUT)] (Merlin
et al., 2002; Hullo et al., 2004) and a secondary transporter
BcaP (den Hengst et al., 2006) in bacteria. metD codes for
the MUT system in E. coli and also have the MetQ substrate
binding protein (SBP), MetL trans-membrane permease and the
MetN cytoplasmic ATP hydrolyzing protein (ATPase) (Merlin
et al., 2002). The spd-0150–54 locus codes for a methionine
uptake ABC transporter in S. pneumoniae D39 and deletion
of the gene encoding the lipoprotein MetQ resulted in a
strain that had hampered growth in methionine-restricted
medium and no measurable uptake of radioactive methionine
(Basavanna et al., 2013). Furthermore, deletion of locus encoding
MetEF (which is also part of the CmhR regulon) resulted
in an increase in the growth defect of the metQ deletion
strain in methionine-restricted medium and in blood plasma,
reinforcing a role for the products of these genes in methionine
synthesis (Basavanna et al., 2013). CmhR-regulated genes
have important roles in the transport and biosynthesis of
methionine. Csd and MetE are part of methionine synthesis
pathway as Csd coverts cystathionine into homocysteine and
MetE converts homocysteine into methionine (Kanehisa et al.,
2014). Cystathionine and homocysteine can also be formed
from homoserine, where O-acetyl-L-homoserine is converted
into cystathionine by MetB. O-acetyl-L-homoserine can
also be converted into homocysteine by MetB and SPD-
1073-74 (spd-1073-1074 encode an O-acetylhomoserine
aminocarboxypropyltransferase/cysteine synthase and a
hypothetical protein, respectively) (Kanehisa et al., 2014).
Methionine can also be synthesized by other microbes as they
may convert homoserine to homocysteine through addition of
a sulfur group from either cysteine (involving MetABC), sulfide
(involving MetA and CysD) or by using the SAM recycling
pathway (MetK, Pfs and LuxS) (Kovaleva and Gelfand, 2007).
MetE (methionine synthase) then methylates homocysteine in
combination with MetF (methylenetetrahydrofolate reductase)
and 5-methyltetrahydrofolate (FolD) provides it with the methyl
group to form methionine (Ravanel et al., 1998; Kovaleva and
Gelfand, 2007).

CmbR is the second one and acts as transcriptional repressor
for spd-0150, metEF, gshT, spd-0618, tcyB, metA, and yvdE. The
deletion of CmbR led to a significant increase in the activity of
the CmbR-regulated promoters. Thus, it represents a different
mode of regulation of the cysteine/methionine genes than in
other related streptococci.

A number of metal-related genes are found to be differentially
expressed in our tested conditions. These genes include psaBC
and prtA, which belong to the PsaR regulon. psaBCA encode a
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Mn2+-dependent ABC transporter PsaBCA and prtA codes
for a serine protease PrtA. The expression of these genes was
also altered in our recent transcriptome of S. pneumoniae
D39 grown in CDM with 0–10 mM methionine (Afzal et al.,
2016). The DtxR-family transcriptional regulator PsaR represses
the expression of the PsaR regulon in the presence of Mn2+

(Johnston et al., 2006). Zn2+, Ni2+ and Co2+ have been
demonstrated to bind with PsaR and relieve the Mn2+-dependent
repression of the PsaR regulon (Kloosterman et al., 2008;
Manzoor et al., 2015a,b). The interplay or competition of metal
ions plays a significant role in the regulation of metal-responsive
genes. Competition of Mn2+ with Zn2+, Co2+, or Ni2+ in
the regulation of the PsaR regulon by transcriptional regulator
PsaR has already extensively been studied in S. pneumoniae
(Kloosterman et al., 2008; Manzoor et al., 2015a,b). The
significant changes in the expression of some of these metal-
responsive genes in our study indicate the involvement of

S-containing amino acids in this interplay as well, in an as yet
unknown way.
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