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An Universal Stress Protein (USP) expressed under acid stress condition by Listeria

innocua ATCC 33090 was investigated. The USP was up-regulated not only in the

stationary phase but also during the exponential growth phase. The three dimensional

(3D) structure of USP was predicted using a combined proteomic and bioinformatics

approach. Phylogenetic analysis showed that the USP from Listeria detected in our study

was distant from the USPs of other bacteria (such as Pseudomonas spp., Escherichia

coli, Salmonella spp.) and clustered in a separate and heterogeneous class including

several USPs from Listeria spp. and Lactobacillus spp. An important information on

the studied USP was obtained from the 3D-structure established through the homology

modeling procedure. In detail, the Model_USP-691 suggested that the investigated USP

had a homo-tetrameric quaternary structure. Each monomer presented an architecture

analogous to the Rossmann-like α/β-fold with five parallel β-strands, and four α-helices.

The analysis of monomer-monomer interfaces and quality of the structure alignments

confirmed the model reliability. In fact, the structurally and sequentially conserved

hydrophobic residues of the -strand 5 (in particular the residues V146 and V148β )

were involved in the inter-chains contact. Moreover, the highly conserved residues I139

and H141 in the region α4 were involved in the dimer association and functioned as

hot spots into monomer–monomer interface assembly. The hypothetical assembly of

dimers was also supported by the large interface area and by the negative value of

solvation free energy gain upon interface interaction. Finally, the structurally conserved

ATP-binding motif G-2X-G-9X-G(S/T-N) suggested for a putative role of ATP in stabilizing

the tetrameric assembly of the USP. Therefore, the results obtained from a multiple

approach, consisting in the application of kinetic, proteomic, phylogenetic and modeling

analyses, suggest that Listeria USP could be considered a new type of ATP-binding USP

involved in the response to acid stress condition during the exponential growth phase.

Keywords: universal stress protein, acid stress, Listeria, exponential growth phase, homology modeling, 2-D
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INTRODUCTION

Listeria innocua is regarded as a non-pathogenic indicator
for the presence of Listeria monocytogenes in foods (Rosimin
et al., 2016). Numerous ecological and genomic comparative
studies highlighted a high similarity between the two species
(Glaser et al., 2001; Girardin et al., 2005; den Bakker et al.,
2010). Similarly to L. innocua, pathogenic L. monocytogenes
is frequently found in various foodstuffs (Kovacevic et al.,
2012; Jami et al., 2014; Ebner et al., 2015; Melo et al., 2015),
especially those characterized by pH values higher than 4.4
(CAC, 2009). In the food industry a number of strategies are
used to inhibit the growth of undesirable microorganisms, like
technological processing (Tremonte et al., 2014), addition of
natural substances (Tipaldi et al., 2011; Tremonte et al., 2016),
protective microbial cultures (Sorrentino et al., 2013) as well
as organic acids (Davidson et al., 2013). Unfortunately, in the
case of several food types, sub-lethal pH values may induce
resistance mechanisms to acid stress, which make the cells
more resistant to severe acid conditions (Gandhi and Chikindas,
2007).

Acid stress response in L. monocytogenes has been the subject
of several investigations, which documented the induction of a
number of molecular mechanisms involving the F1F0-ATPase
complex, the arginine deaminase (ADI) and the glutamate
decarboxylase (GAD) pathways (Cotter et al., 2001; Ryan et al.,
2009; Karatzas et al., 2012). On the other hand, little information
is available on the role of Universal Stress Proteins (USPs) in
the stress response of Listeria spp., although the expression of
USPs was already studied in numerous other microorganisms
(Tkaczuk et al., 2013).

USPs are cytoplasmic proteins found in Bacteria and Archea,
as well as in fungi and plants. Their production is stimulated by
several types of environmental stress or by specific physiological
cell conditions (Kvint et al., 2003). Recently, a genomic approach
demonstrated the involvement of usp encoding genes in the
survival of L. monocytogenes in acid or oxidative stress conditions
(Seifart Gomes et al., 2011), but the key role of USPs into
cellular mechanisms remains generally unclear. To understand
the molecular basis of possible USPs functions, the knowledge
of their three-dimensional (3D) structures is essential. Amongst
the ca. 110,000 structure deposited in the Protein Databank
(PDB) only a few USPs structures have been determined so far.
Indeed, the 3D-structures for USPs of Listeria are not available
as of today. This gap may be filled by bioinformatics approaches
such as homology modeling, on the condition that the sequence
identity with known related structures is above 30% (Marti-
Renom et al., 2000). Homology or “comparative” modeling, use
an experimentally determined structure of a related protein as
a template to model the structure of a target protein, and is
the method of choice in the case of close sequence relationship
(Petry and Honing, 2005). This approach is based on the
observation that evolutionary and functionally related proteins
generally share similar 3D structures. In this work, we used
complementary proteomic and bioinformatics approaches in
order to characterize USP proteins up-regulated in L. innocua
ATCC 33090 under acid stress conditions and to predict in silico

their 3D structure by referring to available template homologs
in PDB.

MATERIALS AND METHODS

Bacterial Strain and Growth Condition
L. innocua ATCC 33090, obtained from the Leibniz Institute
DSMZ-German Collection of Microorganisms and Cell cultures,
was revitalized in BrainHeart Infusion broth (BHI; Oxoid,Milan,
Italy) at 37◦C and then stored in cryovials (Pro-Lab Diagnostics,
Richmond Hill, Canada) at −80◦C. Prior to use, cells were
propagated twice in the samemedium and incubation conditions,
and collected in the middle of exponential phase. The growth
was assessed for 30 h in 500 mL of BHI (conventional condition,
batch C) and in BHI adjusted at pH 4.5 (acid stress condition,
batch AS). Moreover, a further trial was performed using pre-
acid-adapted cells. For this purpose, cells cultured under acid
stress condition were collected in themiddle of exponential phase
and inoculated in BHI (batch pa-C) and in BHI at pH 4.5 (batch
pa-AS). In all cases an initial inoculum of about 107 CFU/mL was
used.

Plate counts were performed in BHI agar at different intervals
and the growth kinetic parameters were estimated with the D-
model of Baranyi and Roberts (1994) using the excel add-in
DMFit v.3 (Baranyi and Le Marc, 1996). Three independent
experiments were performed and the results were reported as
average.

Protein Extraction
Cells of L. innocua ATCC 33090 cultivated as described above
(batches C, AS, pa-C, and pa-AS) were collected by centrifugation
(7500 rcf at 4◦C for 15 min, Centrifuge Eppendorf, 5804R) in
the middle of the exponential phase and during the stationary
phase. Cells were washed three times with Tris-HCl (50 mM, pH
7.5), standardized at an OD600-value of 1.0 and re-suspended in
a lysis buffer (Tris-HCl 50 mM, lysozyme 2 mg/mL, mutanolysin
50 U, protease inhibitor cocktail 1X, pH 7.5). Eight glass beads
(Ø 0.4 mm) were added to each cellular suspension (140 µL),
then suspensions were vortexed (3 min), incubated for 2 h
at 37◦C, vortexed (3 min), and sonicated for 5 min with an
ultrasonic homogenizer (100 W power, 100% amplitude, 0.8
cycle; Labsonic M, Sartorius, Italy) using a probe of 0.5 mm
diameter. After centrifugation at 17,500 rcf for 30 min at 4◦C, the
pellet was discarded and the supernatant (lysis buffer), containing
the protein extract, was subjected to the Bradford-based protein
assay kit (Bradford protein assay, Bio-Rad, Italy) to determine
the protein concentration. Bovine serum albumin was used as a
standard.

Two-Dimensional Gel Electrophoresis
(2-DE)
Proteins of L. innocua ATCC 33090, cultivated as above (batches
C, AS, pa-C, and pa-AS), were collected from the lysis buffer
with methanol/chloroform according to the method described
by Wessel and Flügge (1984). Isoelectrofocusing (IEF) was
performed using precast immobilized pH gradient (IPG) 24 cm
strips with a pI 4–7 linear gradient. IPG strips were passively

Frontiers in Microbiology | www.frontiersin.org 2 December 2016 | Volume 7 | Article 1998

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Tremonte et al. New USP-Type in Listeria

rehydrated for 21 h with a buffer containing urea 8 M, CHAPS
2%, DTT 50 mM, 2% of ampholine 3/10, bromophenol blue
0.002%, and 800 µg of proteins. IEF was performed at 65,000 Vh
using the Ettan IPGphor apparatus (GE Healthcare Bio). Prior
to 2-DE, the strips were equilibrated for 25 min with 50mM
Tris-HCl, pH 8.8, urea 6M, glycerol 30% (v/v), SDS 2% (w/v),
bromophenol blue 0.002% (w/v) containing alternatively 65 mM
of dithiothreitol (DTT) or 70 mM iodoacetamide. The SDS-
PAGE separation was performed at constant current (18 mA/gel)
and temperature (15◦C) using the Ettan DALTsix Electrophoresis
System apparatus (Amersham, Bio-sciences). Gels were stained
for 2 h with the Bio-Safe colloidal Coomassie Blue G-250 (Bio-
Rad) and digitalized using a GS-800 calibrated densitometer
(Bio-Rad).

The 2-DE protein patterns were recorded as digitalized images
using the Densitometer Calibrate GS–800 (Bio-Rad, Hercules,
CA, USA). Spot detection, quantification, and analysis, were
performed using the PDQuestTM 2-D gel analysis software,
Version-8 (Bio-Rad, Hercules, CA, USA).

Protein Identification by Mass
Spectrometry
Proteins with modified expression level were identified by matrix
assisted laser desorption ionization-time of flight (MALDI-
TOF)mass spectrometry (MS)-based peptidemass fingerprinting
(PMF). Briefly, protein spots were manually excised, destained,
and digested overnight at 37◦C with 12 ng/mL proteomic grade
trypsin (Promega, Madison, WI, USA). Afterwards, peptides
were extracted in 1% formic acid/acetonitrile (1:1), vacuumdried,
and analyzed using α-cyano-4-hydroxycinnamic acid (10 mg/mL
in 50% acetonitrile/0.1 TFA) as the matrix. Mass spectra were
obtained in the reflectron positive ion mode on a MALDI-TOF
Voyager-DETM PRO mass spectrometer (Applied Biosystems)
equipped with a 337 nm N2 laser, acquiring at least 400 laser
shots from each sample. A peptide mixture (Sigma-Aldrich
Co.) was used as external standard. Proteins were identified
with the MS-Fit Protein Prospector software (website: http://
prospector.ucsf.edu), searching the Uniprot database (2015.3.5
vers.). C-carbamidomethylation was set as a fix modification,
while pyroglutamic acid at N-terminal glutamine andmethionine
oxidation were variable modifications. Up to one trypsin missed
cleavage was allowed and peptide mass tolerance was 40 ppm.
Search was taxonomically limited to microorganisms and then
refined, with taxonomical restriction to Listeria spp. Only protein
hits with at least 15 matching peptides, MOWSE score higher
than 108, and coverage higher than 25% were considered as
positive identifications. Protein identification was validated by
a software-assisted comparison of experimental and expected
Mw and pI, as inferred from the UniProtKB/Swis-Prot database
through the TagIdent tool (http://web.expasy.org/tagident/).

Target and Template Selection for USPs
Sequences Alignment
Based on the mass spectrometry results, the FASTA sequence
(160 aa) of the USP (Uniprot accession no. A0A0E1Y4Z4) from
L. monocytogenes FSL F2-208 was used as target. Homolog

sequences and the USP template sequence were searched in
the non-redundant protein sequence database (NR) and Protein
Data Bank (PDB) respectively, using the protein-protein Basic
Local Alignment Search Tool (BLASTp). The USP structure
(PDB ID: 3S3T) from Lactobacillus plantarum was chosen as
template for the model building due to its protein sequence
showing the highest alignment score (31% of identity and E-value
of 1−21). In detail, the four homolog chains A, B, C, and D of the
complete USP structure from Lb. plantarum were aligned with
the target sequence of Listeria (Figure 1). Sequence alignments
were performed with the PRALINE program server (Simossis
and Heringa, 2005) and edited with Jalview (Waterhouse et al.,
2009).

USPs Phylogenetic Analysis
The USP target from L. monocytogenes FSL F2-208 and other
54 bacterial domains of USPs previously characterized in other
studies were used in the phylogenetic analysis. For this purpose,
a multiple sequence alignment was constructed using ClustalW
algorithm with Gonnet substitution matrix, gap open penalty
of 10, and gap extension penalty of 0.2 (Thompson et al.,
1994). Phylogenetic tree calculation was performed with the
Neighbor-Joining method (Saitou and Nei, 1987) using MEGA7
software (Kumar et al., 2016). The statistical significance of
the phylogenetic tree was tested by using bootstrap analysis
(Felsenstein, 1985), with each bootstrap value reflecting the
confidence of each branch.

Model Building and Validation
Comparative homology modeling (Sali and Blundell, 1993) was
used to build a model of L. innocua USP by means of the
MODELLER software (Marti-Renom et al., 2000; Webb and
Sali, 2014) and generating 1000 models. The model with the
lower Discrete Optimized Potential Energy (DOPE) score was
submitted to a Procheck (Laskowski et al., 1993) analysis for a
preliminary investigation of the model structure stereochemical
quality. The model was thereafter refined by the use of the
KoBaMIN web server, which consist applying a protein structure
refinement protocol based on the minimization of a knowledge-
based potential of mean force (Rodrigues et al., 2012). The
final model was validated via the Procheck and QMEAN Server
(Benkert et al., 2009). The QMEAN Z-score was used in the
evaluation, providing an estimation of the absolute quality of
a model by relating it to reference structures solved by X-ray
crystallography (Benkert et al., 2011). The Root Mean Squared
Deviation (RMSD) was calculated to evaluate the similarity
between the 3D structure of the template and the model. PyMol
software was used for the RMSD calculation and to generate
model images.

Interfaces Analysis and Structure
Alignments
The interfaces were explored using the Webservers PISA
(Krissinel and Henrick, 2007) and POPSCOMP (Kleinjung
and Fraternali, 2005). Moreover, the electrostatic potential
distribution was calculated using the APBS (Adaptive Poisson-
Boltzman Solver) and PDB2PQR software packages (Baker
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FIGURE 1 | Alignment between target (Uniprot accession number A0A0E1Y4Z4—L. monocytogenes FSL F2-208) and template (four chains—A, B, C,
and D—from PDB code:3s3t—Lb. plantarum) USP sequences. Conserved residues are highlighted by the boxes.

et al., 2001; Dolinsky et al., 2004, 2007) and mapped onto a
molecular surface of protein model using the PyMol software.
Additional template structures were searched with the DALI
sever (Holm and Rosenström, 2010). The structural alignment
program MUSTANG was used to perform multiple structural
alignments (Konagurthu et al., 2006, 2010). Sequence alignments
were displayed with ESPript (Robert and Gouet, 2014).

Statistical Analysis
Statistical analysis was performed on three independent
experiments through ANOVA followed by the Tuckey’s
mulptiple comparison. For this purpose, the software GraphPad
Prism version 6.0 was used.

RESULTS

Microbial Growth of Listeria innocua in
Acid Condition
The effect of conventional (C) and acid stress (AS) conditions on
the growth kinetics of non-pre-acid-adapted cells of L. innocua
are reported in Figure 2A. The figure also highlights the kinetic
curves of pre-acid-adapted cells cultivated in conventional (pa-
C) and in acid stress (pa-AS) conditions (Figure 2B). The results
evidenced that the acid stress condition strongly affected the
kinetic parameters (Table 1) and the effect was particularly
noticeable considering themaximum specific growth rate (µmax).

In fact, the non-pre-acid-adapted cells (Figure 2A) showed a
lower growth rate when cultivated in acid condition, as evidenced
by µmax-values three-fold lower in AS (µmax of about 0.43 h−1)
than that exhibited in C (µmax of about 0.14 h−1). Moreover, non-
pre-acid-adapted cells cultured in conventional conditions (C)
reached the stationary phase (yend ≈1.99 CFU/mL) in about 12 h,
whereas in acid stress conditions (AS) the maximum population
(yend ≈5.28 CFU/mL) was reached in about 20 h (Figure 2A
and Table 1). Conversely, low or no differences were detected
between the batches pa-C and pa-AS considering all the kinetic
parameters. In this case, the µmax was about 0.42 h−1 for pa-C
condition and about 0.30 h−1 for pa-AS. Moreover, no significant
differences (p> 0.05) between pa-C and pa-AS were found in the
final microbial levels (yend, Table 1).

Protein Expression in Exponential Phase
under Acid Stress Conditions
Proteins were extracted from cells of L. innocua ATCC 33090
in the exponential growth phase and the proteome of cells
cultivated in conventional (C, pa-C) and acid stress (AS, pa-AS)
conditions was compared by 2-DE. More than 500 spots were
detected in each gel apart from the cultural conditions. The image
analysis highlighted significant differences between conventional
and acidic stress conditions. In detail, an up-regulation of
several spot proteins was detected in the proteome of cells
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FIGURE 2 | Growth curves of L. innocua ATCC 33090 cultivated in conventional (1) and in acid stress (N) conditions after non-pre-acid-adaptation (A)
or pre-acid-adaptation (B). Symbols represents the experimental data, dotted curves represents the D-model.

TABLE 1 | Growth kinetic parameters of L. innocua ATCC 33090 cultivated
in conventional and acid stress conditions after non-pre-acid-adapted or
pre-acid-adaptation.

µmax λ yin yend R2

(h−1) (h) (Log CFU/mL) (Log CFU/mL)

C 0.43 ± 0.03a 3.4 ± 0.1a,b 7.0 ± 0.1a 9.3 ± 0.1a 0.992

AS 0.14 ± 0.02b 3.7 ± 0.1b 6.9 ± 0.2a 8.7 ± 0.1b 0.994

pa-C 0.42 ± 0.02a 3.3 ± 0.1a,b 6.9 ± 0.2a 9.2 ± 0.1a,c 0.996

pa-AS 0.30 ± 0.02c 3.2 ± 0.3a 7.1 ± 0.1a 9.0 ± 0.1c 0.985

Mean± standard deviation of three independent experiments. Means in the same column

with different superscript small letters are significantly different (p < 0.05).

cultivated in acid stress conditions (AS, pa-AS). In detail, after
normalization over a number of protein spots with unmodified
expression, densitometric analysis of the spot intensity evidenced
19 differentially expressed gene products at a threshold ≥2 (p
< 0.05), which were selected for the MS-based identification
(Figure 3 and Table 2).

Four protein spots (a, b, c, and d) were highly up-
regulated, with expression ratio ranging from 3 to 8, namely
succinate-semialdehyde dehydrogenase, NADP-dependent aryl-
alcohol dehydrogenase, general stress protein (CTC), and (USP).
Using the MS-based approach, the USP was identified in the
proteome of L. innocua (Uniprot No H1GE00) but the primary
structure was identical to the USP from L. monocytogenes
(Uniprot accession number A0A0E1Y4Z4), sharing each other
100% of structural homology (Table 2).

USP Expression As a Function of Growth
Phase and Acid Conditions
A targeted 2-DE analysis was performed to investigate the
expression of the USP in L. innocua in different conditions
(Figure 4). The densitometric quantification of the protein spots
evidenced that USP expression was significantly dependent on

the growth phase, the cultivation in acidified medium and the
pre-acid-adaptation conditions. The high magnification of 2-
DE gels (Figure 4B) and the statistical analysis of spot area
(Figure 4A) highlighted that when non-pre-acid-adapted cells
were cultured in conventional conditions, the USP was up-
regulated more than four-fold in the stationary phase (C_stat)
compared to the exponential phase (C_exp). The cultivation in
acid condition significantly affected the USP expression not only
in the stationary phase (AS_stat) but also in the exponential
phase (AS_exp). In fact, when non-pre-acid-adapted cells were
cultured in acid conditions, the USP was already up-regulated in
the exponential phase (AS_exp).

Similar results were obtained for pre-acid-adpted cells
(Figures 4C,D). However, when cells were reinoculated in the
conventional conditions (pa-C_exp), a down-regulation of the
USP expression was observed during the exponential phase
compared to that revealed during the same phase in acid
condition.

A Functional Model for the USP Protein
USPs proteins are highly conserved and all deemed important
for the stress response. The FASTA sequence (160 aa) of USP
from L. monocytogenes FSL F2-208 was obtained from the
Uniprot database (Uniprot No A0A0E1Y4Z4). Similar sequences
were searched into non-redundant protein sequences database
using BLASTp. About 100 protein sequences, with 140–161
residues, showed a high sequence identity (56–100%) with a
score ranging from 181 to 314 and a E-value from 9e−55

to 6e−107. The multi-sequences alignment (Figure S1) showed
highly conserved regions especially between the residues 14 and
54 and between the residues 95 and 150. The conserved regions
contain functionally relevant residues (Nachin et al., 2008).
Moreover, phylogenetic analysis of the refined structural models
of USPs could be exploited for further important functional
information. To this purpose, a phylogenetic tree was constructed
using 55 bacterial USP domain sequences and was divided into
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FIGURE 3 | 2-DE gels of crude extract proteins of L. innocua ATCC 33090 cultivated in conventional (A) and in acid stress (B) conditions. Symbols show the

spot proteins strongly (1) or very strongly (�) up-regulated in acid stress condition.

four clusters (Figure 5). In agreement with previous results
(Nachin et al., 2008; Gury et al., 2009), UspA, UspC, and UspD
were grouped in the same cluster (cluster green); while in a

separate cluster (cluster blue) were grouped the UspE1; finally,
the UspF and UspG were grouped into a third cluster (cluster
red). Interestingly, phylogenetic analyses showed that the USPs
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TABLE 2 | Main proteins up-regulated in L. innocua ATCC 33090 cultivated in acid stress conditions.

Spot ID Mr (Da) pI Accession no. Protein name Induction ratio

a 53193 5.60 gi|489862543 Succinate-semialdehyde dehydrogenase 8.0

b 37800 5.91 H1G8Z4 NADP-dependent aryl-alcohol dehydrogenase 5.1

c 22600 4.38 Q92F64 General stress protein CTC 6.4

d 17555 5.00 A0A0E1Y4Z4 Universal stress protein 3.0

1 57300 4.70 Q929V0 60 kDa chaperonin, GroEL 2.4

2 48150 5.10 Q92BG1 Glutamate-1-semialdehyde 2,1-aminomutase 1 2.4

3 41140 5.29 Q71Z79 Acetylornithine aminotransferase 2.2

4 51080 5.29 B8DBU2 3-isopropylmalate dehydratase large subunit 2.2

5 21180 5.07 Q92AC4 Xanthine phosphoribosyltransferase 2.0

6 20330 5.17 B8DH16 Pyridoxal 5′-phosphate synthase subunit PdxT 2.0

7 21080 5.22 B8DG13 Ribosome-recycling factor 2.3

8 20300 5.27 A0AJW5 Peptide methionine sulfoxide reductase MsrA 2.7

9 20130 5.33 Q8Y7I9 S-ribosylhomocysteine lyase 2.1

10 55160 5.49 Q8Y5M1 UDP-N-acetylmuramoylalanine–D-glutamate ligase 2.8

11 34890 5.67 Q92BR0 Probable endonuclease 4 2.1

12 43510 5.75 Q8Y5N2 Quinolinate synthase A 2.8

13 39740 5.76 Q8Y4L8 Methionine import ATP-binding protein MetN 2 2.9

14 39700 5.77 P0DJL8 Alanine racemase 2.7

15 32050 5.90 C1KVV7 N-acetylmuramic acid 6-phosphate etherase 2.8

from Listeria and Lactobacillus strains do not fit into any class
described by Nachin et al. (2008) and formed, together the
USPs of Halomonas elongata, Mycobacterium tuberculosis, and
Thermus thermophilus, a distinct class that we have arbitrarily
labeled UspL (cluster cyan).

This last class, in addition to the template and target
sequences, includes also USPs from Lb. plantarum and L.
monocytogenes strains, such as USP EHS84548 USP1 and USP
Q8Y6V1_LSMO, involved in acid stress resistance.

The modeled 3D structures of the USP belonging to L.
innocua ATCC 33090 were stored as PDB output file and
the best model (Model_USP-691) with a lower DOPE score
(−0.247) was refined and used for both validation and interface
analysis. Model_USP-691 (Figure 6A) was selected as the best
to represent the quaternary structure of USPs with a homo-
tetrameric conformation. Four monomers (chain A, B, C, and D)
with an architecture similar to the Rossmann-like α/β-fold have
five parallel β-strands and four α-helices (Figure 6B).

The Model_USP-691 showed a good accuracy in both
the stereochemical properties and the absolute quality of the
structure. The main chain-conformations for 95.9% aminoacid
residues were allocated within the most favored region of
Ramachandran plot, only two residues (GLN 169B and ASN
378C) were found in disallowed regions of the plot (Figure
S2). The reliability of the selected Model_USP-691 was also
confirmed by the good distribution of normalized QMEAN
Z-score (−1.01) represented in Figure S3. Superposition of
the Cα trace of the USP model (Model_USP-691) from L.
innocua ATCC 33090 (magenta) and the template 3s3t (green)
from Lb. plantarum was, as expected, very close, and small
differences were observed in the N-terminal and C-terminal of
helix α2.

Interface Analysis and Structural
Alignments
To understand if the quaternary Model_USP-691 structure may
have relevance in explaining some of the biological observations,
the macromolecular interfaces of the predicted quaternary
structures were explored in detail. We focused on the interfaces
involved in both dimer and tetramer formation of model
structure. Results obtained with PISA and POPSCOMP showed
the presence of six interfaces (Table 3), but only four of them
were thermodynamically favored, having a negative value in
the solvation free energy gain (1G) from PISA. The interface
area in the formation of dimers between chains A and B or
C and D (Figure 7) was of about 1400 Å2 (PISA) or 1000
Å2 (POPSCOMP) involving a total of ∼25% (PISA) or ∼30%
(POPSCOMP) of residues (Table S1) belonging to β5, α1, and α4
(Figure 6B). The tetrameric contacts between chains A and C or
between B and D (Figure 7) covered an interface area of about
1000 Å2 (PISA) or 800 Å2 (POPSCOMP) including the 20%
(PISA) or 22% (POPSCOMP) of residues (Table S1) dislocates in
the regions α2, α3 and α4, and β2 (Figure 6B).

Figure 8 shows the surface charge density and electrostatic
potential distribution at the interface between chains A and
B (Figure 8A), C and D (Figure 8B), C and A (Figure 8C),
and between chains D and B (Figure 8D). The complementary
interfaces were covered by positive and negative charges as
well as by hydrophobic patches. Moreover, the surface charges
density highlighted that the dimer interfaces (A–B and C–D)
were characterized by a hydrophobic core surrounded by a ring
of polar residues.While, in the interfaces A–C and B–D a concave
pocket positively charged can be noted.

The Model_USP-691-A (-A, chain A) was compared with the
3D structures of USPs available in the PDB by means of the
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FIGURE 4 | Expression of L. innocua ATCC 33090 USP under
physiological or acid stress condition represented as spot area
revealed in non-pre-acid-adapted cells (A) or in pre-acid-adapted cells (C)
and as high magnification of 2-DE gels of the proteome from

non-pre-acid-adapted cells (B) or in pre-acid-adapted cells (D). Spots area

values are the average of three replicate experiments and the error bars

represent the standard deviation. The *indicates that the difference is

statistically significant as determined by one-way ANOVA followed by the

Tuckey’s multiple comparison test (**p < 0.05), (***p = 0.0001), (****p <

0.0001) while (ns) indicates that no statistical differences were detected.

DALI server (Table 4). Results showed that the Model_USP-691-
A shared up to 34% of sequences identity overall 3D structure
with the other USPs belonging both Bacteria and Archaebacteria.
The overall folds were highly conserved in all USPs, some
difference was detectable in the poorly conserved region α2
(Figure 8). The regions (α1, α4, and β5), involved intomonomer-
monomer interaction were highly conserved in all USPs. In
addition, except for the fold α2, also the regions (α3, α4, and
β5) of tetrameric contacts were conserved. Furthermore, the
31% (12/39) of residues involved in the formation of dimers
Model_USP-691-A were conserved in at least 60% of the overall
structures and 18% (6/33) of the residues involved into tetrameric
association interfaces were conserved in 60% of the overall
structures (Figure 9). Interestingly, the quaternary structure
evidenced the occurrence of a loop containing the ATP-binding
motif G-2X-G-9X-G-(S/T/N) characterized by three residues of
glycine interspersed with two and nine amino acid residues
between the first and the second glycine residues, respectively and
with a serine/threonine/asparagine following the third glycine.
The ATP-binding motif was also detectable into other 11 USP
structures (Table 4, Figure 9).

DISCUSSION

In this study, L. innocua ATCC 33090 was used as a surrogate
of the pathogen species L. monocytogenes, to investigate the
effect of sub-lethal acid pH on the growth and protein
expression. In agreement with results obtained for the pathogenic
microorganism (Begley and Hill, 2015), L. innocua was able to
quickly adapt to metabolic pathways in response to acid stress,
modifying the expression of a protein subset.

In fact, the results highlighted that under acid stress
conditions, 19 gene products were at least two-fold up-regulated
in L. innocua during the growth (exponential phase).

Some of the upregulated proteins identified in the current
study have been already associated to acid stress response
as well as to other stress factors. The SSDH is the second
enzyme of the γ-aminobutyrate (GABA) shunt pathway (Zhu
et al., 2010). In the GABA shunt pathway, GABA is firstly
converted to succinate-semialdehyde (SSA) by means of GABA
aminotransferase (GABA-AT) and then oxidized by SSDH to
succinate with formation of CO2. The GABA shunt can operate
as an alternative pathway to provide succinate in some steps
of the tricarboxylic acid (TCA) cycle in bacteria, including L.
monocytogenes, that lacks of a complete set of genes necessary for
the TCA cycle (Glaser et al., 2001). Moreover, GABA shunt may
be an important source of nitrogen in certain bacteria (Schneider
et al., 2002), as well as may play a role in acid tolerance in L.
monocytogenes (Abram et al., 2008).

The CTC protein belongs to the L25 ribosomal protein family
and is involved in the adaptation of L. monocytogenes to osmotic
stress in the absence of osmoprotectants (Duché et al., 2002;
Gardan et al., 2003). Moreover, the results in our study also
highlighted the up-regulation of a specific USP during the growth
(exponential phase) in acid conditions. It is likely to suspect that
this specific protein -together with other acid stress proteins—
was involved in the response to acid stress during the growth
phase of L. innocua. A link between the USP up-regulation and
the acid stress condition was clearly revealed. In fact, the specific
USP was up-regulated or down-regulated as response to acid
stress condition or to the restoration of conventional conditions,
respectively.

To the best of our knowledge, only Seifart Gomes et al.
(2011) highlighted the importance of USP in response to
the acid stress in pathogenic L. monocytogenes. These authors
revealed a clear role of USP in the survival of cells showing
that the resistance of usp-deleted mutants was significantly
reduced compared to the wild stains. The role of USPs in
response to several stress conditions was better elucidated in
other bacteria, including Escherichia coli (Gustavsson et al., 2002;
Nachin et al., 2005) and Salmonella typhimurium (Liu et al.,
2007; Bangera et al., 2015),Haemophilus influenzae (Fleischmann
et al., 1995; Sousa andMcKay, 2001),Mycobacterium tuberculosis
(O’Toole andWilliams, 2003; Drumm et al., 2009), Pseudomonas
aeruginosa (Boes et al., 2008), and Lactobacillus plantarum
(Licandro-Seraut et al., 2008; Gury et al., 2009). In all cases, the
expression of USP has been associated to the arrest of cellular
growth in response to prolonged stress (Hingley-Wilson et al.,
2010). Nyström and Neidhardt (1992, 1994) showed that the
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FIGURE 5 | Phylogenetic tree of the 55 most characterized USPs. Bacterium genus are indicated: (L.), Listeria; (Lb.), Lactobacillus; (S.), Salmonella; (Sh.),

Shigella; (Y.), Yersinia; (Ph.), Photorhabdus; (E.), Escherichia; (H.), Haemophylus; (Ha.), Halomonas; (T.), Thermus; (M.), Mycobacterium; (Me.), Methanococcus.
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FIGURE 6 | Overall 3D structure of the Model_USP-691 from L. innocua ATCC 33090. (A) 3D representation of tetrameric conformation containing the chain_A

(green), chain_B (cyan), chain_C (magenta), and chain_D (yellow). (B), representation of architecture having reference to the Rossmann-like α/β-fold with five parallel

β-strands and four α-helices.

TABLE 3 | Interfaces analysis of Model_USP-691.

Interfaces Structure 1 Structure 2 Iterface area (Å2) 1G (Kcal/mol) N_HB N_SB

Chain N_res Chain N_res

PISA/PC PISA/PC PISA PC PISA/PC PISA PC PISA PC PISA

1 A 39 (24%) 46 (29%) B 43 (27%) 49 (31%) 1517 1116 −6.7 24 0

2 C 33 (21%) 36 (23%) D 38 (24%) 41 (26%) 1259 924 −1.8 22 7

3 A 33 (21%) 36 (23%) C 35 (22%) 39 (24%) 1164 839 −12.3 4 2

4 B 31 (19%) 33 (21%) D 32 (20%) 38 (24%) 1099 830 −12.6 8 0

5 B 2 (1%) 2 (1%) C 3 (2%) 3 (2%) 74 45 2.7 1 1

6 A 1 (0.6%) 1 (0.6%) D 2 (1%) 2 (1%) 18 3 0.9 0 0

PC, POPSCOMP server; N_res, number of residues; ∆G, solvation free energy gain; N_HB, number of hydrogen bonds; N_SB, number of salt bridges.

survival of E. coli was reduced in the uspA-mutated strains.
Likewise, the mutation of uspA gene reduced the survival of
S. thyphimurium to carbon or phosphorous (Liu et al., 2007).
Moreover, the USP PA3309 and PA4352 were essential for
survival of Pseudomonas aeruginosa under anaerobic conditions
(Boes et al., 2006; Schreiber et al., 2006). Usp-deleted mutants of
Burkholderia glumae showed a significant reduction of survival
when compared to wild-type strains after the heat-shock stress
(Kim et al., 2012).

Herein, USP over-expression was associated with the cellular
growth arrest of L. innocua, both in the presence and in the
absence of acid. However, when the strain was cultivated in
acid conditions, unexpectedly USP was over-expressed during
the exponential phase. This finding suggests that USP in Listeria
could play a crucial role in the response to acid stress during

the exponential growth, and represents an important advance
in the knowledge of the functional role of the USP family. For
this purpose, the phylogenetic analysis offered an interesting
information, showing that USPs of Listeria were distant from
other previously characterized USPs (Nachin et al., 2008)
belonging to E. coli, Salmonella, and H. influeanzae. In detail,
all the USPs from Lactobacillus spp. and Listeria spp. (including
template and target) clustered in a separate and heterogeneous
class, arbitrarily called USPL. Therefore, we can assume that the
USP from the USPL class could play a different role in the stress
response than USPs grouped in other classes.

Structural and biochemical studies suggest a wide array of
functions of USPs. Anyway, few USP structures are available
in PDB and there is little structural information is available
for most of them. We found that of the 20 proteins with a
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FIGURE 7 | Opened view of the Model_USP-691. The grid represents the interfaces involved into dimeric (Dc) and tetrameric (Tc) contact. The chains are

represented in green (chain_A), cyan (chain_B), magenta (chain_C), and yellow (chain_D).

sequence similar (Z-score significance≥15.0) to theModel_USP-
691-A, only for about 50% of them there is available structural
information (Table 4). Generally, USPs have a structure typical
of a Rossmann-like α/β-fold having five-stranded parallel β-
sheet surrounded by four α-helices that homo-dimerize, in
an antiparallel fashion via the fifth β-strand on each subunit
(Zarembinski et al., 1998; Schweikhard et al., 2010; Tkaczuk et al.,
2013). Moreover, proteins such as TTHA0350, Rv2623, and YdaA
were found to display two USP domains (Drumm et al., 2009;
Iino et al., 2011; Bangera et al., 2015). Both single and double
USP domain-containing proteins may assembly to form either
tetrameric structure characterized by four USP domains or a
homo-dimeric of two chains with two USP domains. In this
work, the homology modeling technique used supports a homo-
tetrameric structure of USP (Figure 6B). Bioinformatics analyses
were addressed to the comparison of the modeled structures
and of the interface regions with previously characterized USP
members. The Model_USP-691-A shared a sequences identity
of 17–34% with a Z-score ranging from 15.0 to 26.2 (Table 4)
when compared to resolved USP structures deposited in PDB.
Moreover, the model reliability was confirmed by the presence

of highly conserved folding regions (Figure 9), especially those
represented by the β-strands. The β-strands 1–5 contained
residues with hydrophobic properties playing an important
role in the protein folding. These regions are involved in the
formation of a stable β-sheet, described by Iino et al. (2011)
as a typical USP molecular core. Interestingly, the hydrophobic
properties of high structurally and sequentially conserved
residues (V146-L147-V148-V149) of the β-strand 5 seem to have
an essential role into monomer-monomer interface formation
(Figures 6B, 7, 9). In particular the residue V146, which is
conserved in all the USP structures and sequences observed
so far (Figure 9 and Figure S1), could play a key role into
monomer-monomer contacts. Schweikhard et al. (2010) found
that the residues V144 and V146 of TeaD protein, corresponding
to V146 and V148 of our Model_USP-691-A, were involved
into monomer-monomer contacts through hydrogen bonds. We
also predicted the presence of hydrogen bonds between the
residues V146 and V148 of chain A with the residues V148 and
V146 of chain B respectively. The region α4 took part in the
formation of dimers with the involvement of 4 residues (E136-
2X-I139-R140-H141; where X indicate the number of residues
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FIGURE 8 | Surface charged residues and electrostatic potential distribution at dimer and tetramer interfaces. (A), Complex between the chain_A and

chain_B; (B), complex between the chain_C and chain_D; (C), complex between the chain_A and chain_C; (D), complex between the chain_B and chain_D.

between) as well, but only the residues I139 and H141 resulted
conserved in the sequence. Probably these residues, together
with the others found conserved in the structure and sequences
of USPs, may function as hot spots in monomer–monomer
interface assembly (Figure 9). On the base of the herewith-
collected structural and sequence information, it would seem that
the dimeric arrangement ofModel_USP-691 is a plausibly correct
assembly. This hypothesis is also supported by the analysis of
the composition of interfaces. We found the presence of a large
interface area (∼1400 Å2) between the chains A and B or C
and D of model, compatible in size with the interfaces (740–
1900 Å2) of other crystallographic resolved USPs. In addition, a
complementary electrostatic charge distribution was found at the
interface. Moreover, the negative value of solvation free energy
gain upon formation of the interface, as well as the high number
of hydrogen bounds found at the interface, suggest a favorable
interaction between the USP monomers. The proposed USP
assembly (Figure 7) suggests that the dimer could have a crucial
functional role. Although the biological function of these dimers
is still unknown, this observation is supported by the recovery
of proteins (TTHA0350, Rv2623, YdaA) with two tandem USP
domains. In the work conducted by Schweikhard et al. (2010)
the USP protein TeaD showed a dimeric state as assessed by

SEC (Size exclusion chromatography) and Blue Native PAGE
analyses. The same authors, showed that when ATP was added
to TeaD, a tetrameric state was also observable, concluding
that ATP significantly contributed to the stabilization of the
molecular tetrameric conformation. Other authors highlighted
the putative role of ATP in the contact between tetrameric
assembly of USPs (Sousa and McKay, 2001). Recently, Bangera
et al. (2015) showed that both single domain USP YnaF and
two domains USP YdaA from S. typhimurium had a tetrameric
or dimeric organization, respectively, and that together they
could bind ATP. In fact, ATP or nucleotide binding USPs
display a conserved ATP-binding motif G-2X-G-9X-G(S/T-N).
We found this motif present in the structure of Model_USP-
691-A, and structurally conserved compared to the more closely
related USPs (Figure 9). Notably, the presence of a positively
charged pocket indicated an electrostatic compatibility with the
ATP molecule. The residues H141, S133, L128, P99, A67, I48 were
structurally and sequentially conserved, pointing a role into
tetrameric conformation of model. Overall, this information
supports the tetrameric assembly shown by Model_USP-691.
The possible ATP-binding property would be fundamental for
the USP assembly and consequently for the protein function.
According to a previous biochemical study, USPs from
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FIGURE 9 | Multiple structural alignment of sequences between the chain A of Model_USP-691 and proteins of homolog structures. The number of

domains are reported as d1or d2. The residues that are conserved in at least 60% of all sequences are highlighted in red. The conserved residues are represented in

blue boxes. ATP-binding motif is in yellow.

other bacterial species have been shown to display ATPase
activity (Zarembinski et al., 1998). More recently, Bangera
et al. (2015) reported the USP YdaA (PDB ID: 4r2j) of S.

typhimurium showing ATPase activity and contain an ATP
binding motif; in contrast, an additional USP (YnaF, PDB
ID: 4r2l) protein did not show any ATPase activity, but
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was able to bind ATP though lacking the specific ATP
binding motif. Therefore, the biochemical and biological
function of the USPs could rely on an ATP dependent-factor,
which is likely to be linked to a specific energetic state of
the cell.

In conclusion, based on the current structural prediction,
ListeriaUSPmight be deemed as a new type of ATP-binding USP.
Contrarily to USP-types involved into growth arrests, the USP of
L. innocua could have a key role in the response to acid stress
during the exponential growth phase.
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