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Institute of Medical Mycology, Teikyo University, Tokyo, Japan

The demand for novel antibiotics to combat the global spread of multi drug-resistant

pathogens continues to grow. Pathogenic bacteria and fungi that cause fatal human

infections can also kill silkworms and the infected silkworms can be cured by the same

antibiotics used to treat infections in the clinic. As an invertebrate model, silkworm

model is characterized by its convenience, low cost, no ethical issues. The presence

of conserved immune response and similar pharmacokinetics compared to mammals

make silkworm infection model suitable to examine the therapeutic effectiveness of

antimicrobial agents. Based on this, we utilized silkworm bacterial infection model to

screen the therapeutic effectiveness of various microbial culture broths and successfully

identified a therapeutically effective novel antibiotic, lysocin E, which has a novel

mode of action of binding to menaquinone, thus leading to membrane damage and

bactericidal activity. The similar approach to screen potential antibiotics resulted in the

identification of other therapeutically effective novel antibiotics, such as nosokomycin

and ASP2397 (VL-2397). In this regard, we propose that the silkworm antibiotic

screening model is very effective for identifying novel antibiotics. In this review, we

summarize the advantages of the silkworm model and propose that the utilization of

silkworm infection model will facilitate the discovery of novel therapeutically effective

antimicrobial agents.

Keywords: silkworm model, pharmacokinetics, therapeutic activity, lysocin E, novel antibiotics

INTRODUCTION

The conventional approach of antibiotic discovery includes purification from culture supernatants
of soil bacteria by monitoring in vitro antimicrobial activity. This approach makes it difficult to
identify novel antibiotics, however, due to the frequent isolation of overlapping chemical entities.
In addition, only a small fraction of the antibiotics isolated using this approach exert therapeutic
activity in animal models, which further limits the discovery of the therapeutically effective
antibiotic. The lack of therapeutic activity by most of the compounds is due to their toxicity and
poor pharmacokinetic properties. Thus, the conventional approach of antibiotic screening clearly
requires remodeling. To overcome the problems associated with conventional screening methods,
we used the silkworm as an animalmodel to evaluate the therapeutic effects of candidate samples. In
this review, we discuss the advantages of the silkworm model for antimicrobial drug development.
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ADVANTAGES OF THE SILKWORM AS AN
ANIMAL MODEL

Silkworms, the larvae of the domesticated moth Bombyx mori,
have been used for silk production for more than 5,000 years.
The silk industry originally started in China, distributed toward
several parts of Asia and the West, and has contributed greatly
to the economic development of countries along the Silk Road.
While B. mori continues to be a major player in sericulture
throughout the world, it has also gained importance for
biotechnology as a bioreactor for the production of recombinant
proteins and silk-based biomaterials (Altman et al., 2003; Kato
et al., 2010). From an anatomic point of view, B. mori harbors
most of the organs and systems present in mammals, leading
scientists to use B. mori as an excellent model organism to
elucidate various processes in life sciences, which has been
facilitated by the availability of its complete genome sequence and
the development of technologies for genetic manipulation. As an
animal model, B. mori has clear advantages over other organisms
(Table 1).

Ethical Issues
Over the last several years, animal welfare concerns have
forced scientists to reduce the number of vertebrates, especially
mammals, used as experimental animal models, and alternative
animal models that do not require approval by the ethics
committee have been sought. Given that silkworms have been
used in the silk industry for centuries and their application
for research does not require ethical clearance, their use as
experimental animal models is both less complicated and less
costly compared to vertebrates.

Rearing System
The utilization of silkworms in the silk industry has facilitated its
domestication. The proper methods of feeding and maintaining
silkworms are well-established. The development of artificial diet
in the 1960s replaced the seasonally available mulberry leaves
and allowed year-round utilization of silkworms. The feeding
of artificial diet not only facilitated breeding and rearing but
also contributed to a uniform quality of silkworms. Uniformity
in quality is important for robust and reproducible results
in studies performed using model animals. The widespread
distribution of the silk industry makes it easy to obtain fertilized
eggs, thus dramatically reducing the time and labor required to
care for silkworms. As fifth-instar day 2 larvae are utilized for
infection assays, the total silkworm rearing time required from
hatching of the eggs to using the larvae for infection assays
is <3 weeks, which is far shorter than the time required for
mammals. Utilization of aseptic procedures during rearing allows
the generation of germ-free larvae. Furthermore, larvae molt four
times; thus making it easy to distinguish each instar stage and
reducing individual genetic differences.

Cost Issue
A silkworm rearing room generally includes an incubator and a
safety cabinet. Thus, silkworm rearing does not require large and
expensive equipment, making it much less expensive than other T
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animal models. Furthermore, in contrast to mammalian models,
large numbers of larvae can be reared in a single cage, which
significantly reduces the cost of maintaining silkworms. Based on
our experience, the cost of using silkworms is 1% that of the cost
of utilizing mice.

Handling
In general, experiments utilizing silkworms require less time than
those utilizingmammalianmodels. Further, silkworm larvae have
a large enough body size for easy handling by human hands,
and samples can be injected with the same syringe type used
for medical purposes in humans (Figure 1A). Samples can be
injected into the hemolymph, which corresponds to intravenous
injection in mammals, and the midgut, corresponding to oral
administration. Moreover, silkworm organs such as the midgut
can be isolated for experimental use. Silkworms are easy to
work with; they do not have sharp horns/hair, teeth, or claws
that can sting, and do not bite. Moreover, the adult moths
cannot fly and the movement of silkworm larvae is slow
and weak, making them easy to handle for injecting samples.
This weak and slow movement also makes it difficult for
silkworms to escape from their cages, allowing us to perform
infection assays for level 2 pathogens. As silkworms have
been very highly domesticated through the long history of the
silk industry, they cannot survive or reproduce in a natural
environment. This further adds to the safety of using silkworms
for injection of pathogenic organisms and reduces the biohazard
potential.

Gene Editing
Attempts to decode the B. mori genome were performed
in 2004 and 2008 (Xia et al., 2004; The International
Silkworm Genome Consortium, 2008). The availability of
the genome sequences facilitated the development of basic
genetic and molecular genetic tools and markers. Over
the last decade, the development of genetic technologies
for B. mori has greatly advanced. Genetic modification

may be achieved by transposon-based technology, such as
transgene integration or expression; RNA interference-based
gene silencing; gene- and enhancer-trap methods and genome
editing technology utilizing zinc finger nucleases; transcription
activator-like effector nucleases (TALENs); and CRISPR/Cas9
(Xu and O’Brochta, 2015). Furthermore, Dr. Sezutsu’s group
in the National Agriculture and Food Research Organization,
Japan, recently succeeded in utilizing these various techniques
to edit the silkworm genome (Inagaki et al., 2015; Sakurai et al.,
2015; Takasu et al., 2016). With these recent developments, the
silkworm now has a sophisticated genetic modification system
and can thus be used to establish disease models and humanized
models to screen candidate compounds and analyze physiologic
processes.

Common Pharmacokinetics between
Silkworm and Mammals
Silkworm organs, such as the gut, fat body, and malpighian
tubule, correspond to the intestine, liver, and kidney, respectively,
in mammals, and are involved in themetabolism and excretion of
external compounds (Figure 1B). Pharmacokinetic parameters
are very important from the view of therapeutic activity. Even
compounds that exhibit good activity in vitro will not be
effective in vivo if they have poor pharmacokinetic parameters.
We demonstrated that the half-lives of model compounds in
silkworms are similar to those in mammals (Hamamoto et al.,
2009). We also found that a model compound is metabolized
in silkworms by the cytochrome P450 enzyme, follows the
metabolic pathway via the conjugation reaction, and exhibits
the similar pharmacokinetics as in mammals (Hamamoto et al.,
2009). We also demonstrated that the general non-specific
transport of molecules through paracellular routes is comparable
between the mammalian intestine and the silkworm midgut
(Hamamoto et al., 2004, 2005). In addition, the doses of cytotoxic
chemicals that are lethal in 50% of the animals (LD50) are
similar between silkworms and mammals, indicating that the
toxicity of compounds listed in the OECD guidelines can

FIGURE 1 | Silkworm and its organs. (A) Manual injection of a sample into the silkworm hemolymph using a 1-ml disposable syringe, and (B) comparison of

silkworm organs involved in drug absorption, metabolism, and elimination between silkworms and mammals.
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be evaluated using silkworms (Usui et al., 2016). Based on
this, we have used silkworms to optimize antimicrobial agents
for less acute toxicity and succeeded to increase the median
lethal dose (LD50) from 100 to 230 µg/g larvae (Paudel et al.,
2013).

Host–Pathogen Interaction and Immune
Response in Silkworm
Pathogens respond and adapt to the signals appearing in the
host environment to successfully infect the host and in most
cases, the host’s response is critical to determine the degree
of pathogenicity. An ideal animal model should provide a
response similar to that of humans, during infections. Although
insects like silkworm lack acquired immunity, innate immunity
is widely conserved among mammals and insects (Hoffmann
and Reichhart, 2002). Immune response by silkworms includes
humoral response such as: production of various proteins
like phenoloxidase, antimicrobial peptides, lysozymes, lectins,
serine proteases, etc.; and cellular response such as hemocyte-
mediated phagocytosis, encapsulation, nodule formation, etc.
We previously reported the activation of innate immunity in
silkworm during pathogen invasion and found that a cytokine-
like paralytic peptide induced humoral and cellular responses
and played an important role in silkworm immunity. Further,
we found that the paralytic peptide promoted the engulfment
of bacteria and induced nitric oxide (NO) production, that is
required for both p38 and MAPK activation (Ishii et al., 2013,
2015a).

All the features of silkworms mentioned above suggest that
they are a suitable alternative evaluation system for determining
the therapeutic effectiveness of candidate drugs. In addition, the
availability of a large number of silkworms with low cost and
no ethical issues allows us to screen novel antibiotics for their
therapeutic effectiveness.

ADVANTAGE OF SCREENING NOVEL
ANTIBIOTICS USING THE SILKWORM
INFECTION MODEL

We have previously shown that pathogenic bacteria and fungi
that cause fatal infections in human beings such as methicillin
sensitive and resistant Staphylococcus aureus; Pseudomonas
aeruginosa can also kill silkworms. Furthermore, these infections
were cured with the same antibiotics used clinically to cure
these infections (Kaito et al., 2002; Hamamoto et al., 2004).
Since then, silkworms have been utilized to study pathogenic
bacterial toxins (Hossain et al., 2006); evaluate the target
specificity of antibacterial agents (Kurokawa et al., 2009);
identify novel S. aureus virulence genes (Kaito et al., 2005;
Miyazaki et al., 2012); and identify novel probiotic bacteria that
promote survival during P. aeruginosa infection (Nishida et al.,
2016). Additionally, infection model of multiple pathogenic
microorganisms Stenotrophomonas maltophilia (Hamamoto
et al., 2004); Vibrio vulnificus (Yamamoto et al., 2016); Vibrio
cholera (Kaito et al., 2002); Candida tropicalis (Hamamoto
et al., 2004); Candida albicans (Hamamoto et al., 2004);

Aspergillus fumigatus (Nakamura et al., 2017a); Cryptococcus
neoformans (Matsumoto et al., 2012); and laboratory generated
vancomycin-resistant S. aureus VR7 (Tabuchi et al., 2017) have
been developed and the success of the antimicrobial to rescue
the silkworms from the effect of pathogens have been reported
(Table 2). These findings suggest that silkworm infection models
can be utilized tomimic the infections caused by various bacterial
and fungal pathogens.

We also demonstrated that the dose required to cure 50%
of fatal infections (ED50) in silkworms is similar to that in
mice, suggesting that the pharmacokinetics of these antibiotics
are similar between silkworms and mammals (Hamamoto et al.,
2004). This shared common feature in the pharmacokinetic
parameters of clinically applied antibiotics between mammals
and silkworms led us to utilize the silkworm infection model to
screen for antimicrobial agents. Given that most of the antibiotics
currently used clinically were derived from natural products
isolated frommicroorganisms and these microorganisms serve as
a repertoire of novel antibiotics, the utilization of silkworms has
a further advantage—the possibility of injecting a crude extract.
The injection of a crude extract from natural products, such

TABLE 2 | Silkworm infection model and therapeutic effect of

antimicrobial agents.

Infection model Treated with ED50

(µg/larvae)

References

Methicillin-susceptible

S. aureus

Kanamycin 3 Hamamoto et al., 2004

Arbekacin 4

Teicoplanin 0.3

Vancomycin 0.3

Tetracycline 0.4

Minocycline 3.9

Chloramphenicol 7

Flomoxef 0.2

Linezolid 9

Methicillin-resistant

S. aureus

Vancomycin <6.5 Kaito et al., 2002

Vancomycin-resistant

S. aureus VR7

Vancomycin-

ceftriaxone

ND Tabuchi et al., 2017

Stenotrophomonas

maltophilia

Minocycline 7.8 Hamamoto et al., 2004

Sulfamethoxazole-

trimethoprim

57

Imipenem-cilastatin 50

Candida tropicalis Amphotericin B 1.8 Hamamoto et al., 2004

Fluconazole 1.8

Candida albicans Amphotericin B 4.1 Hamamoto et al., 2004

Fluconazole 1.8

Cryptococcus

neoformans

Amphotericin B 14 Matsumoto et al., 2012

Flucytosine 6

Fluconazole 2

Ketokonazole 19
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FIGURE 2 | Utilization of silkworms to screen therapeutically active antimicrobial agents.

as plant extracts and supernatant of soil bacteria, is prohibited
in mammals by the experimental guidelines for animal welfare
due to the lack of a rational basis for the experiment. Soil
bacteria can produce several anti-bacterial agents, which are often
effective only in in vitro conditions and do not show therapeutic
efficacy. Purification based on in vitro activity alone may miss
to identify therapeutically effective compounds. Furthermore,
our previous experience of selecting the hits from a chemical
library using minimum inhibitory concentrations (MIC) as an
indicator showed that these compounds had no therapeutic
activity (Paudel et al., 2012, 2013). Therefore, we chose to evaluate
the therapeutic activity using the silkworm infection model to
purify therapeutically effective compounds. By doing so, we can
easily eliminate the compounds that are only effective in vitro
and focus on therapeutically effective compounds, even when
their production level is lower than that of compounds that are
only effective in vitro, which reduces time, effort, resources, and
cost to obtain a therapeutically effective compound (Figure 2).
These features of the silkworm infection model facilitate the
identification of novel, therapeutically effective antibiotics from
natural products.

DEVELOPMENT OF NOVEL
ANTIMICROBIAL AGENTS USING THE
SILKWORM INFECTION MODEL

We developed the silkworm infection model by evaluating
the effects of various pathogenic bacteria and fungi. Further,
antibiotics and antifungal agents clinically used against those
bacteria and fungi effectively cured infections in silkworms. By
utilizing the silkworm infection model, we and collaborators
successfully identified novel antimicrobial agents—lysocin E
(Hamamoto et al., 2015), nosokomycins (Uchida et al., 2010), and

ASP2397 (Nakamura et al., 2017a). The details of the discovery of
lysocin E and ASP2397 are presented in this review.

Identification of Novel Antibiotics Lysocin
E from Soil Bacteria
We collected soil samples from various places within Japan
and isolated bacteria from these samples. We screened the
supernatants of the soil bacteria for in vitro antimicrobial
activity against methicillin-resistant Staphylococcus aureus as a
primary screening. Of the 14,651 supernatants, 2,794 (19%) had
in vitro inhibitory activity against S. aureus. Surprisingly, only
23 of the 2,794 culture supernatants had therapeutic activity
in the silkworm infection model. This low hit rate for the
therapeutic effectiveness of the culture supernatants indicates
that the silkworm infectionmodel is highly effective for excluding
antibiotics that do not have therapeutic effectiveness.We purified
antibiotics from the culture supernatant of a Lysobacter, which
has recently attracted high interest due to their capacity to
produce antibiotics and other natural products (Panthee et al.,
2016). Purification based on the therapeutic activity observed
in silkworms infected with S. aureus from the culture broth
of Lysobacter sp. RH2180-5 led to the identification of a
therapeutically active novel antibiotic, lysocin E (Hamamoto
et al., 2015) (Table 3, Figure 3A). The detailed purification
process showed that the in vitro activity was higher for the
partially purified butanol extract than purified lysocin E. This
indicated that the culture broth contained both therapeutically
active and inactive antimicrobial components and our success in
finding a therapeutically active antibiotic relied on utilization of
the silkworm screening system.

Lysocin E is a cyclic peptide that exhibits antimicrobial
activity against various Staphylococci, Bacillus subtilis, Bacillus
cereus, and Listeria monocytogenes with MICs ranging from 1
to 4 µg/ml (Table 4). Based on the genetic and biochemical
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analysis, we identified menaquinone, a membrane molecule
important for the bacterial electron transport chain, as the
lysocin E target (Figure 3B). Lysocin E is the first antibiotic
discovered that targets menaquinone (Hamamoto et al., 2015;
Paudel et al., 2016). Lysocin E also has potent therapeutic activity
in a mouse infection model of methicillin-resistant S. aureus
(ED50: 0.5mg/kg). Lysocin E did not exhibit acute toxicity in
mice at a dose up to 400 mg/kg. The chemical structure of
lysocin E comprises 12 amino acids arranged linearly by two large

TABLE 3 | Purification of lysocin E from the culture supernatant of

Lysobacter RH2180-5.

Fractions MIC (µg/ml) ED50 (µg/g)

Acetone extract 25 90

Butanol extract 0.6 4

Water precipitation N.D. 1.8

ODS column chromatography N.D. 0.5

Lysocin E 5 0.3

ND, not determined.

multimodular non-ribosomal peptide synthetases named lysocin
E synthetase (LesA and LesB) that have a total of 12 modules
and 43 domains in a 1.7-MDa core peptide (Figure 3C) (Panthee

TABLE 4 | MIC of lysocin E against various microorganisms (Hamamoto

et al., 2015).

Microorganisms MIC (µg/ml)

Methicillin-susceptible S. aureus 1–4

Methicillin-resistant S. aureus 4

Vancomycin-resistant S. aureus* 8

Bacillus spp. 2

Listeria monocytogenes 1

Mycobacterium spp. 8

Serratia marcescens >100

Pseudomonas aeruginosa >100

Candida spp. >100

Cryptococcus neoformans >100

Escherichia coli W3110 >100

Streptococcus spp. >128

*Laboratory generated vancomycin-resistant strain (Ishii et al., 2015b).

FIGURE 3 | Lysocins, mode of action, and biosynthesis. (A) Chemical structure of lysocins A–I and (B) schematic representation of membrane damage by

lysocin E (C) non-ribosomal peptide synthetases involved in lysocin biosynthesis and amino acids activated by the 12 modules in LesA and LesB.
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FIGURE 4 | Chemical structure of the novel antifungal compound

ASP2397 (VL-2397). ASP2397, purified based on in-vivo therapeutic effect in

silkworm infection model.

et al., 2017). The potent therapeutic activity and low toxicity of
lysocin E in animal infection models suggest its high potential
for clinical application and the identification of its gene cluster
opened avenues for further derivatization of the structure with
enhanced activity.

Identification of a Novel Antifungal
Compound, ASP2397 (VL-2397)
To identify antifungal compounds, the clinical fungal isolate
A. fumigatus FP1305 was used as a test strain. Astellas group
screened culture broths of 310 fungal strains for in vitro activity
against A. fumigatus FP1305, followed by testing the ability of
the broths to cure silkworms infected with FP1305. The culture
broth of Acremonium persicinum MF-347833 had therapeutic
activity in the silkworm infection model. To purify the antifungal
compound, they first attempted to purify the activity based on
the in-vitro antifungal activity, which failed to identify some
of the therapeutically active fractions. This finding led to the
speculation that the culture broth of A. persicinum MF-347833
contained a mixture of antifungal compounds with therapeutic
activity or without therapeutic activity. They next utilized the
silkworm infection assay-guided purification method to identify
therapeutically active antifungal compounds and successfully
identified ASP2397 (Nakamura et al., 2017a,b) (Figure 4).
ASP2397 has an MIC of 0.2 µg/ml against A. fumigatus
FP1305 and is also effective against azole-resistant A. fumigatus
(Arendrup et al., 2016), displays therapeutic activity in mice

infected with A. fumigatus, and has no cytotoxicity toward

mammalian cells at a concentration up to 50µg/ml, indicating
its potential as a therapeutic agent. The planar structure of
ASP2397 indicates that it is a metal ion chelator that harbors
aluminum, indicating the importance of metal chelation for its
therapeutic activity. The fact that ASP2397 was not identified by
the conventional approach highlights the utility of the silkworm
model for identifying therapeutically active drug molecules.

CONCLUSION

In summary, we used silkworms as a primary screening system
that has several advantages, including an established rearing
system, cost effectiveness, reproducible and robust application,
no ethical issues, and conserved metabolic pathways with
mammals. We established silkworm infection models of various
bacteria and fungi and found that silkworm infection model
facilitates the discovery of therapeutically effective compounds.
Furthermore, we utilized the silkworm infection model to purify
compounds from natural sources and identified the antimicrobial
agents with therapeutic activity that would otherwise go
unidentified. As an example, ASP2397 was identified from
Acremonium persicinum MF-347833 using silkworms, but was
not identified by the purification approach based on in vitro
activity. Similarly, the purification of lysocin E from a crude
extract that had more potent in vitro activity than lysocin E
itself is an example of how the silkworm screening system avoids
some of the restrictions placed on mammal-based screening
systems. Thus, the silkworm model is suitable for developing
novel therapeutically effective antibiotics from natural products.
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