AUTHOR=Peng Xianhui , Zhou Liya , Gong Yanan , Song Zhiqiang , He Lihua , Lin Sanren , Zhang Jianzhong TITLE=Non-pylori Helicobacters (NHPHs) Induce Shifts in Gastric Microbiota in Helicobacter pylori-Infected Patients JOURNAL=Frontiers in Microbiology VOLUME=8 YEAR=2017 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2017.01038 DOI=10.3389/fmicb.2017.01038 ISSN=1664-302X ABSTRACT=

To explore the effects of gastric non-H. pylori Helicobacter species(NHPH) on the structure and potential function of gastric microbiota, we employed 16S rRNA gene sequencing on 164 gastric biopsy specimens from NHPH (H. suis, H. felis, H. salomonis) /H. pylori coinfection individuals, H. pylori monoinfection individuals and healthy controls. The results demonstrated that marked structural and functional variations between H. pylori mono- and coinfection samples (HPHS, HPHF, HPHM). The changes in bacterial structure induced by NHPH are mainly attributed to their ability of gastric acid secretion inhibition as well as bacterial chemotaxis. Both the HPHS and HPHF groups showed significant increases in phylotype richness and significant decreases in β diversity, but this trend was not found in HPHM group. Regarding the top five phyla and top thirty-five genera, the HPHS and HPHF groups had similar variation trends in relative abundance. The increased relative abundance levels of the genera Vibrio, Pseudoalteromonas, Photobacterium, and Clostridium were associated with increases in predicted signal transduction/metabolic pathways among the three coinfection groups. The relative abundance levels of bacteria involved in the formation of N-nitroso compounds were significantly decreased in the HPHS and HPHF groups (e.g., Streptococcus, Neisseria, Haemophilus, Veillonella, Clostridium, etc.). The significantly decreased relative abundance levels of the phyla Firmicutes and Bacteroidetes in the HPHS and HPHF groups were associated with the observed increases in predicted lipid metabolism pathways. The results in this study implied that NHPH can arouse the variation of structure and function of gastric microbiota, which may pave the way to further research on the pathogenesis of gastric diseases.